Контактор электромагнитный – » :

Содержание

Электромагнитные контакторы

Контактор представляет собой двухпозиционный электрический аппарат, предназначенный для частых коммутаций силовых электрических цепей с током, не превышающим тока перегрузки. Замыкание (размыкание) контактов контактора осуществляется электромагнитным приводом.

Различают контакторы постоянного и переменного тока.

Контакторы постоянного токапредназначены для коммутации силовых электрических цепей постоянного тока и приводятся в действие электромагнитом постоянного тока.

Контакторы переменного токапредназначены для коммутации силовых электрических цепей переменного тока и приводятся в действие электромагнитом постоянного или переменного тока.

Основные узлы контактора:

Контактная системаобеспечивает включение и отключение силовой электрической цепи.

Дугогасительная система

обеспечивает гашение электрической дуги на главных контактах при размыкании электрической цепи.

Электромагнитный механизмприводит в движение подвижные контакты, осуществляет замыкание главных контактов.

Вспомогательные контакты (блок-контакты) предназначены для коммутации цепей сигнализации и контроля.

Принцип действия контактора:

Включение контакторапроисходит при подаче напряжения на обмотку электромагнитного привода. Якорь электромагнита притягивается к сердечнику. Одновременно с якорем подвижный контакт притягивается к неподвижному и происходит замыкание силовой электрической цепи.

Отключение контактора происходит при снятии напряжения с катушки электромагнита. Подвижные контакты отпадают от неподвижных под действием силы тяжести подвижных частей и усилия отключающей (возвратной) пружины.

Параметры контактора:

  • номинальный ток главной цепи;

  • предельная коммутационная способность – максимальный ток, который способен отключить контактор и быть пригодным для дальнейшей эксплуатации;

  • номинальное напряжение главной цепи – до 660В;

  • номинальное напряжение цепи управления – 12, 24, 48, 110, 220В;

  • коммутационная износостойкость – это способность аппарата выдерживать определенное число коммутаций при наличии тока в главной цепи и быть пригодным для дальнейшей эксплуатации. До 2 млн. циклов;

  • механическая износостойкость– это способность аппарата выдерживать определенное число коммутаций без тока в главной цепи и быть пригодным для дальнейшей эксплуатации. Для контакторов 10÷20 млн. циклов;

  • частота включения в часдля различных серий контакторов составляет 150, 300, 600, 1200, 3600 циклов в час;

  • собственное время включения– отрезок времени с момента подачи команды на включение до полного замыкания контактов;

  • собственное время отключения– отрезок времени с момента подачи команды на отключение до погасания дуги;

  • напряжение и ток вспомогательных контактов;

  • число вспомогательных контактов и их вид(размыкающие, замыкающие).

Контакторы постоянного тока

Серии контакторов постоянного тока: КП, КМК, КПМ, КПВ.

Контакторы постоянного тока имеют пять категорий применения: ДС-1; ДС-2; ДС-3; ДС-4; ДС-5.

Контакторы серии КПВ имеют два исполнения:

  1. Замыкание главных контактов при подаче управляющего напряжения.

  2. Размыкание главных контактов при подаче управляющего напряжения.

Контактная системавключает неподвижный контакт, подвижный контакт, гибкая связь с выводом. Подвижный контакт выполнен в виде толстой пластины поворотного типа и может перекатываться и скользить по поверхности неподвижного контакта. При этом в месте контактирования стираются окисные пленки, и уменьшается переходное сопротивление. Вывод соединяется с подвижным контактом гибкой связью. Контактное нажатие создается контактной пружиной. В контакторах постоянного тока широко распространена мостиковая система контактов с двумя разрывами на полюс, что значительно облегчает условия дугогашения.

Под номинальным током контакторы могут находиться не более 8 часов.По истечении этого времени необходимо провести несколько операций включение-отключение для удаления с поверхности контактов окисной пленки. При нахождении под током более 8 часов, номинальный ток необходимо снизить до. У контакторов, установленных в закрытых объемах, номинальный ток уменьшается до.

Дугогасительная система: дугогасительная камера, катушка магнитного дутья. При отключении контактора, магнитное поле дугогасительной катушки, взаимодействуя с током дуги, вызывает движение последней в сторону дугогасительной камеры. Обеспечивается механическое растяжение, охлаждение и гашение дуги. При токах ниже

, эффективность работы дугогасительной системы уменьшается за счет ослабления магнитного поля, длительность горения дуги при этом возрастает.

Электромагнит. В контакторах постоянного тока наибольшее распространение получили электромагниты клапанного типа. Якорь вращается на призме. Такая конструкция обеспечивает механическую износостойкость узла вращения до 20 млн. циклов при частоте включения до 1200 включений в час. Катушка электромагнита наматывается на изолированную стальную гильзу для обеспечения механической прочности и улучшения условий охлаждения. Сила, развиваемая электромагнитом, должна проходить выше характеристики противодействующих пружин при напряжении на катушке не нижев нагретом состоянии. Наибольшее напряжение на катушке не должно превышать

. К важным параметрам контактора относится коэффициент возврата, равный отношению напряжения отпускания к напряжению срабатывания. Для большинства контакторов этот коэффициент равен 0.2, что не позволяет использовать контакторы для защиты электроустановок от пониженного напряжения.

Блок-контакты.Все контакторы выпускаются со вспомогательными контактами. Вспомогательные контакты обеспечивают подключение дополнительных схем (сигнализация состояния цепи).

Контакторы переменного тока

Контакторы переменного тока имеют четыре категории применения: АС-1; АС-2; АС-3; АС-4. Контакторы переменного тока выпускаются на токи от 100 до 1000А. Наибольшее распространение получили 3-х полюсные контакторы серии КТ-6000.

Контактная система. Из-за облегченных условий гашения дуги, раствор главных контактов уменьшен по сравнению с контакторами постоянного, что позволяет уменьшить габариты электромагнита.

Дугогасительная системасостоит из катушки магнитного дутья, включенной последовательно в токовую цепь, сердечника, полюсных пластин и керамической дугогасительной камеры. Принцип работы дугогасительной системы аналогичен контакторам постоянного тока. В контакторах переменного тока серии КТ-7000 широкое распространение получили дугогасительные решетки, которые не требуют магнитного дутья и более эффективны в качестве дугогасительных устройств. К недостаткам такой системы можно отнести значительный нагрев дугогасительных пластин решетки, что не позволяет применять такие контакторы при большой частоте включения.

Электромагнит.В качестве привода контакторов переменного тока могут использоваться электромагниты переменного тока (серии КТ 6000, КТ 7000) и электромагниты постоянного тока (серии КТП 6000).

С целью устранения вибрации якоря в притянутом положении на полюсах магнитной системы АС расположены короткозамкнутые витки, эффективность работы которых увеличивается при уменьшении зазора между якорем и сердечником, что требует тщательной шлифовки опорных поверхностей магнитопровода. Из-за изменяющейся индуктивности катушки, ток в начальном положении якоря значительно больше тока в конечном положении. В среднем можно считать, что пусковой ток в 10 раз превышает ток в конечном положении якоря. Из данного положения следует недопустимость подачи напряжения на катушку при заторможенном якоре. Допускается питание катушек от сети постоянного тока с обязательной установкой дополнительного резистора. Тяговая характеристика электромагнитов такова, что при уменьшении воздушного зазора сила растет, не так быстро, как у электромагнитов постоянного тока и тяговая характеристика близка к противодействующей. Это обеспечивает высокий коэффициент возврата 0.6÷0.7, что позволяет использовать контакторы переменного тока для защиты электрооборудования от пониженного напряжения.

Электромагниты обеспечивают работу контактора в диапазоне напряжений 0,85-1,05 номинального.

Блок-контакты предназначены для коммутации цепей сигнализации и контроля. В качестве контактного материала вспомогательных контактов применяется серебро или биметалл.

Вакуумные контакторы

Вакуумные контакторы предназначены для коммутации силовых электрических цепей переменного тока и приводятся в действие электромагнитом постоянного тока. Вакуумные контакторы имеют герметичное дугогасительное устройство (вакуумную камеру), с помощью которого отклю­чение коммутируемой цепи происходит в вакуумной среде. Трехфазные вакуумные контакторы выпускаются на номинальные токи 160, 250, 400 и 630А и номинальное напряжение 660 и 1140 В. Контакторы предназначены для работы в режимах АС-3 и АС-4 при числе цик­лов 600 и 1200 в час с высокой износостойкостью.

Зазор между главными контактами 1,2 мм и увеличивается в процессе работы до 2 мм. Возможна однократная регулировка зазо­ра. Малый ход контактов обеспечивает малую вибрацию и высокую износостойкость до 2·10

6циклов в режиме АС-3 при напряжении 1140 В.

Вакуумная дугогасительная камера (дугогасительное устройство) обладает высокими изоляционными и дугогасительными свойствами, а также высоким пробивным напряжением между контактами, высокой скоростью восстановления электрической прочности межконтактного промежутка.

studfile.net

Электромагнитный пускатель: устройство и принцип действия

Обычно мы видим это устройство в виде аккуратной коробки с двумя кнопками: «пуск» и «стоп». Если снять верхнюю крышку, внутри обнаружится коммутатор довольно сложной конструкции, который может выполнять несколько задач (как по очереди, так и одновременно).

Это электромагнитный пускатель. Возникает вопрос: а зачем создавать сложные электротехнические устройства, если нужно всего лишь замкнуть два (или больше) контакта? Есть кнопки с фиксацией, рычажные включатели, защитные автоматы, рубильники. Рассмотрим типовое применение магнитного пускателя: включение мощной электроустановки (например, асинхронный электродвигатель).

  • Необходима мощная контактная группа с дугогасителями, соответственно потребуется большое усилие для смыкания контактов. Ручной привод будет достаточно громоздким (использование классического рубильника не всегда вписывается в эстетику рабочего места).
  • Ручными переключателями сложно обеспечить оперативное изменение режима работы (например, изменение направления вращения мотора). Устройство магнитного пускателя позволяет собрать такую схему подключения.
  • Организация защиты. Любой автомат с аварийным отключением не рассчитан на многократное включение. Назначение (пусть и не основное) магнитного пускателя не только многократно производить коммутацию, но и отключать цепь питания при перегрузках и коротком замыкании. При этом, у него есть неоспоримое преимущество перед иными коммутаторами. Отключение необратимо: то есть, после аварийного размыкания контактов, или кратковременного прекращения подачи энергии, рабочие контакты не возвращаются в положение «ВКЛ» по умолчанию. Принцип работы магнитного пускателя подразумевает только принудительное повторное включение.

Устройство и принцип работы устройства

Главное отличие пускателя от любого другого коммутационного устройства — подключенное к нему электропитание одновременно является и управляющим. Как это работает?

Рассмотрим общий принцип действия магнитного пускателя с помощью иллюстрации:

  • Силовые контакты (3), через которые проходит питание с высоким током на потребителя (электроустановку).
  • Они соединяются между собой с помощью контактных мостиков (2). Сила нажатия обеспечивается пружинами (1), которые представляют собой особым образом отформованную стальную пластину. Сами контактные группы изготовлены из медных сплавов, для лучшей электропроводности.
  • Пластиковая траверса (4), на которой закреплены мостики (2), соединена с подвижным якорем (5). Вся конструкция может перемещаться вертикально с помощью внешнего усилия (кнопки), и возвращается обратно после прекращения давления на нее.
  • С помощью катушки электромагнита (6) создается магнитное поле, которое прижимает подвижный якорь (5) к неподвижной части сердечника (7). Силы достаточно, чтобы преодолеть сопротивление возвратной пружины.
  • Питание на электромагнит подается с помощью дополнительных контактов (8). Чтобы обеспечить правильную работу схемы, питание на эти контакты заводится параллельно силовым (3), от единого источника. Для размыкания всей контактной группы предусматривается кнопка отключения, которая устанавливается в цепь дополнительных контактов.

Виды контакторов

По оснащению средствами защиты: практически все модели включают в себя блок термореле, который размыкает цепь дополнительных контактов в случае перегрузки по току. В этом смысле принцип работы магнитного пускателя не отличается от защитного автомата. После аварийного отключения, и остывания защитной группы (цепь питания обмотки электромагнита восстанавливается), замыкание силовых контактов не происходит. Предполагается, что оператор устранит причину возникновения аварийной ситуации, и произведет повторный пуск электроустановки.

По способу замыкания контактов, имеются следующие виды магнитных пускателей:

  1. Прямого подключения, то есть с одной группой силовых контактов. Он работает по принципу: «вкл» или «выкл», плюс защита от перегрузки или короткого замыкания.
  2. Реверсивного подключения. Электромагнитный пускатель такого типа оснащен двумя группами контактов, с помощью которых можно комбинировать линии питания. Например, чередование фаз для асинхронного электромотора. При замыкании различных групп контактов, вал электродвигателя вращается в разные стороны, то есть происходит реверс.
  3. Работающие только на замыкание силовых контактов, либо имеющие нормально замкнутые и нормально разомкнутые контактные группы.Такие коммутаторы могут управлять (в противофазе) двумя электроустановками. Одно устройство подключается, второе синхронно обесточивается.
  4. По количеству контактов силовой группы:
    • Двух контактные (для однофазных потребителей).
    • Трех контактные (подключаются только фазные группы, нейтраль всегда соединена). Это самая распространенная модель пускателя, к ней можно подключать как одно — так и трех фазные электроустановки.
    • Четыре и более контакта в силовых группах. Под группой подразумевается либо нормально замкнутый, либо нормально разомкнутый комплект. Применяются редко, только в специальных устройствах, работающих по особой схеме подключения.

    Большинство пускателей выглядят так:

    Силовые контакты (три фазы), в одной плоскости расположены дополнительные, для питания обмотки.

    Или так:

    Для удобства монтажа, дополнительные контакты вынесены на отдельную площадку, ниже и сбоку.

Схемы подключения

Для чего нужен магнитный пускатель? Преимущественно для организации безопасного подключения (и управления) асинхронных трехфазных двигателей. Поэтому рассмотрим варианты работы схемы при различных условиях. На всех иллюстрациях присутствует защитное реле, обозначенное литерой «P». Биметаллические пластины, приводящие в действие аварийный размыкатель (установленный в цепи управления), располагаются на силовых линиях контактной группы. Они могут размещаться на одном или нескольких фазных проводниках. При перегреве (он возникает при превышении нагрузки или банальном коротком замыкании), управляющая линия разрывается, питание на катушку «KM» не подается. Соответственно, силовые контактные группы «KM» размыкаются.

Классическая схема прямого включения трехфазного электродвигателя

Схема управления использует питание от напряжения между двумя соседними фазными линиями. При нажатии кнопки «Пуск», с помощью основного ее контакта замыкается цепь катушки «KM». При этом все контактные группы, включая дополнительные контакты в цепи управления, соединяются под управлением электромагнита катушки. Разомкнуть цепь можно двумя способами: при срабатывании аварийного реле, или нажав на кнопку «Стоп». В этом случае магнитный пускатель возвращается в исходное положение «все выключено» (или в случае с двумя категориями контактов, нормально замкнутые группы будут подключены).

Этот же вариант подключения, только управляющая цепь соединяется с фазой и нейтралью. С точки зрения работы пускателя, разницы нет. Так же точно срабатывают кнопки, и защитное термореле.

Реверсивное подключение трехфазного электродвигателя

Как правило, для этого применяются два электромагнитных пускателя, в которых выхода фазных контактов комбинированы со сдвигом. Устройства скомбинированы в один коммутатор, поэтому его можно рассматривать как единый элемент.

В зависимости от того, какая контактная группа подключена к электродвигателю, его ротор крутится в одну либо другую сторону. Такой вариант незаменим при использовании на конвейерах, станках, и прочих электроустановках, в которых предусмотрено 2 направления вращения (движения).

Как работает эта схема на практике? Смотрим иллюстрацию:

Единая схема управления с двумя группами кнопок пуска: «Вперед» и «Назад». Каждая из них включает соответствующую катушку электромагнита. Почему схема общая? Кнопка «Стоп» по условиям безопасности должна быть единой. Иначе при возникновении аварийной ситуации, оператор потеряет драгоценные секунды в поисках необходимой кнопки (для «Вперед» или для «Назад»).

Проверка работоспособности магнитного пускателя и его ремонт

Проверяется устройство путем подачи питания на управляющие (дополнительные, или блок контакты). Если происходит смыкание рабочей группы, выполняется прозвонка ее контактов с помощью мультиметра. Затем провоцируется короткое замыкание, для проверки защитного реле.

Любой коммутационный прибор состоит из схожих по конструкции элементов. Поэтому ремонт магнитного пускателя выполняется по общему принципу: поиск неисправного узла, восстановление или замена.

Механические части (мостик, прижимная либо возвратная пружина) меняются, контакты можно зачистить. Катушка управления перематывается, или производится восстановление сгоревшего витка с помощью пайки.

Видео по теме

profazu.ru

Контакторы и магнитные пускатели: сходства, различия

Контакторы и магнитные пускатели — электротехнические приспособления, являющиеся немаловажными составляющими электрических сетей. Они предназначаются для связи между цепями силового типа и для цепей управления. Зачастую, специалисты по наладке оборудования, не всегда могут дать обоснованный ответ, чем отличается контактор от магнитного пускателя. Оба выполняют перечень схожих назначений, но все же различия между ними существуют, так как, каждый из них, обладает своеобразными функциями и особенностями.

Контакторы

Контактор — двухпозиционное устройство электромагнитного принципа, выполняющее дистанционное воздействие на включение и выключение электрических силовых цепей, в условиях обычного режима работы.

Принцип работы

Контакторы состоят из проводных катушек, в которых расположены сердечники, присоединенные к контактам замыкания (размыкания). Контакты замыкают (размыкают) цепь, которая пропускает ток. Медный (стальной) каркас упрочняет катушку и создает условия для охлаждения элементов.

Принцип работы контакторов заложен в двух действиях противоположного характера. На катушку поступает напряжение, вследствие чего, создается магнитный импульс, и подвижная часть сердечника начинает движение в сторону неподвижной части, и замыкает цепь, благодаря чему, в цепи появляется ток и включается электрооборудование. Когда подача энергии прекращается, сердечник, при помощи пружинной системы, возвращается в разомкнутое положение, что приводит к размыканию цепи и отключению оборудования.

Включаются и выключаются контакторы благодаря двум кнопкам «Пуск» и «Стоп» на панели кнопочного устройства. Замыкание контактов кнопки «Пуск» запускает процесс, описанный чуть выше, который приводит к замыканию силовых контактов и те остаются в замкнутом положении, даже после возврата кнопки в исходное положение. Такой эффект достигается, благодаря наличию, вспомогательных блок-контактов.

Системные цепи, имеют принципиальные отличия. Питание, поступающее на катушку, приходит с цепи управление, где ток не превышает 230 В. А цепь, которую замыкают контакты, называется силовой, так как она проводит ток, с силой, превышающей силу тока в цепи управления.

Область применения

Данные устройства, коммутируют цепи реактивной мощности и применяются в управлении электрическими двигателями, имеющими высокую мощность, а так же, в области инфраструктуры электрического транспорта.

Магнитные пускатели

Магнитный пускатель — низковольтный аппарат комбинированного типа и электромагнитного принципа, который производит запуск электродвигателей, обеспечивает их непрерывное вращение, отключает от электропитания, защищает, выполняет реверсивные функции.

Принцип работы

Данный прибор, состоит из основной части, для стационарного крепления, катушки, якоря, который передвигается по направляющим механизма, пружинного механизма, стационарных и подвижных контактов и корпуса. Самые простые пускатели, предстают в виде коробки, оборудованной кнопкой и клеммами, для присоединения к силовым цепям и стационарным контактам.

Принцип действия, заключается в том, что, когда ток попадает на катушку пускателя, он срабатывает по принципу электромагнита. Под воздействием магнитного поля, якорь притягивается к сердечнику, вследствие чего происходит замыкание контактного мостика, и запускается электрооборудование. Нижнее положение якоря, влияет на работу всего прибора. В данном положении, должно быть надежное сцепление контактов, так как данная составляющая играет роль прочного соединения входных и выходных электрических проводов, в момент срабатывания схемы.

Отсутствие тока, влечет за собой, исчезновение магнитного поля вокруг катушки. Это приводит к отбрасыванию якоря вверх за счет энергии пружин, контактный мостик, находящийся на подвижной части, обеспечивает разрыв силовой цепи, что приводит к отключению питания и оборудования. В данной системе, тоже есть наличие, вспомогательных блок-контактов.

Исправность магнитных пускателей, можно проверять вручную. Если устройство исправно, то, при нажатии на якорь, должно ощущаться сопротивление от сжатия пружин. Такое ручное управление допустимо только для проверок и не применяется во время рабочего процесса.

Область применения

Основная сфера использования магнитных пускателей — запуск, остановка и реверс электрических двигателей асинхронного типа. А, так как эти устройства достаточно неприхотливы и защищены от воздействия окружающей среды, то их устанавливают для дистанционного управления осветительным оборудованием, компрессорными установками, насосами, кранами, электропечами, конвейерами, кондиционерами.

Отличия контакторов от магнитных пускателей

Габариты, конструктивные особенности и защищенность

В состав контактора входит пара силовых контактов и объемные камеры для дугового гашения, что делает это устройство достаточно тяжелым и большим. По этим причинам, он не оборудуется корпусом, что делает его опасным для посторонних лиц и незащищенным от влаги. Поэтому, они монтируются в специальных местах, коими являются специализированные щиты или электрические шкафы. Имеют от 1 до 5 полюсов.

Магнитный пускатель, в отличие от контактора, имеет пластиковый корпус и трех — парные силовые провода, не имеет камер для дугового гашения. Корпус делает его безопасным и защищенным от влаги и позволяет использовать пускатели, даже под открытым небом, но отсутствие камер защиты от дуговых зарядов, не позволяет его использование в цепях с высокими мощностями и множественными коммутациями.

Производственный фактор

Важно знать, что слаботочные контакторы не выпускаются, а значит в слаботочных цепях, возможно, устанавливать только магнитные пускатели. Именно это обстоятельство, позволяет пускателям держаться на плаву в рыночном сегменте данной сферы.

Назначение устройств

Несмотря на то, что пускатели отлично подходят для большинства электрических приборов, основным его назначением, являются трехфазные двигатели переменного тока. Пускатель выполняет функцию их запуска и отключения, а также предотвращает непроизвольный пуск. В принципе, пускатель обладает достаточно узконаправленной значимостью. Используются в сетях с напряжением до 380 В.

Контактор, в свою очередь, коммутирует, абсолютно все виды электрических цепей и применяется в конструкции сложносоставных схем, что делает его, практически универсальным. Мощные электродвигатели, цепи компенсации реактивной мощности и иные области электротехники, где присутствуют частые запуски и большие нагрузки, вот основные сферы применения контакторов. Используются в сетях с напряжением до 660 В.

Необходимые действия при эксплуатации контакторов и магнитных пускателей

  1. Перед установкой приборов, необходимо убрать смазку с рабочих поверхностей и проверить состояние, каждого электрического соединения и проверить, правильность регулировки устройств.
  2. Необходимо регулярно проверять состояние контактной группы, периодически осматривая после 50 000 срабатываний или после каждого отключения тока в аварийном режиме.
  3. Выполняя зачистку поверхности контактов, главное сохранять их первоначальную форму.
  4. Проверять расположение разрывных контактов, относительно друг друга. В помощь будет копировальная бумага.
  5. У контакторов, с несколькими полюсами, проверяется одновременное замыкание контактов всех полюсов.
  6. Необходимо проводить проверку на исправность механической блокировки.
  7. Постоянно проверять зазор между контактами. Заменяются они, когда первоначальная толщина уменьшается на 50%, а у контактов с накладками на 80%.

Заново установленные контакты, должны соприкасаться по линии, длина которой по сумме, ровняется 75% и более, ширине подвижного контакта. Допускается контактное смещение, не более 1 мм по ширине.

Основные поломки контакторов и магнитных пускателей, и их причины

Выход из строя управляющей катушки

Причины:

  • было подано напряжение, от электрической сети, не соответствующее рекомендациям. То есть, была установлена катушка под напряжение 220 вольт, а напряжение подсоединяемой сети, составляло 380 вольт;
  • подача тока на катушку, у контактов которой, образовалась перемычка. Итог — короткое замыкание и сгоревшие контакты катушки;
  • межвитковое замыкание, вследствие естественного старения изоляции на медной обмотке катушки;
  • превышенные рабочие температуры.

Сгорание главных контактов

Причины:

  • неправильный расчёт параметров нагрузки на пускатель.
  • подключение устройства, с двумя силовыми и одним дополнительным контактом, к трёхфазной нагрузке. Дополнительный контакт не рассчитан на номинальную силу тока выше 10 А, вследствие чего, происходит сгорание более слабого звена;
  • низкое напряжение на катушке, вследствие чего, возникает недостаток мощности вырабатываемой силы, необходимой для сцепления главных контактов. Причина такого недостатка, кроется в разной жесткости возвратных пружин, когда возникает дребезг и уменьшается постоянство и площадь сцепления контактов.
  • в процессе длительного срока работы, по причине воздействия, создаваемого вибрацией, ослабевает крепление проводников с контактными выводами. Уменьшение площади смыкания контактов, влечет за собой местный перегрев, что выводит контакты из строя.

Видео по теме

profazu.ru

для чего нужен, как работает

Как происходит подача (и размыкание) питания на электроустановки, либо на линии электропередач (разумеется, речь идет о локальной проводке, а не о высоковольтных линиях)? С помощью коммутационных устройств различного типа. Это могут быть штекерные устройства (вилка-розетка), ручные или автоматические защитные включатели, электронные цепи управления. Практично и безопасно использовать устройства дистанционной коммутации: такие, как модульный контактор.

Сразу развеем ложное мнение: такие включатели (переключатели) не являются строго промышленными приборами. Контакторы переменного тока широко применяются в быту. Причем не только в частных домах, но и в квартирах.

Устройство и принцип работы контактора

Исходя из наименования, это группа контактов, предназначенная для соединения электрических линий. Основное применение — модульный контактор коммутирует силовые линии. Если в обычном включателе (пусть даже и автоматическом защитном), смыкание и размыкание происходит вручную, контакторы переменного тока управляются дистанционно.

Рассмотрим схему простого контактора, без блокировок и защитных модулей.

Для тех, кто мало-мальски знаком с электротехникой, понять принцип работы несложно. Основа силовой группы — это контакты, обозначенные на схеме литерами «L» и «T». В зависимости от конструкции, система может одновременно включать одну, две, или более пар контактов. Для того чтобы соединительная проводящая планка прижалась к неподвижным контактам, требуется усилие. В обычных включателях это механическое приспособление, приводимое в движение оператором. Наша схема срабатывает с помощью электромагнита. Когда на катушку A1-A2 подается управляющее напряжение, соленоид втягивается, и силовые (рабочие) контакты замыкаются.

Для обеспечения надежного и безопасного размыкания, предусматривается обратная пружина.

После снятия питания с управляющей обмотки, возвратная пружина мгновенно отводит контактную планку от силовых клемм.

Что внутри

Несмотря на кажущуюся сложность и громоздкость конструкции, элементная база простейшая:

  • контактная группа, выполненная из медных (латунных) сплавов, рассчитанная на определенный ресурс;
  • «Т» образная контактная планка, напрямую соединенная с соленоидом электромагнита;
  • катушка электромагнита, выполненная под конкретную модель контактора;
  • диэлектрический корпус, выполняющий не только защитные, но и несущие функции;
  • дугогасительные элементы, которые устанавливаются в механизмах включения электроустановок с большим током потребления.

По сути, конструкция мало чем отличается от обычного реле. Так же точно существуют нормально замкнутые, нормально разомкнутые, и переключающие схемы (в которых присутствуют оба вида контактных групп). При этом, согласно технических требований ГОСТ, модульный контактор должен иметь только одно положение покоя (состояние контактной группы при отсутствии внешнего управляющего давления).

При механическом воздействии на токопроводящую планку (или группу линеек) происходит замыкание (размыкание) одной или нескольких контактных пар.

Таким образом, с помощью прямого или дистанционного воздействия можно управлять питанием электроустановок или магистралей электропередач.

Назначение контакторов

Можно разделить эти устройства по основным признакам, хотя область применения фактически неограниченна.

Типы контакторов по назначению

  1. Устройства дистанционного включения (выключения, переключения). При работе комплекса электроустановок возникает необходимость реализовать определенный алгоритм подачи питания. Ручное управление: кнопкой, выключателем. Оператор в нужный момент подает сигнал, контакторы переменного тока приводятся в действие, коммутируя питание по заданной схеме работы. Например, нажатием одной кнопки можно запустить целый завод: конвейер, станки, освещение, систему вентиляции. Соединив определенным образом множество контакторов, можно на схеме управления автоматизировать систему питания (при этом стартовые команды подаются вручную).В автоматическом режиме команда подается с помощью электронной схемы. Программа управляет циклами производства, в нужный момент, запуская и останавливая электроустановки. При этом, любой линейный контактор можно оснастить функцией защиты: например, концевой выключатель или термореле. При создании определенных аварийных условий, питание катушки прекращается, и рабочие контакты размыкаются.
  2. Включение мощной электроустановки с помощью слаботочной линии, или опять же кнопкой (выключателем). Типичный пример — пускатель электродвигателя.Казалось бы, причем тут модульный контактор: для чего он нужен, если можно использовать кнопку или выключатель?Действительно, питание на электроустановку можно подать напрямую, используя контакты кнопки. Однако для надежного соединения мощного потребителя контактная группа и механизм замыкания должны быть массивными, необходимо прикладывать большое усилие при включении. Такую же силу надо применить для обесточивания. Это не всегда удобно, особенно в аварийной ситуации. Поэтому устройство, с которым непосредственно работает оператор, выполняется компактным, оно рассчитано на малый ток (потребление катушки контактора небольшое), и для приведения в действие требуется небольшое усилие, особенно на кнопке выключения. А сам линейный контактор может быть достаточно габаритным, и срабатывает он мгновенно.Еще одна причина, по которой используется разнесение по мощности управляющих и силовых линий — высокая частота циклов включения и выключения. Например, электротранспорт. Водитель до тысячи раз за смену нажимает на педаль акселератора. Если оснастить силовыми контактами сам рычаг — пользоваться им будет неудобно. Поэтому педаль только подает слабый ток на катушку, а линейный контактор запускает мощный электродвигатель.

Многие из вас, находясь рядом с кабиной водителя, слышали регулярные громкие щелчки при нажатии педали. Именно так работает линейный контактор.

Различные типы привода

Виды контакторов по способу монтажа

Безкорпусные или специализированные устройства (например, линейный контактор в троллейбусе), не имеют ограничений по дизайну, разрабатываются исходя из соображений функционала и безопасности. Существуют и специальные конструкции, создаваемые для определенных электроустановок. Такие включатели не применяются в бытовых условиях, поскольку требуют отдельных мест размещения.

Для удобства использования в стандартных электрощитках, применяются стандартные модульные конструкции для крепления на DIN рейках.

Они отлично вписываются в общую систему энергоснабжения дома или офиса, если их применение предусмотрено проектом.

Схема подключения модульного контактора

Универсальных решений не бывает, каждый коммутатор соединяется с силовыми и управляющими линиями в соответствии с рекомендациями производителя. Разобраться в этом несложно, в паспорте и на корпусе устройства обязательно присутствует подробное описание (равно как и меры безопасности).

При этом один и тот же контактор (имеется в виду модель) можно использовать для различных проектов и локальных решений. Для понимания методики разработки, рассмотрим схему подключения коммутатора в режиме кнопочного пускателя для электродвигателя.

Так же точно можно включать мощный электрообогреватель или бойлер для воды. Не имеет значения, будет контактор однофазным, или трехфазным. Принципиально на схему включения влияет лишь количество контактных групп.

Итог

Разобравшись с общими принципами работы, вы сможете подобрать необходимое устройство и безопасно интегрировать его в свою схему энергоснабжения. Или организовать локальное подключение отдельной электроустановки.

Видео по теме

profazu.ru

Электромагнитные контакторы и магнитные пускатели | Низковольтное оборудование

Контактор — это двухпозиционный аппарат, предназначенный для частых коммутаций токов, которые не превышают токи перегрузки соответствующих электрических силовых цепей. Замыкание или размыкание контактов контактора может осуществляться двигательным (электромагнитным, пневматическим или гидравлическим) приводом.
Наибольшее распространение получили электромагнитные контакторы.
Контакторы постоянного тока коммутируют цепь постоянного тока и имеют, как правило, электромагнит постоянного тока. Контакторы переменного тока коммутируют цепь переменного тока. Электромагнит этих контакторов может быть выполнен для работы либо на переменном, либо на постоянном токе.
При каждом включении и отключении происходит износ контактов, особенно заметный при большом числе включений (что характерно для современных электроприводов). Поэтому принимают меры к сокращению длительности горения дуги при отключении и устранению вибраций при включении. Большая частота операций требует высокой механической стойкости электромагнитного механизма контактора. Способность аппарата работать при большом числе операций характеризуется износостойкостью. Различают механическую и коммутационную износостойкость.
Механическая износостойкость определяется числом включений- отключений контактора без ремонта и замены его узлов и деталей. Ток в цепи при этом равен нулю. К механической износостойкости современных контакторов предъявляются очень высокие требования. Она должна составлять (10… 20) * 10+6 операций.
Коммутационная износостойкость определяется числом включений-отключений цепи с током, после которого требуется замена износившихся контактов. Современные контакторы должны иметь коммутационную износостойкость около (2… 3) • 10+6 операций.
Наряду с высокой механической и коммутационной износостойкостью контакторы должны иметь малую массу и размеры. Зона выхлопа раскаленных газов дуги должна быть как можно меньшей, что позволяет сократить размеры всей установки в целом. Детали, наиболее быстро подвергающиеся износу, должны быть легко доступны для замены.
Основными узлами контактора являются: контактная система, дугогасящая система, электромагнитный механизм, система блокировочных контактов (блок-контактов).
При подаче напряжения на обмотку электромагнита якорь притягивается. Подвижный контакт, связанный с якорем, производит замыкание или размыкание главной цепи. Дугогасящая система обеспечивает быстрое гашение дуги, что снижает износ контактов. Кроме главных контактов контактор имеет несколько вспомогательных слаботочных контактов (блок-контактов), используемых для согласования работы контактора с другими аппаратами или включаемых в цепь управления самого контактора.
Основными параметрами контакторов и пускателей являются: номинальный ток главных контактов, предельный отключаемый ток, номинальное напряжение, механическая износостойкость, электрическая износостойкость, допустимое число включений в час, собственное время включения.

Контакторы с управлением от сети постоянного тока

Контакты контакторов подвержены наиболее сильному электрическому и механическому износу из-за большого числа операций в час и тяжелых условий работы. Для уменьшения износа преимущественное распространение получили линейные перекатывающиеся контакты.
Для предотвращения вибраций контактов контактная пружина создает предварительное нажатие, равное примерно половине конечной силы нажатия. Большое влияние на вибрацию оказывает жесткость крепления неподвижного контакта в целом. В этом отношении очень удачна конструкция контактора серии КПВ-600 (рис. 1). Неподвижный контакт 4 жестко прикреплен к скобе 2. Один конец дугогасительной катушки 1 присоединен к этой же скобе, второй конец вместе с выводом 16 надежно прикреплен к изоляционному пластмассовому основанию 17. Последнее крепится к прочной стальной скобе 15, которая является основанием аппарата. Подвижный контакт 6 выполнен в виде толстой пластины. Нижний конец пластины имеет возможность поворачиваться относительно точки опоры, благодаря чему пластина способна перекатываться по сухарю неподвижного контакта 4.
Вывод 13 соединяется с подвижным контактом 6 с помощью гибкого проводника (связи) 14. Контактное нажатие создается пружиной 9.

Рис. 1. Контактор постоянного тока серии КПВ-600:
1 — дугогасящая катушка; 2, 15 — скобы; 3 — пластина магнитного дутья; 4 — неподвижный контакт; 5 — дуга; 6 — подвижный контакт; 7 — опора; 8 — контакт- рог; 9, 10, 12 — пружины; 11 — обмотка; 13, 16 — выводы; 14 — гибкий проводник; 17 — основание
При износе контактов сухарь контакта 4 заменяют новым, а пластину подвижного контакта 7 поворачивают на 180° и ее неповрежденная сторона используется в дальнейшей работе.
Для уменьшения оплавления основных контактов дугой при токах более 50 А контактор имеет дугогасящий контакт-рог 8. Роль другого контакт-рога выполняет скоба 2. Под действием поля дугогасящего устройства опорные точки дуги быстро перемещаются на скобу 2, соединенную с неподвижным контактом 4, и на защитный контакт-рог 8 подвижного контакта 6. Возврат якоря в начальное положение (после отключения магнита) производится пружиной 10.
Основным параметром контактора является номинальный ток, который определяет размеры контактора. Например, контактор II условной размерной группы имеет ток 100 А; III — 150 А.
Характерной особенностью контакторов серии КПВ-600 и многих других типов является электрическое соединение вывода подвижного контакта с корпусом контактора. При включенном положении контактора магнитопровод находится под напряжением. Даже при отключенном положении напряжение может оставаться на магнитопроводе и других деталях, поэтому соприкосновение с магнитопроводом опасно для жизни.
Контакторы серии КПВ могут иметь исполнение с размыкающими главными контактами. Замыкание производится под действием пружины, а размыкание — за счет силы, развиваемой электромагнитом.
Номинальным током контактора называется ток прерывисто- продолжительного режима работы. При этом режиме работы контактор находится во включенном состоянии не более 8 ч. По истечении указанного времени аппарат должен быть несколько раз включен и отключен (для зачистки контактов от оксида меди), после чего может снова вводиться в работу. Если контактор располагается в шкафу, то номинальный ток понижается примерно на 10 % из-за ухудшающихся условий охлаждения.
При продолжительном режиме работы, когда длительность непрерывного включения превышает 8 ч, допустимый ток контактора снижается примерно на 20 %. В таком режиме из-за окисления медных контактов растет переходное сопротивление, в результате чего температура контактов и контактора в целом может превысить допустимое значение. Если контактор работает с небольшим числом включений или вообще предназначен для длительного включения, то на рабочую поверхность контактов напаивают серебряную пластину. Серебряная облицовка позволяет сохранить допустимый ток контактора, равный номинальному, и в режиме продолжительного включения. Если контактор наряду с режимом продолжительного включения используется в режиме повторно-кратковременного включения, применение серебряных накладок становится нецелесообразным, так как из-за малой механической прочности серебра происходит быстрый износ контактов.
В повторно-кратковременном режиме при продолжительности включения ПВ = 40 % допустимый ток, как правило, составляет примерно 120 % номинального значения. Согласно рекомендациям завода-изготовителя допустимый ток повторно-кратковременного режима для контактора серии КПВ-600 определяется по формуле

где η — число включений в час.
Если при повторно-кратковременном режиме длительно горит дуга (так бывает при отключении большой индуктивной нагрузки), то температура контактов может резко увеличиться за счет нагрева их дугой. В таких случаях нагрев контактов при продолжительном режиме может быть меньше, чем при повторно-кратковременном.
Как правило, контактная система контакторов постоянного тока имеет один полюс. Для реверсирования асинхронных двигателей при большой частоте включений в час (до 1200) применяют сдвоенную контактную систему. В контакторах серии КТПВ-500, имеющих электромагнит постоянного тока, подвижные контакты изолированы от корпуса, что делает более безопасным обслуживание аппарата. По сравнению со схемой, в которой применяются однополюсные контакторы, схема с двухполюсными контакторами имеет большое преимущество. При неполадках и отказе одного контактора напряжение подается только на один зажим двигателя. В схеме с однополюсными контакторами отказ одного контактора ведет к возникновению тяжелого режима двухфазного питания двигателя.
В контакторах постоянного тока наибольшее распространение получили устройства с магнитным дутьем.
В зависимости от способа создания магнитного поля различают системы с последовательным включением катушки магнитного дутья (катушка тока), с параллельным включением катушки (катушка напряжения) и с постоянным магнитом.
В случае применения катушки тока по ней протекает ток, проходящий в отключаемой цепи. При этом можно считать, что индукция пропорциональна отключаемому току, а сила, действующая на единицу длины дуги, пропорциональна квадрату тока. Так как наиболее важно иметь необходимую величину магнитного поля для дутья в области малых токов, система с катушкой тока, не создающая в области малых токов необходимой индукции магнитного поля, малоэффективна. Несмотря на этот недостаток, благодаря высокой надежности при гашении номинальных и больших токов система с катушкой тока получила преимущественное распространение.
В системе с параллельным включением катушка магнитного дутья подключается к независимому источнику питания. Магнитная индукция, создаваемая системой, постоянна и не зависит от отключаемого тока. Поскольку в области малых токов катушка напряжения действует более эффективно, чем катушка тока, при одной и той же длительности горения дуги требуется меньшая МДС, что дает экономию энергии. Однако катушка напряжения имеет и ряд существенных недостатков.
Во-первых, направление электродинамической силы, действующей на дугу, зависит от полярности тока. При изменении полярности тока дуга меняет направление своего движения, следовательно, контактор не может работать при перемене полярности тока.
Во-вторых, поскольку к катушке прикладывается напряжение источника питания, изоляция должна быть рассчитана на это напряжение. Катушка выполняется из тонкого провода. Близость дуги к такой катушке делает работу последней ненадежной (расплавленный металл контактов может попадать на катушку).
В-третьих, при коротких замыканиях возможно снижение напряжения на источнике, питающем катушку. В результате процесс гашения дуги будет протекать неэффективно.
В связи с указанными недостатками системы с катушкой напряжения применяются только в тех случаях, когда необходимо отключать небольшие токи — от 5 до 10 А.
Система с постоянным магнитом по существу мало отличается от системы с катушкой напряжения, но имеет следующие преимущества:
нет затрат электроэнергии на создание магнитного поля;
резко сокращается расход меди на контактор;
отсутствует подогрев контактов от катушки, как это имеет место в системах с катушкой тока;
по сравнению с системой с катушкой напряжения система с постоянным магнитом обладает высокой надежностью и хорошо работает при любых токах.
Магнитное поле, действующее на дугу, создает силу, которая перемещает дугу в дугогасящую камеру. Назначение камеры состоит в том, чтобы локализовать область, занятую раскаленными газами дуги, препятствовать перекрытию между соседними полюсами. При соприкосновении дуги со стенками камеры происходит интенсивное охлаждение дуги, что приводит к подъему ее вольт-амперной характеристики и, как следствие, к успешному гашению. В контакторах с приводом на постоянном токе преимущественное распространение получили электромагниты клапанного типа.
В целях повышения механической износостойкости в современных контакторах применяется вращение якоря на призме. Так, у контакторов серии КПВ-600 компоновка электромагнита и контактной системы (см. рис. 1), применение специальной пружины 12, прижимающей якорь к призме, позволяют повысить износостойкость узла вращения до 20 • 10+6 операций. По мере износа призменного узла зазор между скобой якоря и опорной призмой автоматически выбирается. В случае же применения подшипникового соединения якоря и магнитопровода при износе подшипника возникают люфты, нарушающие нормальную работу аппарата.
Для получения необходимой вибро- и ударостойкости подвижная система контактора должна быть уравновешена относительно оси вращения. Типичным примером хорошо уравновешенной системы является электромагнит контактора серии КПВ-600. Якорь магнита уравновешивается хвостом, на котором укрепляется подвижный контакт. Возвратная пружина 10 также действует на хвост якоря. Катушка электромагнита наматывается на тонкостенную изолированную стальную гильзу, что обеспечивает хорошую прочность и улучшает тепловой контакт катушки с сердечником. Последнее способствует снижению температуры катушки и уменьшению габаритных размеров контактора.
При включении электромагнит преодолевает действие силы возвратной 10 и контактной 9 пружин. Тяговая характеристика электромагнита должна во всех точках идти выше характеристики противодействующих пружин при минимальном допустимом напряжении на катушке 0,85Uном и нагретой катушке. Включение должно происходить с постоянно нарастающей скоростью перемещения подвижного контакта. Не должно быть замедления в момент замыкания главных контактов.
Характеристика противодействующих сил, приведенных к якорю электромагнита контактора серии КПВ-600, показана на рис. 2. Наиболее тяжелым моментом при включении является преодоление противодействия в момент соприкосновения главных контактов, так как электромагнит должен развивать значительное усилие при большом рабочем зазоре.
Важным параметром механизма является коэффициент возврата Кя = UBK]1/Ucp. Для контактора постоянного тока Кв, как правило, мал (0,2… 0,3), что не позволяет использовать такой контактор для защиты двигателя от снижения напряжения.
Наибольшее напряжение на катушке не должно превышать 1,1 Uном, так как при большем напряжении увеличивается механический износ деталей из-за усиления ударов якоря, а температура обмотки может превысить допустимое значение.
В контакторах типа КТПВ, имеющих сдвоенную контактную систему, при номинальном токе 600 А устанавливаются два параллельно работающих электромагнита, чтобы развить необходимую силу.
В целях уменьшения МДС обмотки, а следовательно, и потребляемой ею мощности рабочий ход якоря делают небольшим (8… 10 мм). В связи с тем что для надежного гашения дуги при малых токах требуется раствор контактов 17… 20 мм, расстояние от точки касания подвижного контакта до оси вращения подвижной системы выбирают в 1,5 — 2 раза большим, чем расстояние от оси полюса до оси вращения.

Рис. 2. Противодействующая характеристика для контактора серии КПВ-600:
Ρ — сила тяжести; FB п — сила возвратной пружины; FK tl — сила контактной пружины; φ — угол поворота якоря
Собственное время включения представляет собой сумму времени нарастания потока до значения потока трогания и времени движения якоря. Большая часть собственного времени тратится на нарастание потока. У контакторов, рассчитанных на ток 100 А, собственное время составляет 0,14 с, а у контакторов на 630 А оно увеличивается до 0,37 с.
Собственное время отключения — это время с момента обесточивания электромагнита до момента размыкания контактов. Оно определяется временем спада потока от установившегося значения до значения потока отпускания. Временем движения, т.е. временем от момента начала движения якоря до момента размыкания контактов, можно пренебречь. Переходный процесс в обмотке мало сказывается на спаде потока, так как цепь обмотки быстро разрывается отключающим аппаратом. Указанный процесс в основном определяется токами, циркулирующими в массивных элементах магнитной цепи (преимущественно токами в цилиндрическом сердечнике, на котором сидит катушка). Ввиду большого удельного электрического сопротивления стали эти токи создают наибольшее замедление в спадании потока. У контакторов, рассчитанных на ток 100 А, собственное время отключения составляет 0,07 с, а у контакторов на 630 А — 0,23 с.
В связи с особыми требованиями, предъявляемыми к контакторам серии КМВ, которые предназначены для включения и отключения электромагнитов приводов масляных выключателей, электромагнитный механизм указанных контакторов допускает регулировку напряжений срабатывания и отпускания за счет изменения сил затяжки возвратной и специальной отрывной пружин. Контакторы серии КМВ должны работать при существенном снижении напряжения. Поэтому минимальное напряжение срабатывания у этих контакторов может понижаться до 0,65Uном. Такое низкое напряжение срабатывания приводит к тому, что при номинальном напряжении через обмотку протекает ток, вызывающий ее повышенный нагрев. В связи с этим обмотка может включаться на номинальное напряжение только кратковременно (время включения не должно превышать 15 с).

Контакторы переменного тока

Контакторы переменного тока выпускаются на токи от 100 до 630 А. Число главных контактов колеблется от одного до пяти. Это отражается на конструкции всего аппарата в целом. Наиболее широко распространены контакторы трехполюсного исполнения. Наличие большого числа контактов приводит к увеличению усилия и момента, необходимых для включения аппарата.
На рис. 3, а представлен разрез контактора серии КТ-6000 по магнитной системе, а на рис. 3, б — по контактной и дугогасящей системам одного полюса. Подвижный контакт 4 с пружиной 5 укреплен на изоляционном рычаге 6, связанном с валом контактора. Вследствие более легкого гашения дуги переменного тока раствор контактов может быть небольшим. Уменьшение раствора дает возможность приблизить контакт к оси вращения.

Рис. 3. Контактор переменного тока серии КТ-6000:
а — разрез по магнитной системе; б — разрез по контактной и дугогасящей системам: 1 — якорь; 2 — рейка; 3 — обмотка дугогашения; 4 — подвижный контакт;
5 — пружина; 6 — рычаг
Уменьшение расстояния от точки касания контактов до оси вращения позволяет снизить силу электромагнита, необходимую для включения контактора, что, в свою очередь, дает возможность уменьшить габаритные размеры и потребляемую контактором мощность.
Подвижный контакт 4 и якорь 1 электромагнита связаны между собой через вал контактора. В отличие от контакторов постоянного тока подвижный контакт в контакторе серии КТ-6000 не имеет перекатывания. Отключение аппарата происходит под действием пружин и сил тяжести подвижных частей.
Для удобства эксплуатации подвижный и неподвижный контакты сделаны легко сменяемыми. Контактная пружина 5, как и в контакторах постоянного тока, имеет предварительную затяжку, сила которой составляет примерно половину силы конечного нажатия.
Магнитная и контактная системы контактора серии КТ-6000 укреплены на изоляционной рейке 2, что позволяет использовать контактор в комплексных станциях управления реечной конструкции.
Широкое распространение получила мостиковая контактная система с двумя разрывами на каждый полюс. Такая конструкция распространена в пускателях. Ее большим преимуществом является быстрое гашение дуги, отсутствие гибкой связи.
В контакторах переменного тока применяются как прямоходовая контактная система, так и с вращением якоря. В первом случае якорь
движется поступательно. Подвижные контакты связаны с якорем и совершают тот же путь, что и он. При передаче усилия контактных пружин якорю из-за отсутствия рычажной системы нет выигрыша в силе. Электромагнит должен развивать большее усилие, чем сумма сил контактных пружин и силы тяжести якоря (в контакторах с вертикальной установкой).
В большинстве контакторов, выполненных по прямоходовой схеме, наблюдается медленное нарастание силы контактного нажатия, из-за чего имеет место длительная вибрация контактов. В результате происходит сильный износ контактов при включении. Поэтому такая конструкция применяется только при небольших номинальных токах.
Более совершенным является контактор, который имеет мостиковую систему с рычажной передачей усилий от контактов к якорю электромагнита.
Если контактор имеет один разрыв на полюс и не снабжен никаким дугогасящим устройством, то в случае активной нагрузки (cosφ = = 1) гашение дуги происходит при растворе контактов примерно 0,5 мм для любого тока и напряжения до 500 В. В случае индуктивной нагрузки (cosφ = 0,2 …0,5) гашение с таким же раствором контактов имеет место при напряжении до 220 В, поскольку оно происходит за счет мгновенного восстановления электрической прочности в околокатодной области.
При напряжении источника питания, не превышающем 220 В, для гашения дуги необходим всего один разрыв на полюс. Никаких дугогасящих устройств не требуется.
Если в цепи полюса аппарата создаются два разрыва, например путем применения мостикового контакта, то дуга надежно гасится за счет околоэлектродной электрической прочности при напряжении сети 380 В. Поэтому в настоящее время широко применяются контакторы с двукратным разрывом цепи в одном полюсе. При индуктивной нагрузке и напряжении источника 380 В значение восстановившегося напряжения становится больше околокатодной прочности. Гашение дуги в этом случае зависит от процессов в столбе дуги и нагрева электродов током.
Для эффективного гашения дуги, уменьшения износа контактов могут быть использованы следующие системы магнитного дутья:
катушка тока и дугогасящая камера с продольной или лабиринтной щелью;
дугогасящая камера с деионной решеткой из стальных пластин.
В системе магнитного дутья с катушкой тока сила, действующая
на дугу, пропорциональна квадрату тока. Поэтому и при переменном токе на дугу действует сила, неизменная по направлению. Она пульсирует с двойной частотой (как и электродинамическая сила, действующая на проводник). Средняя сила получается такой же, как и при постоянном токе, если тот равен действующему значению переменного тока. Указанные соотношения справедливы, когда потери в магнитной системе катушки дутья отсутствуют и поток по фазе совпадает с током. Несмотря на эффективность данного устройства, в настоящее время оно применяется только в контакторах, работающих в тяжелом режиме (число включений в час более 600). Недостатками этого метода гашения являются: увеличение потерь в контакторе из-за потерь в стали магнитной системы дугогашения, что ведет к повышению температуры контактов, расположенных вблизи дугогасящего устройства, а также возможность возникновения больших перенапряжений из-за принудительного обрыва тока (до естественного нуля).
Применение для гашения дуги катушки напряжения на переменном токе исключается из-за того, что сила, действующая на дугу, меняет свой знак, так как поток, создаваемый магнитной системой дугогашения, сдвинут по фазе относительно отключаемого тока. Если ток и поток имеют разные знаки, то сила отрицательна.

Довольно широкое распространение получила дугогасительная камера с деионной решеткой из стальных пластин. Идея использования околоэлектродного падения напряжения для гашения дуги принадлежит русскому ученому М. О.Доливо-Добровольскому. Принципиальная схема дугогасительного устройства дана на рис. 4, а. Дуга 1, возникающая после расхождения контактов, втягивается в клиновидный паз параллельно расположенных стальных пластин 2. В верхней части дуга пересекается пластинами и разбивается на ряд коротких дуг 3. При вхождении дуги в решетку возникают силы, тормозящие движение дуги. Для уменьшения этих сил пластины выполнены так, что дуга, смещенная относительно середины решетки, сначала пересекает пластины с нечетными номерами, а потом

Рис. 4. Схема и график, поясняющие процесс гашения дуги в деионной решетке:
а — схема дугогасящего устройства; б — график изменения тока и напряжения дуги от времени; 1 — дуга; 2 — стальные пластины; 3 — короткие дуги; 4 — подвижный контакт
уже с четными. После того как дуга втягивается в решетку и разбивается на ряд коротких дуг, в цепи возникает дополнительное падение напряжения А на каждой паре электродов, составляющее 20… 30 В. Из-за наличия этого падения напряжения ток в цепи проходит через нуль (сплошная кривая на рис. 4, б) раньше наступления его естественного нулевого значения (штриховая кривая). При этом уменьшается восстанавливающееся напряжение промышленной частоты, а следовательно, и пик Umax этого напряжения.
Гашение дуги происходит в том случае, если Сп > Umax, где С — околокатодная электрическая прочность. При надлежащем выборе числа пластин п гашение дуги происходит при первом прохождении тока через нуль. При малых токах околокатодная прочность составляет примерно 300 В, при больших — падает до 70 В.
Для того чтобы пластины решетки не подвергались коррозии, их покрывают тонким слоем меди или цинка. Несмотря на быстрое гашение дуги при частых включениях и отключениях происходит нагрев пластин до очень высокой температуры, возможно даже их прогорание. В связи с этим число включении и отключении в час у контакторов с деионной решеткой не превышает 600.
В контакторах пускателей серии ПА применяется двукратный разрыв на каждый полюс. Для того чтобы уменьшить оплавление контактов, они охвачены стальной скобой. При образовании дуги на нее действуют электродинамические силы, возникающие из-за взаимодействия дуги с током в подводящих проводниках и арматуре контактов. Как и в деионной решетке, для гашения дуги используется околокатодная электрическая прочность, возникающая после прохода тока через нуль. Два разрыва и магнитное дутье за счет стальной скобы и поля подводящих проводников обеспечивают надежную работу контактора при напряжении до 500 В. Контактор, рассчитанный на номинальный ток 60 А, отключает десятикратный ток короткого замыкания при напряжении 450 В и cos φ = 0,3.
Для привода контактов широко используются электромагниты с Ш-образным или П-образным сердечником. Магнитопровод такого электромагнита состоит из двух одинаковых частей, одна из которых укреплена неподвижно, а другая связана через рычаги с контактной системой. В первых конструкциях электромагнитов для устранения залипания якоря между средними полюсами Ш-образной системы делался зазор. При включении удар приходился на крайние полюсы, что приводило к их заметному расклепыванию. В случае перекоса якоря на рычаге возникала опасность разрушения поверхности полюса сердечника острыми кромками якоря. В современных контакторах для устранения залипания в цепь введена немагнитная прокладка. Во включенном положении все три зазора равны нулю. Это уменьшает износ полюсов, так как удар приходится на все три полюса.
Для устранения вибрации якоря во включенном положении на полюса магнитной системы устанавливают короткозамкнутые витки. Поскольку действие короткозамкнутого витка наиболее эффективно при малом воздушном зазоре, для плотного прилегания полюсов их поверхность должна шлифоваться. Хорошие результаты по уменьшению вибрации электромагнита достигнуты в контакторе типа ПА. В нем благодаря эластичному креплению сердечника возможна самоустановка якоря относительно сердечника, при которой воздушный зазор получается минимальным.
Как известно, из-за изменения индуктивного сопротивления катушки ток в ней при притянутом состоянии якоря значительно меньше, чем при отпущенном. В среднем можно считать, что пусковой ток равен 10-кратному току при притянутом состоянии. Для больших контакторов он может достигать 15-кратного значения тока при притянутом состоянии якоря. В связи с большим пусковым током ни в коем случае нельзя подавать напряжение на катушку, если якорь, находящийся в отпущенном состоянии, по каким-либо причинам не может из него выйти (чем-то удерживается). Катушки большинства контакторов рассчитаны таким образом, что допускают до 600 включений в час при ПВ = 40 %.
Электромагниты контакторов переменного тока могут также питаться от сети постоянного тока. В этом случае на контакторах устанавливают специальную катушку, которая работает совместно с форсировочным резистором. Последний шунтируется размыкающими блок-контактами контактора или более мощными контактами другого аппарата.
При уменьшении зазора тяговая характеристика электромагнита переменного тока поднимается менее круто, чем у электромагнита постоянного тока. Благодаря этому она более приближена к противодействующей характеристике. В результате напряжение срабатывания близко к напряжению отпускания.
Электромагниты контакторов обеспечивают надежную работу в диапазоне питающего напряжения от 0,85 Uном до 1,1 Uном. Поскольку катушка контактора получает питание через замыкающие блок- контакты, то включение контактора не происходит самостоятельно после подъема напряжения до номинального значения. Срабатывание электромагнита переменного тока происходит значительно быстрее, чем электромагнита постоянного тока. Собственное время срабатывания контакторов составляет 0,03… 0,05 с, а время отпускания — 0,02 с. Как и в контакторах постоянного тока, блок-контакты контакторов переменного тока приводятся в действием тем же электромагнитом, что и главные контакты.

Магнитные пускатели

Магнитным пускателем называется контактор, предназначенный для пуска короткозамкнутых асинхронных двигателей.
Как правило, пускатель помимо контактора содержит тепловые реле для защиты двигателя от перегрузок и «потери фазы». Бесперебойная работа асинхронных двигателей в значительной степени зависит от надежности пускателей. Поэтому к ним предъявляются высокие требования в отношении износостойкости, коммутационной способности, четкости срабатывания, надежности защиты двигателя от перегрузок, минимального потребления мощности.
Особенности условий работы пускателя состоят в следующем. При включении асинхронного двигателя пусковой ток достигает 6 — 7-кратного значения номинального тока. Даже незначительная вибрация контактов при таком токе быстро выводит их из строя. Это выдвигает на первый план вопросы устранения вибрации контактов и снижения их износа. Для уменьшения времени вибрации контакты и подвижные части делают как можно легче, снижают их скорость, увеличивают силу нажатия. Указанные мероприятия позволили, например, создать пускатель типа ПА с электрической износостойкостью до 2-Ю6 операций.
Исследования показали, что при токах до 100 А целесообразно применять серебряные накладки на контактах. При токах выше 100 А хорошие результаты дает композиция серебра и оксида кадмия.
При отключении восстанавливающееся напряжение на контактах равно разности напряжения сети и ЭДС двигателя. Оно составляет всего 15… 20 % С/ном, т. е. имеют место облегченные условия отключения.
Нередки случаи, когда электродвигатель отключается от сети сразу же после пуска. Пускателю приходится тогда отключать ток, равный семикратному номинальному току при очень низком коэффициенте мощности (cos<p = 0,3) и восстанавливающемся напряжении, равном номинальному напряжению источника питания. После 50-кратного включения-отключения заторможенного двигателя пускатель должен быть пригоден для дальнейшей работы. В технических данных пускателя указывают не только его номинальный ток, но и мощность двигателя, с которым пускатель может работать при различных напряжениях. Поскольку ток, отключаемый пускателем, мало снижается с ростом напряжения, мощность двигателя, с которым может работать данный пускатель, возрастает с увеличением номинального напряжения. Наибольшее рабочее напряжение составляет 500 В.
Если необходимо повысить срок службы пускателя, то целесообразно выбирать его с запасом по мощности. При уменьшении мощности двигателя возрастает и допустимое число включений в час. Дело в том, что двигатель меньшей мощности быстрее достигает номинальной частоты вращения. Поэтому при отключении пускатель разрывает установившийся номинальный ток двигателя, что облегчает работу пускателя.
С учетом широкого распространения пускателей большое значение приобретает снижение потребляемой ими мощности. У пускателя примерно 60 % мощности расходуется в электромагните, а остальные 40 % — в тепловых реле. Для снижения потерь в электромагните применяется холоднокатаная сталь.
Схема магнитного пускателя типа ПА приведена на рис. 5. Пускатель собран на металлическом основании 1. Контактная система мостикового типа с неподвижными 12 и подвижными 8 контактами размещена в дугогасящей камере 6. Контактное нажатие обеспечивается пружиной 9. Подвижные контакты 8 соединены с траверсой 10, которая может поворачиваться относительно точки О.

Рис. 5. Магнитный пускатель типа ПА:
1 — основание; 2, 7,9 — пружины; 3 — магнитопровод; 4 — обмотка; 5 — якорь; 6 — дугогасящая камера; 8, 12 — контакты; 10 — траверса; 11 — защитное реле

На противоположном конце траверсы 10 укреплен якорь 5, который притягивается электромагнитом, состоящим из магнитопровода 3  и обмотки 4. Под магнитопроводом имеется пружина сжатия 2, которая обеспечивает более плотное прилегание якоря и магнитопровода при срабатывании электромагнита и смягчает возникающий при этом удар. Последовательно с коммутируемой цепью включено тепловое защитное реле 11. При токах перегрузки тепловое реле срабатывает и своими контактами (на рис. 5 не показаны) разрывает цепь питания обмотки 4. Траверса 10 под действием возвратной пружины 7 отходит вправо, контакты 8 и 12 размыкаются, и происходит отключение главной цепи.

forca.com.ua

виды, принцип работы, характеристики, подключение :: SYL.ru

Электромагнитный пускатель 220 В позволяет осуществлять коммутацию в цепях переменного (и постоянного) тока. Обычно такие устройства используются при включении мощных потребителей – электродвигателей, нагревателей и т. д. Необходимость его оправдана в тех случаях, когда требуется часто включать и отключать нагрузку.

Применение магнитных пускателей

Чаще всего электромагнитные пускатели используется для запуска, остановки и реверса асинхронных электродвигателей. Но поскольку эти устройства очень неприхотливы, они могут использоваться для дистанционного управления освещением, в компрессорных установках, насосах, кран-балках, электрических печах, конвейерах, кондиционерах. Область применения магнитных пускателей очень широкая. Но в последнее время пускатели были вытеснены электромагнитными контакторами. Но, по сути, эти два прибора по конструкции и характеристикам мало чем отличаются. Даже схемы включения одинаковы.

Как работает пускатель?

Электромагнитный контактор работает по следующей схеме:

  1. На рабочую катушку электромагнитного пускателя подаётся напряжение.
  2. Вокруг этой катушки появляется магнитное поле.
  3. Сердечник из металла, который расположен рядом с катушкой, втягивается внутрь.
  4. К сердечнику произведено крепление силовых контактов.
  5. При втягивании сердечника замыкаются силовые контакты, на нагрузку поступает ток.

В самом простом случае магнитные пускатели управляются при помощи всего двух кнопок — «Пуск» и «Стоп». При необходимости можно осуществить реверс — делается это при помощи соединения двух магнитных пускателей с использованием специальной схемы.

Как устроен электромагнитный пускатель?

Всего имеется две основные части у этого устройства:

  1. Контактный блок.
  2. Непосредственно пускатель.

Контактный блок устанавливается поверх корпуса пускателя. Он предназначен для того, чтобы расширить функционал схемы управления. С помощью дополнительного блока можно:

  • Осуществить реверсивное движение электрического двигателя.
  • Запитать лампу, которая сигнализирует о работе мотора.
  • Включить дополнительное оборудование.
  • Но контактная приставка не всегда используется, в большинстве случаев достаточно одного пускателя.

Контактная приставка

Этот механизм включает в себя две пары нормально разомкнутых и столько же нормально замкнутых контактов. Сверху пускателя имеются полозья и зацепы, именно к ним и производится крепление приставки. В итоге эта система жёстко связана с силовыми контактами пускателя и работает одновременно с ними.

Нормально замкнутые контакты по умолчанию соединяют элементы цепи, а нормально разомкнутые разрывают. При включении магнитного пускателя, когда сердечник замыкает силовые элементы, нормально замкнутые контакты размыкаются, а нормально разомкнутые замыкаются.

Конструкция магнитного пускателя

В общем, можно выделить две части — верхнюю и нижнюю. Сверху располагается группа контактов, подвижная часть электромагнита, связанная с силовыми переключателями, а также дугогасительная камера. В нижней части расположены катушка и возвратная пружина, а также вторая половина электромагнита.

При помощи пружины верхняя часть возвращается в изначальное положение после того, как прекратится подача напряжения на катушку. При этом силовые контакты размыкаются. Электромагнит собран из пластин Ш-образной формы, изготовленных из технической трансформаторной стали. Катушка наматывается медным проводом, причём количество витков зависит от того, на какое напряжение она рассчитана.

Секторы с обозначениями

Параметры находятся на пускателе, всего имеется три сектора:

  1. В первом указываются, где можно применять магнитный пускатель, а также общая информация о нём. А именно: частота переменного тока, номинальное значение тока, условный тепловой ток. Например, обозначение АС-1 говорит о том, что при помощи таких механизмов можно коммутировать цепи питания тэнов, ламп накаливания, других слабоиндуктивных нагрузок.
  2. Во втором секторе указывается, какая максимальная мощность нагрузки может коммутировать с силовыми контактами.
  3. В третьем секторе обычно обозначается схема устройства: в неё включены силовые и вспомогательные контакты, катушка электромагнита. В том случае, если по всем контактам на схеме от катушки идет пунктирная линия, то это означает, что они работают синхронно.

Контактные группы пускателей

Силовые контакты обозначаются следующим образом:

  • 1L1, 3L2, 5L3 — это входящие, на них подается питание от сети переменного или постоянного тока.
  • 2Т1, 4Т2, 6Т3 — выходящие силовые контакты, которые соединяются с нагрузкой.

На самом же деле совершенно неважно, куда вы подключите источник питания, а куда нагрузку. Просто такая схема является общепринятой, ее и необходимо использовать.

Ведь если придется другому человеку проводить ремонт, он просто не сможет сразу разобраться в том, что было намудрено монтажником. Вспомогательная группа контактов 13НО–14НО предназначена для того, чтобы осуществить самоподхват. Другими словами, эту пару используют, чтобы во время включения электродвигателя не удерживать пусковую кнопку постоянно нажатой.

Кнопка остановки

Независимо от вида электромагнитного пускателя, используемого в конструкции, управление производится при помощи двух кнопок – «Пуск» и «Стоп». Может присутствовать включение реверса. Кнопка остановки отличается от других тем, что у нее красный окрас. Нормально замкнутые контакты механически соединены с кнопкой. Поэтому при работе устройств ток протекает через них беспрепятственно.

Если кнопку не нажимать, то металлическая планка под действием пружины замыкает два контакта. При необходимости остановки питания устройства нужно просто нажать на кнопку – контакты при этом разомкнутся. Но фиксации нет, как только вы отпустите кнопку, контакты вновь замкнутся.

Поэтому для управления работой электродвигателей используются специальные схемы включения электромагнитных пускателей 220В. На дин-рейку такие устройства устанавливаются без проблем, поэтому они могут использоваться даже в самых маленьких монтажных блоках.

Кнопка запуска

Она обычно имеет зеленый или черный цвет, механически соединяется с нормально разомкнутой группой контактов.

Как только нажимаете на кнопку запуска, происходит замыкание цепи и по контактам протекает электрический ток. Отличие от кнопки остановки только в том, что по умолчанию контакты находятся в разомкнутом состоянии. Пружина удерживает контактную группу в разомкнутом положении и позволяет после запуска вернуть кнопку в начальное положение. Именно такой принцип работы электромагнитных пускателей 220В, используемых в схемах управления большими нагрузками.

Классическая схема включения

При реализации такой схемы выполняются следующие действия:

  1. При нажатии на кнопку «Пуск» происходит замыкание контактов и подача напряжения на нагрузку.
  2. При нажатии на кнопку «Стоп» контакты пускателя размыкаются и прекращается подача напряжения.

В качестве нагрузки можно подключать ТЭНы, электродвигатели, иные приборы. Нормально открытый электромагнитный пускатель 220В можно использовать для включения абсолютно любой нагрузки.

К силовой части схемы относятся:

  • Контакты для подключения трех фаз – «А», «В», «С».
  • Автоматический выключатель. Он устанавливается между источником питания и входом электромагнитного пускателя 220В 25А. Дело в том, что 380В – это межфазное напряжение, а если проводить замер между нулем и любой из фаз, оно будет равно 220В.
  • Нагрузка – мощный потребитель электроэнергии (двигатель, нагревательный элемент).

Вся цепь управления подключается к нулю и фазе «А». Цепь состоит из таких компонентов:

  • Кнопки запуска и остановки.
  • Катушки.
  • Вспомогательного контакта (включается параллельно кнопке запуска).

Работа классической схемы

Как только включается автоматический выключатель, на верхних контактах пускателя появляется три фазы, вся схема переводится в режим ожидания. Фаза под литерой «А» проходит по цепи:

  • Через замкнутые контакты кнопки остановки.
  • На контакт кнопки запуска.
  • На вспомогательную группу контактов.

При этом схема полностью подготовлена к работе. Как только замыкаются контакты под воздействием кнопки запуска, на катушке появляется напряжение и ее сердечник втягивается. При этом сердечник тянет за собой группу контактов, замыкая их.

В нижней части магнитного пускателя находятся силовые контакты, на которых также появляется напряжение, которое далее идет к потребителю электроэнергии. После отпускания кнопки запуска силовые контакты будут замкнуты за счет реализации схемы с «подхватом». При этом фаза идет не через контакты кнопки запуска к электромагниту, а посредством вспомогательной группы.

Степень защиты

Лучше всего в работе показывают себя приборы со степенью защиты IP54. Их можно использовать во влажных и очень пыльных помещениях. Без проблем можно его установить на открытом месте. Но если монтаж производится внутри шкафа, то достаточно использовать устройства со степенью защиты IP20. Чем выше числовой индекс, тем в более жестких условиях может производиться эксплуатация прибора – это применимо к любому электрическому устройству. Обязательно нужно учитывать и такие факторы:

  • Наличие теплового реле, при помощи которого производится отключение нагрузки при превышении максимального тока потребления. Особенно актуально использование такого прибора при управлении электродвигателями.
  • Если имеется функция реверса, то в конструкции присутствует две катушки и шесть контактов. По сути, это пара пускателей, совмещенных в одном корпусе.
  • Обязательно нужно учитывать износостойкость прибора, особенно если очень часто включается и отключается нагрузка пускателем.

Не последнее место при эксплуатации любого устройства, в том числе и электромагнитного пускателя 220В, занимает человеческий фактор. Неквалифицированные работники способны сломать всю цепь управления, так как они не знают, как правильно работать на оборудовании. Если сработала тепловая защита, то включение производить сразу же нельзя. И нельзя заново запускать двигатель — сначала нужно проверить, не заклинил ли мотор, нет ли короткого замыкания в цепи питания.

www.syl.ru

Простое отличие пускателя от контактора по ГОСТ и правилам.

Даже среди профессиональных электриков нередко возникают жаркие споры, какой коммутационный аппарат считать пускателем, а какой контактором.

Не особо разбирающиеся, и то и другое попросту называют пускачами. Что уж говорить о рядовых потребителях, которые с этими устройствами могут столкнуться всего пару раз за всю жизнь.

Давайте рассмотрим отличия пускателя от контактора, согласно действующей нормативной документации и поставим точку в этом споре раз и навсегда.

Ошибки при выборе

Некоторые ошибочно в первую очередь смотрят на дугогасительные камеры, считая, что если они есть, тогда перед ними контактор.

Якобы они нужны для гашения токов, начиная с 5-й величины. Пятая величина – ток равный I=100А.

При этом думая, что пускатель рассчитан только на малые токи (до 100А).

Сторонники данной классификации даже придумали собственную градацию:

  • реле – это устройства для малых токов
  • пускатели – для средних
  • контакторы – для больших токов

Все это конечно не соответствует действительности. В таких заблуждениях, скорее всего, виновата одна довольно популярная марка, а именно ПМЛ.

У этих моделей пускатели рассчитаны на токи от 10 до 100А, а контакторы от 10 до 800А. Отсюда и пошла неразбериха.

Якобы, если устройство более 100А, значит оно относится к контакторам. На некоторых упаковках даже указываются, казалось бы, прямо противоположные надписи. С одной стороны пишется:

  • ПМ – пускатель магнитный

И тут же с другой:

Чему верить и что говорят об этом правила и документация? Чтобы это понять, в первую очередь найдем определения этих устройств и посмотрим в чем заключаются отличия.

Что такое контактор

Вот что говорит об этом действующий на данный момент ГОСТ 17703-72 “Аппараты электрические коммутационные. Основные понятия.”

Здесь в качестве самовозврата используется пружина. Возможность частых коммутаций токов обеспечивается самой конструкцией.



Некоторые вопросы возникают относительно последней формулировки – “приводимый в действие двигательным приводом”. Какой элемент считать двигательным приводом?

Чтобы разобраться, опять обратимся к ГОСТу и найдем соответствующее определение.



Можно ли считать, что в контакторе установлен эл.магнитный привод? Что об этом говорит другой ГОСТ 24856-2014 “Арматура трубопроводная. Термины и определения.”



Как видите, это именно то, что нужно. В нашем случае, подвижные контакты как раз таки и приводятся в действие эл.магнитным полем катушки.



Принцип действия в контакторах тянущий – при подаче напряжения часть сердечника втягивается и неподвижные контакты замыкаются с подвижными.

Однако помимо вышеприведенных определений контактора, есть еще несколько. Например, в СТО 173330282.27.010.001-2008 “Электроэнергетика. Термины и определения.” приведена более упрощенная формулировка:

А вот что говорится в ГОСТ 60309-4-2013 “Вилки, розетки и соединители промышленного назначения”.

Смысл во всех этих расшифровках названий один и тот же, и глобальных разночтений не наблюдается.

Теперь давайте рассмотрим определение пускателя.

Что такое пускатель

Разобраться в этом нам поможет ГОСТ Р 500030.4.4-2012 “Аппаратура распределения и управления низковольтная”.

Самое главное, что вы должны понять из этого определения:

Пускатель – это не одиночное устройство, это комбинация нескольких устройств, необходимых для пуска и остановки двигателя.

Например, в нем в качестве защиты от перегрузки может выступать тепловое реле.

Вытащите его, и ваш пускатель превратится в контактор. А еще в пускателях могут быть встроены защиты от обрыва фазы, от падения напряжения и др.

Все это и превращает обычный контактор в пускатель.

Исходя из этого и выводится главное правило, как отличить контактор от пускателя:

  • контактор – это ОДИНОЧНЫЙ двухпозиционный коммутационный аппарат
  • пускатель – это комбинация коммутационных устройств

Выходит, что контактор это всего лишь одна из частей комбинации или иными словами – часть пускателя.

Кстати, определение пускателя далеко не одно, их великое множество. И везде сказано про комбинацию устройств.

Таким образом, назначение устройства вытекает из самого названия “пускатель” – от слова “пуск” двигателя. Контактор от слова “контакт”, то есть просто коммутировать, соединять и разъединять цепь (без ее защиты).

Никакие другие самовольные интерпретации не имеют под собой нормативного обоснования. Чем чаще вы будете обращаться именно к документам, а не к “электрикам с опытом”, тем проще будет докопаться до истины и самое главное, всегда можно будет убедительно доказать свои слова и правоту.

Источник — Фарадей

Статьи по теме

domikelectrica.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *