Минеральная вата коэффициент теплопроводности: Теплопроводность минеральной ваты, коэффициент теплопроводности минеральной ваты, виды минеральной ваты и их особенности

Каким должен быть коэффициент теплопроводности минеральной ваты

Оглавление:

  • Характеристика материала
    • Где применяется минеральная вата
  • Теплопроводность материала
    • Теплопроводность минеральной ваты
    • Теплопроводность и толщина материала
  • Токсичность материала

Строительство важная отрасль, которая охватывает практически все сферы деятельности людей. На сегодняшний день очень активно развивается частное строительство. Большое внимание уделяется вопросу утепления зданий и сооружений. От этого зависит их долговечность и другие эксплуатационные характеристики. В настоящее время известно множество теплоизоляционных средств. Немаловажное значение имеет такая характеристика, как коэффициент теплопроводности минеральной ваты.

Важным свойством минваты можно считать ее устойчивость к различного рода деформациям, высокую прочность на разрыв, при механических воздействиях.

На рынке имеется широкий ассортимент теплоизоляционных материалов. Он включает в себя стекловату, минеральную вату, асбест, пенопласт, пенополиуретан и многие другие. Минеральная вата является одним из самых доступных товаров. Ее используют уже несколько десятилетий. Несмотря на бурный научно-технический прогресс, она используется и по сей день. Она имеет свои положительные и отрицательные стороны при использовании. Рассмотрим более подробно, каково значение в строительном деле этого материала.

Характеристика материала

Минеральная вата представляет собой материал, в основе которого лежит минеральный компонент. Это собирательное понятие, которое включает в себя несколько разновидностей теплоизоляционного материала. В него входит каменная, шлаковая и стекловата. Все они значительно отличаются друг от друга. Для каждой разновидности характерна собственная волокнистость. Она может быть вертикальной, горизонтальной, гофрированной. От этого во многом зависит область ее применения в строительной сфере.

К преимуществам ваты минеральной относится:

Виды минеральной ваты по плотности.

  • хорошая устойчивость к высокой и низкой температуре,
  • устойчивость к воздействию химических агентов,
  • высокие теплоизоляционные характеристики,
  • плохая проводимость звука.

Все это обеспечивает массовое распространение ее в строительстве. Не нужно забывать и про то, что она является экологически чистым продуктом. Это означает, что она безопасна в использовании. Она не выделяет в окружающий воздух вредных токсинов даже при нагревании. В процессе использования ее для внутренних работ огромное значение имеет такая характеристика, как способность пропускать пары. Она отлично пропускает пар, благодаря чему поддерживается оптимальная влажность в помещении. Несмотря на все это, есть у нее и недостатки. Основной минус этого материала невысокая устойчивость к механическим повреждениям.

Где применяется минеральная вата

Вата на минеральной основе имеет низкий коэффициент теплопроводности. Благодаря этому она может применяться практически везде. Во-первых, она нашла применение при изоляции горячих ограждающих конструкций. Обеспечивается это тем, что минеральная вата безопасна в пожарном отношении, опережая по данному показателю некоторые более дорогие изоляционные средства. Во-вторых, областью ее применения является изоляция ограждающих поверхностей различных зданий. Но здесь есть одно условие: изоляция должна быть не нагружаемой.

Структура минеральной ваты и эковаты.

В-третьих, она используется в системе утепления фасадов зданий. В-четвертых, очень часто ее используют в системе внутреннего утепления конструкций. В последнем случае речь идет о панелях из железобетона или простого бетона. В-пятых, минеральная вата применяется в системе отопления, в частности при возведении и эксплуатации трубопроводов. В-шестых, данный материал является утеплителем различного промышленного оборудования. В-седьмых, вата нашла применение при строительстве плоских кровель.

Особенно часто это наблюдается при отсутствии бетонной стяжки. В-восьмых, бани, стены домов тоже возводятся с использованием ваты минеральной.

Теплопроводность материала

Известно, что любое нагретое тело способно отдавать свое тепло в окружающую среду или близко расположенным другим предметам. При этом отдача тепла (энергии) осуществляется с определенной скоростью. Чем выше скорость отдачи тепла, тем выше теплопроводность материала.

Сравнительные характеристики разных видов минеральной ваты.

Теплопроводность представляет собой свойство какого-либо тела пропускать через себя и отдавать определенное количество тепла. Все строительные материалы имеют свою теплопроводность. Она определяет качество материала и сферу его применения. Объем отдаваемой энергии можно оценить количественно. Для этого определяется коэффициент теплопроводности.

Твердые материалы (металлы и их сплавы) не в состоянии долго удерживать тепло, поэтому металлические сооружения требуется дополнительно утеплять. Существует такое понятие, как теплоизолятор. Это материал, который имеет низкий коэффициент теплопроводности. К таким материалам относится пенопласт, кирпич, минеральная вата. Интересен тот факт, что теплопроводность может варьировать в широких пределах. Коэффициент теплопроводности зависит от структуры материала, его плотности, влажности и некоторых других свойств.

Теплопроводность минеральной ваты

Теплопроводность ваты зависит от ее состава и марки. Коэффициент теплопроводности при этом составляет от 0,038 до 0,055 Вт/м*К. Если сравнивать его с таковым у воздуха, то последний равен 0,027 Вт/м*К. Известно, что воздух хорошо удерживает тепло. У него практически самый низкий коэффициент теплопроводности. Таким образом, минеральная вата по данному критерию является очень качественным материалом.

Важно, что коэффициент теплопроводности будет ниже у тех марок, которые имеют более рыхлую структуру.

Схема производства минеральной ваты.

Наблюдается это, потому что при хаотичном расположении минеральных волокон значительно повышается воздушная емкость материала, а воздух задерживает тепловую энергию.

Например, коэффициент теплопроводности легкой ваты равен 0,045 Вт/м*, а тяжелой 0,055 Вт/м*К. Такой же коэффициент теплопроводности имеет вата на основе хлопка. Все это отражается на ее эксплуатационных характеристиках. Несмотря на это, существуют теплоизоляционные материалы, имеющие более низкую теплопроводность. К ним относится пенополистирол. Коэффициент теплопроводности его составляет 0,034 Вт/м*К. Но если сравнивать каменную вату и пенополистирол по другим критериям, например, по пожаробезопасности, то минеральная вата здесь впереди.

Теплопроводность и толщина материала

Нетрудно догадаться, что теплопроводность определяет объем и толщину материала для осуществления теплоизоляционных работ. Если брать во внимание стекловату, то ее коэффициент теплопроводности равен 0,044 Вт/м*К. Благодаря несложным расчетам удалось установить, что при утеплении зданий и сооружений толщина этого материала должна быть равной 189 мм. Если сравнивать данный показатель с кирпичом, у которого теплопроводность намного выше, то кирпич уступает вате по способности удерживать тепло. При этом толщина кирпичной кладки должна равняться 1460 мм.

Высокая теплопроводность характерна и для всеми любимого бетона. Коэффициент теплопроводности для него равен 1,5 Вт/м*К. Все это свидетельствует о том, что бетонные и кирпичные конструкции нуждаются в дополнительном утеплении. Говоря о преимуществах минеральной ваты над другими материалами, нельзя не упомянуть то, что вата не дает усадки, имеет невысокую стоимость и большой срок эксплуатации. Нередко он достигает более 50 лет.

Токсичность материала

Рассматривая особенности этого изоляционного средства, нельзя не остановиться на его экологической безопасности. Как и многие изоляционные материалы, вата подвергалась многочисленным лабораторным исследованиям.

На основании их было установлено, что изделия на основе минеральной ваты не являются канцерогенами для человека, то есть они не способны вызвать раковые заболевания. Всего было выделено 4 группы веществ в зависимости от их канцерогенного влияния на организм. Первая включала вещества, опасные для человека. Сюда входит всем известный асбест. Ко второй категории относятся потенциальные канцерогены. Вата минеральная включена в 3 категорию. Что же касается 4 группы, то в нее включены агенты, опасность которых еще до конца не изучена.

Таким образом, теплопроводность является важным критерием при выборе того или иного изоляционного материала. Рассматриваемый материал по данному показателю уступает немногим современным товарам. Коэффициент теплопроводности в большей степени зависит от химического состава и плотности изделий. Чем легче и рыхлее материал, тем хуже он пропускает воздух и тем теплее будет та или иная конструкция. Вата минеральная чаще всего выпускается в форме листов различного размера.

Толщина листов подбирается в зависимости от типа конструкции. Если правильно организовать теплоизоляцию, то можно увеличить срок службы здания или сооружения, а также улучшить микроклиматические условия в помещении.

Реальные характеристики теплопроводности минваты.

Как некачественная установка минеральной ваты приводит к уменьшению термического сопротивления стен на 30%? 

Немало говорится о недостатках в монтаже тепловой изоляции, однако количественной оценки, связанной с плохой установкой утеплителя, сделано не так много.По этой причине интересно исследование Oak Ridge National Laboratory (ORNL), которое наглядно показывает ухудшение термического сопротивления R в процентах. В данном случае исследовалась минераловатная теплоизоляция, установленная в каркасную стену. 

Проведенные исследования показали колоссальные потери термического сопротивления (до 30%), связанные с различного рода дефектами при установке в конструкцию (некачественной установки в каркасы, в углах, сопряжений стен с потолками и полами, а также при установке различного оборудования (электрического и сантехнического). Проведенные исследования характеристик теплопроводности минеральной ваты показывают, что смонтированная в заводских условиях минвата имеет более низкий, чем заявлен производителем, коэффициент теплопроводности. К примеру, если указан коэффициент R11 и R19 – это означает, что реально материал имеет R10.8 и R16.5, а уже смонтированный в конструкцию ограждения — R9.7 и R13.7. Таким образом, реальные показатели термического сопротивления минеральной ваты на 11% и 28% соответственно ниже, чем указано на номинале. При чем расчет данных показателей не учитывает воздухопроводность материала, которая у минваты достаточно высокая. 

Результаты исследований показывают, что: 

  • Минеральная вата с номинальным коэффициентом теплопроводности R19 перед монтажом имеет лишь R17.4 
  • Минеральная вата с заявленным показателем теплопроводности R19 в идеальных условиях установки (т.е. в заводских условиях) имеет лишь R17. 
  • Минеральная вата с заявленным показателем теплопроводности R19 в обычных условиях установки имеет лишь R13. 7 – т.е. на 28% ниже заявленного показателя. 

Чтобы повысить теплоизоляционные свойства минераловатных утеплителей, мы рекомендуем следующие методы:

  • при утеплении зданий снаружи использовать ветрозащиту; 
  • при внутреннем утеплении монтировать пароизоляционную пленку; 
  • обязательное устройство вентзазора, обеспечивающего вывод влаги и пара;
  • использовать на 30% больше минераловатных утеплителей. Это позволит достичь внутри помещений необходимой температуры относительно той цифры, что рекомендует производитель. В частности, на кровле необходимо использовать 26 см утеплителя против указанных производителем 20 см, а на стенах каркасных зданий – 24 см против 18 см, рекомендованных производителем (для климатических условия Москвы и Санкт-Петербурга). 

Обращаем Ваше внимание, что даже соблюдение перечисленных рекомендаций не сможет гарантировать Вашему дому долговечное тепло. Так как срок службы минваты составляет порядка 5-7 лет, в течение которых утеплитель существенно теряет свои первоначальные свойства, такая теплоизоляция накапливает много влаги и деформируется, позволяя холодному воздуху проникать во внутренние помещения. Для более долговечной теплоизоляции, позволяющей к тому же экономить около 50% тепла, стоит выбрать утеплитель с использованием напыляемого пенополиуретана.

Более подробную консультацию можно получить у наших специалистов в Вашем регионе
или позвонить в call-центр:
+7 923 775-13-44 / +7 923 775-13-22

Rock Wool

Что такое CelluBOR Rockwool?

CelluBOR Rockwool производится путем плавления минералов из вулканических пород при очень высоких температурах и превращения их в волокна. Каменная вата обеспечивает тепло-, звуко- и противопожарную изоляцию в зданиях, где она применяется. Минеральную вату получают из вулканических пород, встречающихся в природе, которые обладают превосходными свойствами по сравнению с другими камнями с точки зрения минералов и химических свойств. Это наиболее предпочтительный материал из-за его качества, долговечности и широкого спектра областей применения в изоляции.

Как производится каменная вата?

Сегодня каменная вата образуется в результате плавления базальтового камня, представляющего собой вулканическую породу, при температуре 1350°C-1400°C и превращения его в волокно. Базальт, который превращается в волокно, может выпускаться в виде матрацев, плит, труб методом прессования различных размеров. Каменная вата обеспечивает пожаробезопасность наряду с теплоизоляцией, звукоизоляцией и звукоизоляцией в зданиях, где она применяется.

Очень низкий коэффициент теплопроводности каменной ваты делает ее хорошим теплоизоляционным материалом. Величина теплопроводности варьируется в пределах примерно 0,035 – 0,040 Вт/мК. Температура использования составляет от -50 до +650°C.

В дополнение ко всем этим свойствам каменная вата обеспечивает комфорт с точки зрения звукоизоляции, а также теплоизоляции. Повышает комфорт проживания или работы в здании, поглощая звуки, исходящие снаружи или с других этажей.

Каковы его основные характеристики и преимущества?

Минеральная вата, сырьем для которой является природный камень, обладает естественной прочностью и долговечностью. Каменная вата сохраняет свою форму и твердость благодаря своей физической структуре; На него не влияют изменения температуры и влажности, и он показывает стабильность размеров. Его эксплуатационные характеристики не меняются в течение многих лет, и он выполняет изоляционную функцию. Каменная вата является успешным продуктом с точки зрения тепловых характеристик. Тепловые свойства, которые удерживают тепло снаружи в жарком климате и внутри в холодных регионах, обеспечиваются небольшими воздушными мешочками, запертыми в физической структуре минеральной ваты.

Каковы области использования?

Теплоизоляция: Поскольку заявленное значение теплопроводности каменной ваты (10 0С) ниже 0,035 ≤ λ ≤ 0,040 Вт/мК, она обеспечивает теплоизоляцию до 90%.

Противопожарная изоляция: Минеральная вата, температура использования от -50 до +750°C. Согласно TS EN 13501-1, он относится к классу A1, то есть к негорючим материалам. Звукоизоляция: каменная вата, которая является одним из изоляционных материалов, лучше всего поглощающих звук, используется в основном в акустических устройствах. Обеспечивает звукоизоляцию от 40 до 90% в соответствии со стандартами EN ISO.

Влагоизоляция и влагоизоляция: Поскольку каменная вата не подвергается коррозии и ржавчине, она долговечна в течение многих лет, не гниет, не плесневеет и не портится. Сопротивление диффузии водяного пара составляет µ=1, что совпадает со значением сопротивления воздуха.

Каковы размеры минеральной ваты?

Стандартные размеры минеральной ваты: 1200 мм x 600 мм. Толщина варьируется от 25 мм до 150 мм в зависимости от запроса.

Какова плотность минеральной ваты?

Плотность минеральной ваты варьируется от 40 кг/м 3 до 150 кг/м 3 в зависимости от областей применения, таких как наружные стены, перегородки, вертикальные поверхности, промышленные зоны и т. д. Вы можете запросить подходящую плотность при покупке для вашей области использования.

Датчики и материалы

Специальный выпуск о технологиях датчиков и анализа данных для окружающей среды, здравоохранения, управления производством и применения в инженерном/научном образовании
Приглашенный редактор, Chien-Jung Huang (Национальный университет Гаосюна), Rey-Chue Hwang (Университет I-Shou), Ja-Hao Chen (Университет Feng Chia) и Ba-Son Nguyen (Университет Лак Хонг)
Заказать бумагу

Специальный выпуск о сенсорных технологиях в инфракрасном диапазоне и их применении
Приглашенный редактор, Сатоши Вада (RIKEN)
Заявка на получение статьи

  • Принятые статьи (нажмите здесь)
    • Характеристика усилителя мощности задающего генератора на Cr:CdSe
      Шу Айкава , Масаки Юмото, Томохико Сайто и Сатоши Вада
  • Специальный выпуск, посвященный биосенсорным устройствам и системам
    Приглашенный редактор, Такатоки Ямамото (Токийский технологический институт)
    Заявка на получение статьи

  • Принятые статьи (нажмите здесь)
    • Имплантируемое мультимодальное имплантируемое устройство для электрофизиологического измерения и регистрации активности мозга мышей
      Кенджи Суги, Киётака Сасагава, Риома Окада, Ясуми Охта, Хиронари Такехара, Макито Харута, Хироюки Таширо1 и Джун Охта
    • Разработка многоспектрального датчика изображения NIR с шагом пикселя 4 мкм и его применение в безбликовой камере NIR Color Fundus Проблема с усовершенствованными процессами микропроизводства для MEMS/NEMS
      Приглашенный редактор, Хироши Тосиёси (Токийский университет)
      Заявка на получение статьи

      Специальный выпуск по передовой робототехнике и биомиметике
      Приглашенный редактор, Масаки Ямагути (Университет Шиншу)
      Требование к статье

    • Принятые статьи (нажмите здесь)
      • Экспериментальный анализ создания аэродинамической силы и движения крыла, связанного с роботом с махающим крылом, приводимым в движение одним двигателем
        Shogo Miyasaka, Chang-kwon Kang и Hikaru Aono
    • Специальный выпуск о передовых микро/наноматериалах для различных сенсорных приложений (избранные доклады ICASI 2022)
      Приглашенный редактор, Sheng-Joue Young (Национальный объединенный университет)
      Веб-сайт конференции
      Заявка на подачу доклада

      Специальный выпуск Международной мультиконференции по инженерным и технологическим инновациям 2022 (IMETI2022)
      Приглашенный редактор, Wen-Hsiang Hsieh ( National Formosa University)
      Веб-сайт конференции

      Специальный выпуск о сенсорных технологиях для IoT для повышения благосостояния
      Приглашенный редактор, Такаси Оябу (Международный обменный центр Нихонкай)
      Требование о бумаге

    • Принятые документы (нажмите здесь)
      • Как перемещать автоматические поддоны, чтобы сократить время выезда с автостоянки
        Шиничи Фунасе, Харухико Кимура и Хидэтака Намбо
    • 9008 Специальный выпуск по последнему выпуску Trends in Electrochemical Biosensing
      Приглашенный редактор, Kumi Y.

  • Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *