Как тестером определить фазу: Как определить фазу и ноль мультиметром

Содержание

Как определить фазу и ноль мультиметром

Очень часто при выполнении в квартире, доме, гараже или на даче ремонтных либо монтажных работ, связанных с электричеством, возникает необходимость отыскать ноль и фазу. Это нужно для правильного подключения розеток, выключателей, осветительных приборов. Большинство людей, даже если они не имеют специального технического образования, представляют себе, что для этого есть специальные индикаторы. Мы рассмотрим вкратце этот метод, а также расскажем вам об ещё одном приборе, без которого не обходится ни один профессиональный электрик. Поговорим о том, как определить фазу и ноль мультиметром.

Понятия ноля и фазы

Перед тем, как определить фазу ноль, хорошо бы вспомнить самую малость физики и разобраться, что это за понятия и зачем их находят в розетке.

Все электросети (и бытовые, и промышленные) подразделяются на два типа – с постоянным и переменным током. Со школы помним, что ток – это передвижение электронов в определённом порядке.

При постоянном токе электроны передвигаются в каком-то одном направлении. При переменном токе это направление постоянно меняется.

Нас больше интересует переменная сеть, которая состоит из двух частей:

  • Рабочей фазы (как правило, её называют просто «фазой»). На неё подаётся рабочее напряжение.
  • Пустой фазы, именуемой в электричестве «нулём». Она необходима, чтобы создать замкнутую сеть для подключения и работы электрических приборов, служит также для заземления сети.

Когда мы включаем приборы в однофазную сеть, то особой важности нет, где именно пустая или рабочая фаза. А вот когда монтируем в квартире электрическую проводку и подсоединяем её к общей домовой сети, это знать необходимо.

Разница между нолем и фазой на видео:

Простейшие способы

Существует несколько способов, как найти фазу и ноль. Рассмотрим их вкратце.

По цветовому исполнению жил

Наиболее простым, но в то же время и самым ненадёжным способом, является определение фазы и ноля по цветам изоляционных оболочек проводников. Как правило, фазная жила имеет чёрное, коричневое, серое или белое цветовое исполнение, а ноль делают голубым либо синим. Чтобы вы были в курсе, бывают ещё жилы зелёные или жёлто-зелёные, так обозначаются проводники защитного заземления.

В этом случае никаких приборов не нужно, глянули на цвет провода и определили – фаза это или ноль.

Но почему этот метод самый ненадёжный? А нет никакой гарантии, что во время монтажа электрики соблюдали цветовую маркировку жил и ничего не перепутали.

Цветовая маркировка проводов на следующем видео:

Индикаторной отвёрткой

Более правдивым методом является применение индикаторной отвёртки. Она состоит из не токопроводящего корпуса и встроенных в него резистора с индикатором, который представляет собой обыкновенную неоновую лампочку.

Например, при подключении выключателя главное не перепутать ноль с фазой, так как этот коммутационный аппарат работает только на разрыв фазы. Проверка индикаторной отвёрткой заключается в следующем:

  1. Отключите общий вводной автомат на квартиру.
  2. Зачистите ножом проверяемые жилы от изоляционного слоя на 1 см. Разведите их между собой на безопасное расстояние, чтобы полностью исключить возможность соприкосновения.
  3. Подайте напряжение, включив вводной автомат.
  4. Жалом отвёртки прикоснитесь к оголённым проводникам. Если при этом загорится индикаторное окошко, значит, провод соответствует фазному. Отсутствие свечения говорит о том, что найденный провод – нулевой.
  5. Нужную жилу наметьте маркером либо кусочком изоленты, после чего снова отключите общий автомат и проведите подсоединение коммутационного аппарата.

Более сложные и точные проверки выполняются с помощью мультиметра.

Поиск фазы индикаторной отверткой и мультиметром на видео:

Мультиметр. Что это за прибор?

Мультиметр (электрики его ещё называют тестером) представляет собой комбинированный прибор для электрических измерений, который объединил в себе множество функций, основные из которых омметр, амперметр, вольтметр.

Эти приборы бывают разными:

  • аналоговыми;
  • цифровыми;
  • переносными лёгкими для каких-то базовых измерений;
  • сложными стационарными с большим количеством возможностей.

С помощью мультиметра можно не только определить землю, ноль или фазу, но и померить на участке цепи ток, напряжение, сопротивление, проверить электрическую цепь на целостность.

Прибор представляет собой дисплей (или экран) и переключатель, который можно устанавливать в различные позиции (вокруг него находится восемь секторов). В самом верху (в центре) имеется сектор «OFF», когда переключатель установлен в это положение, значит, прибор выключен. Чтобы выполнять замеры напряжения понадобится установить переключатель в сектора «ACV» (для переменного напряжения) и «DCV» (для постоянного напряжения).

В комплект мультиметра входят ещё два измерительных щупа – чёрный и красный. Чёрный щуп подсоединяется в нижнее гнездо с маркировкой «СОМ», такое подключение является постоянным и используется при проведении любых измерений. Красный щуп в зависимости от замеров вставляется в среднее или верхнее гнездо.

Как использовать прибор?

Выше мы рассмотрели, как найти при помощи индикаторной отвёртки фазный провод, а вот различить ноль и землю при помощи такого инструмента не получится. Тогда давайте поучимся, как проверить жилы мультиметром.

Подготовительный этап выглядит точно так же, как и для работы с индикаторной отвёрткой. При отключенном напряжении зачистите концы жил и обязательно их разведите, чтобы не спровоцировать случайного прикосновения и возникновения короткого замыкания. Подайте напряжение, теперь вся дальнейшая работа будет с мультиметром:

  • Выберите на приборе измерительный предел переменного напряжения выше 220 В. Как правило, имеется отметка со значением 750 В на режиме «ACV», установите переключатель на это положение.
  • На приборе имеется три гнезда, куда вставляются измерительные щупы. Найдём среди них тот, который обозначен буквой «V» (то есть для измерения напряжения). Вставьте в него щуп.

  • Прикасайтесь щупом к зачищенным жилам и смотрите на экран прибора. Если вы видите небольшое значение напряжения (до 20 В), значит, вы касаетесь фазного провода. В случае, когда на экране нет никаких показаний, вы нашли ноль мультиметром.

Для определения «земли» зачистите небольшой участок на любом металлическом элементе домашних коммуникаций (это могут быть водопроводные или отопительные трубы, батареи).

В этом случае у нас будут задействованы два гнезда «СОМ» и «V», вставьте в них измерительные щупы. Прибор установите в режим «ACV», на значение 200 В.

У нас есть три провода, среди них нужно отыскать фазу, ноль и землю. Одним щупом коснитесь зачищенного места на трубе или батарее, вторым дотроньтесь до проводника. Если на экране высвечивается показание порядка 150-220 В, значит, вы нашли фазный провод. Для нулевого провода при аналогичных замерах показание колеблется в пределах 5-10 В, при прикосновении к «земле» на экране ничего не будет отображаться.

Наметьте каждую жилу маркером или изолентой, а чтобы удостовериться в правильности выполненных измерений, сделайте теперь замеры относительно друг друга.

Прикоснитесь двумя щупами к фазному и нулевому проводникам, на экране должна появиться цифра в пределах 220 В. Фаза с землёй дадут немного меньшее показание. А если прикоснуться к нулю и земле, то на экране будет значение от 1 до 10 В.

Несколько правил по использованию мультиметра

Перед тем, как определить фазу и ноль мультиметром, ознакомьтесь с несколькими правилами, которые необходимо соблюдать при работе с прибором:

  • Никогда не пользуйтесь мультиметром во влажной среде.
  • Не применяйте неисправные измерительные щупы.
  • В момент проведения замеров не меняйте измерительные пределы и не переставляйте положение переключателя.
  • Не измеряйте параметры, значение которых выше чем верхний измерительный предел прибора.

Как замерять напряжение мультиметром – на следующем видео:

Обратите внимание на важный нюанс в использовании мультиметра. Поворотный переключатель изначально всегда необходимо устанавливать на максимальное положение, чтобы избежать повреждения электронного прибора. А уже в дальнейшем, если показания оказываются ниже, переключатель переставляется на низкие отметки для получения максимально точных замеров.

методы и инструкции, правила, советы и предостережения

Проще работать, когда электрический контур снабжения дома заземлен правильно, покажем, что выход найдется всегда. Поясним, как понять, где фаза, и как узнать, где ноль. Хватайте любимый М890С! Посмотрим, как определить фазу и ноль мультиметром.

Простейшие методики нахождения фазы, нуля мультиметром

Организованный правильно контур заземления дома устраняет проблемы. Во-первых, изоляция PEN желто-зеленого цвета. Спутать с коричневой (красной) фазой, синей нейтралью невозможно. Случается, проводка проложена, нарушая требования, цвета перепутаны, отсутствуют вовсе (алюминиевый кабель). Поиск фазы мультиметром осуществляем простым алгоритмом:

  1. Допустим, квартира располагает тремя проводами: фаза, нуль, земля.
  2. Ставим мультиметр на диапазон переменного напряжения 750 вольт, начинаем попарно тестировать проводку.
  3. Между фазой и любым другим проводом будет 230 вольт (действующее значение), перемычка земля-нейтраль дает приближено 0.

Мультиметр

Подъездный щиток располагает минимум пятью проводами, фаз три. Дальнейший процесс определяется фантазией местных электриков. Хорошие мастера вешают стикеры А, В, С, указывающие местоположение фаз. Заземление желто-зеленое, нейтраль чаще синяя.

Меж соседними фазами напряжение 380 (400) вольт. Квартиры высоток иногда снабжают двумя фазами. Электрические плиты мощностью выше 10 кВт стараются разделить потребление. Уменьшаются требования к проводке. Советуем немедленно взять маркер, пометить изоляцию нужными цветами. Дом, лишенный заземления, обычно получает два провода: фазу, нейтраль. Трансформатор подстанции гонит три фазы. Сколько окажется в квартире, следует выяснить.

Проблемы начнутся, когда отсутствует маркировка проводов, фаза приходит одна. Между опасными проводами напряжение составит… нуль!

  • Два провода несут фазу, нейтраль одна, заземление забыли проложить. Между питающими жилами круглый нуль, при оценке нулевого провода получаем 230 вольт. Ситуация выглядит, будто фазные жилы стали нейтралью и нулем. Напутали при прокладке – что поделаешь? Требуется искать дополнительный источник опоры. Подойдет отвертка-индикатор.
  • Два провода одной фазы, вторая пара – заземление, нейтраль. Попарно покажут нуль, перекрестно – 230 В. Воспользуйтесь опорным ориентиром.

Отсутствует щуп-отвертка, заручившись помощью тестера как ни звони проводку, проблема останется. Требуется опорный источник, гарантированно заземленный. Подходят:

  1. Контур заземления громоотвода часто ведут по наружной стене здания, полоса стали задевает торец балкона. Идет вертикально вниз. Заземлена, годится избранной цели с двумя оговорками: слой ржавчины сточите напильником, работы выполняйте, когда небо безоблачное (опасайтесь молнии).
  2. Простейшим выходом станет водопроводный кран ванной. Трубы сейчас пластиковые. Но внутри находится отличный электролит – вода с растворенными солями жесткости. Коснитесь черным щупом тестера рукава крана, выполняйте измерения относительно точки опоры. Применяйте боковины фитингов медных, латунных, алюминиевых. Была бы вода.

    Индикаторная отвертка

  3. На площадке стальной корпус щитка если не заземлен, посажен (закорочен) на нулевой (нейтральный) провод. Выполняйте измерения относительно выбранного ориентира.
  4. Газовая труба – табу желающим заводить заземление, находится под нулевым потенциалом, соприкасается с землей. Найдете сколы краски, аксессуар используйте в целях (спиливать краску самостоятельно запрещено) идентификации фаз, нейтрали, заземления.
  5. По вышеописанным причинам батареи из чугуна, алюминия, стали признаны неплохим ориентиром. Главное, обеспечить тесный контакт. Как проверить? Вызвонить две точки корпуса. Сопротивление составляет единицы ома – норма. При условии, что отопление включено. Согласно нормативам, корпус насоса заземляется, вероятность ошибки низкая.
  6. Трубы канализации опорным источником заземления применять не рекомендуется. Условия проводимости определены количеством… стоков.

Ввиду разнообразия методик, ненадежности рекомендуется до начала серьезных работ провести тесты. Измерить потенциал между указанными ориентирами, фазой розетки. Расстояние между ориентиром, точкой назначения велико? Берем удлинитель. Особенно хорош фильтр питания персонального компьютера, снабженный характерной подсвечивающейся кнопкой. Фаза слева, левый штырь штекера (смотря какой стороной повернуть) помечаем маркером.

Затем вызваниваем с розеткой (без питания, понятное дело), делаем отметку с нужной стороны. Поясняем, можно обойтись без этого, с электрикой лучше отставить шутки. Осталось найти фазу, пользуясь помощью М890С. Ставим диапазон выше 380 вольт (между двумя фазами), начинаем измерять разность потенциалов между клеммами и щитком. Полагаем, дальнейший алгоритм понятен.

Правильно измерить потребление фазы

Измерим нагрузку фаз. Чтобы поставить правильные автоматы, соблюсти равномерное потребление. По правилам трехфазной сети каждую ветвь загружают одинаково, избегая перекосов на стороне поставщика. Оценим, какие фазы входят в квартиру. Проще заглянуть в подъездный щиток. Неопытный человек обязан прекратить попытки лезть туда. Легко получить удар током.

Дом старый – на виду увидите большую стальную пластину, которая явно соединяется с корпусом. Означенное – нейтраль. Дом питается трехфазным напряжением 380 вольт. Каждую квартиру снабжают чаще одной фазой. Тройку зажимов наблюдаем помимо заземлительной клеммы. Посмотрите, куда идут провода: автоматы, рубильники (сообразно счету квартир). Типичное количество соседей по площадке количеством три упрощает задачу анализа.

Теперь знаем метод отыскания фазы мультиметром, можем смело (с осторожностью, соблюдая меры безопасности) потыкать щупами. Потрудитесь выставить правильный диапазон, не сжечь прибор. Измерениями подтвердите или опровергните предположения. Фаз две – каждую нагрузите поровну. Изучите распаячные коробки, в большинстве старых домов находящиеся под потолком (большие круглые отверстия стены). Отключив снабжение квартиры, вооружившись тестером, поймите, куда и что идет. Используйте радикальный метод – отрубите одну пробку, посмотрите, где пропало питание.

Нагрузка двух фаз неравномерная – поправьте. Лучше сделать для автоматов и пробок, что положительно скажется на уменьшении стоимости оборудования распределительного щитка. В довершение по этой теме скажем, что правила работы предусматривают выполнение подобных мероприятий числом не менее двух лиц. Один обязательно страхует и готов отрубить подачу энергии, обрезать токоведущую жилу или ногой оттолкнуть страдающего от удара электричеством с опасной территории.

Схема питания квартиры двумя фазами

Как измерить трехфазное напряжение мультиметром

В этом разделе речь скорее пойдет о специфике трехфазных сетей. Большинство мультиметров позволяет измерять напряжение до 750 вольт переменного тока, чего вполне достаточно для работы с серьезными промышленными сетями. Каждый дом снабжается от трех фаз. А то, что в промышленности называют нейтралью, мы именуем нулевым проводом.

Сети предприятий прокладывают двух типов:

  1. Механизмы с изолированной нейтралью нулевым проводом не пользуются. Внутри нагрузки фаз уравнены, токи утекают через эти же провода, которых в сумме три. Устанете искать нейтраль – линия отсутствует. Три провода фазные, относительно земли покажут напряжение 230 вольт, между собой – 380.
  2. Заземленная нейтраль представляет нулевой провод. Помечается буквой N на коробках. Полезно смотреть принципиальные схемы промышленных приборов, приведенные на корпусе. Поможет понять раскладку.

Освоив методики работы с трехфазным напряжением, каждый сможет лучше понять электрическую разводку многоэтажного дома. Где из-под щитка поднимаются четыре жилы: три фазы и нейтраль.

Фазы автомобиля

Электрические сети помогают многим объектам. Автомобиль считается относительно простым устройством. Основу снабжения составляют аккумулятор 12 вольт (реально – 14,5 В), генератор, уровень выходного напряжения которого регулируется сообразно вариациям оборотов. Напряжение после выпрямления пригодно подпитывать аккумулятор бортовой сети. Активация вала генератора ведется аккумулятором через специальное регулирующее устройство.

Трехфазная схема Ларионова

Выпрямляемые диодным мостом схемы Ларионова фазы питают авто. Популярная сегодня методика. Диодов присутствует шесть штук. Фазы сливаются механическим объединением после выпрямления единой магистралью. Обеспечивает максимальную мощность. Чувствительные компоненты авто (бортовой компьютер), дополнительно выпрямляют нестабильный ток. Чтобы продлить срок службы устройства.

Далее напряжение идет потребителям. Дворники, система индикации, освещение, зажигание. Бортовой компьютер может выдать закодированное сообщение: пора проверить датчик фаз. Элемент, работа которого использует эффект Холла, определяет положение распределительного вала двигателя. Подобными оснащают стиральные машины, оценивая скорость вращения. Авто определяет угловое положение вала. Датчик выдает импульсы, оценивая параметры которых компьютер получит нужную информацию.

Сенсорами авто напичкан. На две клеммы подается питание, третья формирует сигнал. Для проверки посмотрим схему: местонахождение узлов. Затем вплотную займемся прозвонкой. Имитируя условия формирования импульсов, пользуйтесь постоянным магнитом.

Вопрос, как определить фазу и ноль мультиметром на авто, отпадает. Опорой служит корпус автомобиля – масса. Понятное дело, генератор работает только при запущенном двигателе. Внутри квартиры ищем фазу и нуль, здесь масса задана априори. Можно вызванивать пробитую изоляцию (например, диодов выпрямительного моста). На авто проще простого измерить три фазы мультиметром. Действующее значение косвенно сказали. Порядка 20 вольт (учитывая потери неидеального моста).

Ошибки пользователей мультиметра

Китайские мультиметры настроены работать, даже если неправильно поставлены щупы. Сломать прибор случайно остерегайтесь. Избегайте способа: воткнуть черный провод в разъем измерения высоких токов, красный – на свое место. Попытаетесь измерить переменное напряжение высоковольтной линии – ремонт обеспечен. Нельзя применять неправильные диапазоны. Зарекитесь пытаться измерить переменное напряжение, применив шкалу постоянного. Проверка фаз станет последней в жизни мультиметра.

Прибор выводится из строя большим напряжением переменной полярности. Прочее (к примеру, неправильная полярность щупов) не так страшно.

Как определить фазу и ноль мультиметром?

Часто бывает так, что во время монтажа различного электрического оборудования в доме, будь то светильники, розетки или выключатели, либо проверка неисправностей электросети, требуется осуществить поиск какого-то провода. Речь идёт о ноле, фазе, а также заземлении. Попытаемся разобраться, что это за провода, как их различить при помощи такого прибора, как мультиметр, и какие меры предосторожности следует соблюдать, дабы человека не ударило электрическим током.

Определение терминов

Итак, для начала следует разобраться в данных терминах и понять, зачем искать тот или иной провод. Необходимо вспомнить, что все электрические сети делятся на 2 категории:

  • с переменным током;
  • с постоянным током.

Ток представляет собой движение электронов по определённому сценарию. В первом варианте электроны осуществляют перманентное передвижение в некоем определённом направлении. А в случае с переменным, особенностью будет постоянная смена направления движения.

Теперь немного скажем о фазе, нуле и заземлении. Электроэнергия поступает в электросеть от трансформаторной подстанции, главным назначением которой является преобразование большого напряжения в 380 В. А к дому электроэнергия подводится либо по воздуху, либо под землёй через вводной щит распределения. Потом напряжение идёт на щитки, расположенные в каждом подъезде. И уже в квартиры идёт по одной фазе с нулём, то есть 220 вольт и проводник защиты.

Проводник, что обеспечивает подачу электрического тока потребителю, будет иметь название фазного. Внутри трансформаторной обмотки они соединяются между собой в так называемую звезду, что имеет общую нейтраль, которая заземлена на самой подстанции. Она обычно идёт к нагрузке по отдельному кабелю. Ноль, являющийся общим проводником, предназначается для реверсивного движения тока на источник электричества. Он даёт возможность выровнять фазное напряжение – разницу между нулём и фазой.

А заземление, которое в простонародье прозвали землёй, напряжения не имеет. Главной его задачей является защита пользователя от воздействия электротока при появлении неполадок с техникой, то есть при возникновении пробоя.

Это может случиться, если повреждается проводниковая изоляция, и деформированный участок касается приборного корпуса. Но так как потребители заземляются, то при возникновении большого напряжения на корпусе заземление тянет на себя опасный потенциал.

Методы

Теперь, когда стало ясно, что представляют собой ноль, фаза и заземление, необходимо разобраться в методах, при помощи которых они могут быть определены. Наиболее распространёнными и общепринятыми будут 3 метода, с использованием которых можно проверить фазу и ноль:

  • по расцветке самих жил;
  • при помощи отвёртки-индикатора;
  • с использованием мультиметра.

Если говорить о первом методе, то он является простейшим и ненадёжным. Обычно проводники имеют цветную изоляцию оболочек. Фаза отличается серой, коричневой, чёрной либо белой оплёткой. Ноль обычно делается синим либо голубым. Заземление, как правило, имеет зелёный либо зелено-жёлтый цвет. Тут не требуется применять какие-либо приборы или технику – посмотрели на цвет и поняли, что за кабель перед вами.

Но проблема заключается в отсутствии уверенности, что при прокладывании проводки что-то не перепутали, и цветная маркировка соблюдена в рамках существующих норм.

Если говорить об отвёртке-индикаторе, то этот способ будет более надёжным для нахождения фазы и ноля. Она обычно имеет корпус, не проводящий ток, а также встроенный индикаторный резистор, являющийся обычным диодом. Чтобы осуществить проверку ноля с фазой, следует осуществить такие действия.

  • Выключить общий УЗО ввода в квартиру.
  • Осуществить зачистку чем-то острым проверяемых жил от изоляции на 1 сантиметр. Далее, производится их разведение на определённое расстояние, дабы исключить соприкосновение и дальнейшее короткое замыкание.
  • Осуществляем подачу тока, предварительно включив автомат ввода.
  • Отвёрточным жалом необходимо прикоснуться к оголённым проводникам. Если горит индикаторное окно, это будет означать, что перед нами – фазный кабель. Отсутствие света свидетельствует, что проверяемый провод является нулевым.
  • Теперь помечаем маркером необходимую жилу и опять обесточиваем общий автомат, после чего осуществляем подсоединение аппарата коммутации.

Как можно убедиться, в этом нет ничего сложного. А вот более точные и сложные проверки производятся с использованием такого прибора, как мультиметр, или, как его ещё называют, тестер. Он представляет собой комбинированный прибор для проведения различного рода электрических измерений. Мультиметр может заменить большое количество устройств для проведения электронных измерений. В частности, омметр, амперметр, вольтметр.

При помощи тестера можно осуществить определение не только земли, ноля либо фазы, но и осуществить замеры на участке цепи тока, напряжения, сопротивления, и проверить целостность электроцепи. Теперь попытаемся разобраться, как узнать при помощи тестера, где будет фаза, а где — ноль.

Описание процесса

Начнём с фазы. Требуется включить устройство, после чего выставить на нём определение напряжения переменного характера, что на корпусе устройства обычно обозначается значком V~. Также следует выбрать предел измерения выше предполагаемого сетевого напряжения. Часто говорят о 400–700 В. Щупы тогда будут подключаться так: чёрный следует установить в разъём с пометкой COM, а красный – VΩmA. Но прежде чем осуществлять это, следует проверить работоспособность мультиметра в выбранном режиме. Проще попытаться выяснить напряжение в простой розетке. Для этого вставляем щупы в розеточные отверстия. Если устройство рабочее, и таковой будет розетка, то мультиметр покажет вам значение около 220–230 В.

Теперь приступим непосредственно к поиску фазы на примере 2 кабелей, торчащих из потолка и использующихся для включения люстры. Всё будет довольно легко. Требуется сформировать условия для прохождения электричества по прибору и установить этот факт. Создаётся электрическая цепь примерно такая, как с отвёрткой-индикатором.

При выяснении напряжения переменного характера с установленной границей 500 вольт, красным щупом нужно коснуться проверяемого кабеля, а чёрный прижать пальцами или коснуться предмета, что заземлён. Им может стать каркас стены из стали, отопительный радиатор и так далее. Если на проверяемом кабеле будет фаза, тестер высветит на дисплее величину напряжения около 220 В. Она может чуть различаться из-за условий, но будет примерно такой. Если провод не фаза, то появится 0 либо прибор покажет не более пары десятков вольт.

Теперь поговорим о том, как найти ноль. Он обычно находится уже относительно фазы. Сначала ищем её и логически предполагаем, что провод, расположенный рядом, ноль либо земля. Определить, является кабель нулём либо заземлением с помощью рассматриваемого устройства относительно сложно из-за того, что данные проводники почти одинаковы и повторяют друг друга.

Бывает, что ноль и заземление связаны в электрозащите и установить их действительно крайне сложно.

Проще всего будет отключить от заземлительной шины в электрощитке кабель ввода. При осуществлении проверки напряжения между кабелями заземления и фазой нельзя будет получить 220 вольт, как при проверке фазы и нуля. Кроме того, следует сказать, что если в электрощите стоит защита дифференциального типа, то она точно сработает при проверке кабелей заземления относительно иного проводника, даже нулевого.

Если надо установить ноль в розетке, то следует красный щуп поставить в фазовую розеточную дырку, а чёрный поднести к иному контакту, после чего сделать эти же действия с третьим контактом. Обязательно следует запомнить напряжение в обоих случаях. Где оно будет меньше, там будет заземление. А там, где показатель будет чуть выше – там будет нулевой провод. В общем, как можно убедиться, ничего сложного в поиске нуля и фазы мультиметром нет.

Меры безопасности

Следует немного сказать и о некоторых правилах безопасности, которые обязательно следует прочитать, прежде чем начинать определение фазы и нуля при помощи мультиметра:

  • ни в коем случае нельзя использовать мультиметр в помещении с высокой влажностью;
  • нельзя использовать неисправные щупы для измерений;
  • при осуществлении замеров нельзя изменять пределы измерений и переставлять режим переключателя;
  • нельзя менять параметры, значение которых будет выше, чем приборная грань измерений.

Кроме того, поворотный переключатель с самого начала следует установить в максимальное положение, дабы избежать поломки прибора.

О том, как определить фазу и ноль мультиметром, смотрите в следующем видео.

Как тестером определить фазу ноль и землю

При монтаже розеток и выключателей освещения, подключении бытовых электроприборов возникает необходимость в определении назначения жил проводки. Как определить фазу и «ноль», а также заземляющий проводник? Эта несложная для профессиональных электромонтеров задача порой ставит в тупик тех, кто мало знаком с правилами устройства электрических сетей. Попробуем разобраться в этом вопросе.

Устройство бытовых электрических сетей

Бытовые электрические сети на входе в распределительный щиток имеют линейное напряжение 380В трехфазного переменного тока. Проводка в квартирах, за редким исключением, имеет напряжение 220В, так как она подключена к одной из фаз и нулевому проводнику. Кроме того, правильно смонтированная бытовая проводка должна быть обязательно заземлена. В домах старой застройки заземляющего проводника может не быть. Таким образом, при монтаже проводки и электроприборов необходимо знать назначение каждого из двух или трех проводов.

Также следует знать правила подключения различных приборов. При монтаже обычной розетки подключение фазного и нулевого проводника производится к клеммам в произвольном порядке, а заземляющий провод, при его наличии, подключают к медной или латунной шине. Выключатель подключают в фазный провод, чтобы при его отключении в патроне осветительного прибора не было напряжения – это обеспечит безопасность при смене ламп. Сложные бытовые приборы в металлическом корпусе необходимо подключать в обязательном соответствии с маркировкой проводов, в противном случае безопасность их использования не гарантирована.

Приборы и инструменты

Прежде чем приступить к электромонтажным работам и определить фазу и ноль в проводке, необходимо подготовить необходимые приборы и инструмент:

  • Мультиметр стрелочный или цифровой;
  • Индикаторную отвертку или тестер;
  • Маркер;
  • Пассатижи;
  • Нож для зачистки изоляции.

Также вам необходимо выяснить, где расположена защитная аппаратура: автоматические выключатели или пробки, УЗО. Обычно их устанавливают в распределительном щитке на площадке или у входа в квартиру. Все операции по подключению электроаппаратуры и зачистку проводов необходимо проводить при отключенных автоматах!

Правила работы с тестером и мультиметром

Проверку фазы с помощью индикаторной отвертки проводят так: отвертку зажимают между большим и средним пальцем руки, не касаясь неизолированной части жала. Указательный палец ставят на металлическийпятачок с торца рукоятки. Жалом задевают оголенные концы проводов, при касании к фазному проводнику загорается светодиод.

Мультиметром измеряют напряжение между проводниками. Для этого прибор устанавливают на предел измерения переменного тока со значком «

V» или «ACV» и значением больше 250 В (обычно у цифровых приборов выбирают предел 600, 750 или 1000 В). Щупами одновременно прикасаются к двум проводникам и определяют напряжение между ними. В бытовых электросетях оно должно быть 220В±10%.

Иногда для определения заземляющего проводника необходимо бывает измерить сопротивление. Для этого на мультиметре выставляют предел измерения «Ω» или со значком звонка.

Внимание! В режиме измерения сопротивления прикосновение к фазному проводу и заземляющему контуру вызовет короткое замыкание! При этом возможны электротравмы и ожоги!

Визуальный метод определения

Если проводка выполнена по всем правилам, определить фазу, ноль и заземляющий проводник можно по цвету изоляции. Заземление имеет двухцветную желто-зеленую окраску, изоляция нулевого провода бывает синей или голубой, а фазный провод может быть белым, черным или коричневым. Убедиться в правильности подключения можно с помощью визуального осмотра, при этом необходимо проверить соответствие цвета изоляции не только в щитке, но и в распределительных коробках.

Последовательность визуального осмотра

  1. Откройте щиток и осмотрите автоматические выключатели. В зависимости от расчетной нагрузки их количество может быть разным. Через автоматы могут быть подключены только фазный или фазный и нулевой провод. Заземляющий проводник подключают всегда сразу к шине. Проверьте соответствие цветовой маркировки всех проводов.
  2. Если в щитке цвет изоляции кабеля, уходящего в квартиру, соответствует правилам, вскройте все распределительные коробки и осмотрите скрутки. В них цвета изоляции нуля и заземляющего провода также не должны быть перепутаны.
  3. К фазе в распределительных коробках бывают подключены выключатели. Часто монтаж выполняют двужильным проводом, имеющим другие цвета изоляции, например, белый и бело-голубой. Это не должно вас смутить.
  4. Если монтаж выполнен с полным соответствием цвета изоляции, достаточно проверить фазный провод с помощью индикаторной отвертки.

Определение фазы и нуля в двухпроводной сети

Если ваша проводка выполнена без заземляющего проводника, вам необходимо найти только фазный провод. Сделать это проще всего с помощью индикаторной отвертки.

  1. Отключите автоматический выключатель и зачистите изоляцию проводов на расстоянии 1-1,5 см с помощью ножа. Разведите их на расстояние, исключающее случайное касание проводов.
  2. Включите автоматический выключатель. Индикаторной отверткой поочередно касайтесь зачищенных концов проводов. Светящийся диод укажет на фазный провод.
  3. Отметьте его маркером или цветной изолентой, отключите автоматический выключатель и выполните необходимые подключения.
  4. При подключении осветительных приборов необходимо также убедиться, что выключатель подключен к фазному проводу, в противном случае при смене лампочек недостаточно будет отключить выключатель, придется каждый раз полностью обесточивать квартиру отключением автомата.

Определение фазы, нуля и заземляющего провода

Если сеть трехпроводная, но выполнена проводом одного цвета, либо вы не уверены в правильности их подключения, необходимо определять назначение проводников перед установкой каждого элемента сети.

  1. Определите описанным выше способом фазный провод с помощью индикаторной отвертки и отметьте его маркером.
  2. Для определения нулевого и заземляющего провода понадобится мультиметр. Как известно, из-за перекоса фаз в нулевом проводе может появиться напряжение. Его величина обычно не превышает 30В. Установите мультиметр в режим измерения напряжения переменного тока. Одним щупом прикоснитесь к фазному проводу, вторым поочередно к двум другим проводам. Там, где значение напряжения окажется меньше, вторым проводом будет являться нулевой проводник.
  3. Если значение напряжения одинаково, необходимо измерить сопротивление заземляющего провода. Для этого уже определенный фазный провод лучше изолировать, чтобы избежать случайного прикосновения к нему. Мультиметр ставят в режим измерения сопротивления. Находят заведомо заземленный элемент, например, трубу или батарею. Зачищают при необходимости краску и прикасаются одним щупом мультиметра к металлу, а другим поочередно к проводникам, назначение которых неясно. Сопротивление заземляющего провода по отношению к заземленным элементам не должно превышать 4 Ом, сопротивление нулевого провода будет больше.
  4. Измерение сопротивления может также быть недостоверным, если нейтраль заземлена в щитке. В этом случае вам нужно найти заземляющий проводник, присоединенный к шине внутри щитка, и отключить его. После этой операции необходимо взять патрон с лампой и подключенными проводами, зачистить их концы и подключить один провод лампы к фазному проводу, а второй – поочередно к двум другим. Лампа загорится при касании нулевого проводника.

Если все указанные мероприятия не привели к желаемому результату, лучше обратиться к профессиональным электрикам, которые с помощью специальных приборов произведут вызвонку всех цепей. Не забывайте, что речь идет, прежде всего, о безопасности.

Для отыскания фазного провода или клеммы в розетке, вам понадобится один из приборов — индикаторная отвертка или мультиметр.

Определение фазы индикаторной отверткой

Наиболее простой метод определения фазы, который подойдет для любого обывателя — это использование индикаторной отвертки, или как ее еще называют «контрольки».

Контрольная отвертка по внешнему виду очень похожа на обычную, за исключением своей внутренней начинки. Не советую использовать жало отвертки для откручивания или завинчивания винтов. Именно это чаще всего и приводит ее к выходу из строя.

Как определить фазу и ноль этой отверткой? Все очень просто:

  • ⚡жалом отвертки прикасаетесь к контакту
  • ⚡нажимаете или дотрагиваетесь пальцем до металлической кнопки в верхней части отвертки
  • ⚡если светодиод внутри отвертки загорелся — это фазный проводник, если нет — нулевой

Не перепутайте индикаторную отвертку с отверткой для прозвонки. Последняя в своей конструкции имеет батарейки. Здесь для того, чтобы определить фазу и ноль, при касании жалом контактов, не нужно дотрагиваться пальцем до металлической площадки на конце. Иначе отвертка будет светиться в любом случае.

По правилам, лампочка индикатора рассчитанного на 220-380В, должна светиться при напряжении от 50В и более.

Аналогичным образом определяется фаза в розетке, выключателе и любом другом оборудовании.

Меры безопасности при работе с «пробником»

  • ⚡никогда не дотрагивайтесь до нижней части отвертки при замерах
  • ⚡отвертка перед измерением должна быть чистой, иначе может произойти пробой изоляции
  • ⚡если индикаторной отверткой необходимо определить отсутствие напряжения, а не его наличие, для того чтобы безопасно можно было работать с проводкой, сначала проверьте работоспособность прибора на оборудовании заведомо находящегося под напряжением.

Как определить фазу и ноль мультиметром или тестером

Здесь в первую очередь переключите тестер в режим измерения переменного напряжения. Далее замер можно сделать несколькими способами:

  • ⚡зажимаете один из щупов двумя пальцами. Второй щуп подводите к контакту в розетке или выключателе. Если показания на табло мультиметра будут незначительными (до 10 Вольт) — это говорит о том, что вы коснулись нулевого проводника. Если коснуться другого контакта — показания изменятся. В зависимости от качества вашего прибора, это может быть несколько десятков вольт, а также от 100В и выше. Делаем вывод, что в данном контакте фаза.
  • ⚡если вы боитесь в любом случае прикасаться руками к щупу, можно попробовать по другому. Один стержень вставляете в розетку, а другим просто дотрагиваетесь до стенки рядом с розеткой. Если у вас штукатурка, результат будет похожим с первым измерением.
  • ⚡еще один способ — одним из щупов прикасаетесь к заведомо заземленной поверхности (корпус щита или оборудования), а вторым прикасаетесь к измеряемому проводу. Если он будет фазным, тестер покажет наличие напряжения 220В.

Меры безопасности при работе с мультиметром:

    ⚡обязательно перед определением фазы по первому способу (когда зажимаете пальцами щуп) убедитесь, что мультиметр включен в положение «замер напряжения» — значок

V или ACV. Иначе может ударить током.

  • ⚡некоторые «опытные » электрики для определения фазы, используют так называемую контрольную лампочку. Не рекомендую рядовым пользователям такой метод, тем более он запрещен правилами. Используйте только исправные и проверенные измерительные приборы.
  • В современных квартирах в розетки и распредкоробки заходят трехжильные провода. Фазный, рабочий нулевой и защитный. Как отличить их между собой можно узнать из статьи 4 способа отличить заземляющий проводник от нулевого.

    Современные отвертки-индикаторы избавят от головной боли человека, пытающегося осмыслить, как определить фазу, ноль, землю. Замечены сложности, расскажем ниже. Для тестирования применяется сигнал, генерируемый отверткой. Понятно, внутри стоят батарейки. Старая советская отвертка-индикатор на базе единственной газоразрядной лампочки негодна. Позволит безошибочно определить фазу. Следовательно, другая цепь — ноль или земля.

    Правильно определить фазу

    Начнем терминами. Слова ноль русский язык лишен. Зато употреблялось обиходом за счет легкого произношения. Ноль — искаженный нуль, восходящий корнями к латинскому языку. Программист знает: под термином NULL принято подразумевать пустые, неопределенные переменные (лишенные типа). Иногда вид данных удобен для составления алгоритмов (при передаче значений функции).

    Теперь попробуем найти фазу. Типичная отвертка-индикатор образована стальным щупом, вслед идет высокоомное сопротивление (к примеру, углерода), ограничивающее ток, источником света выступает газоразрядная лампочка малого размера. Мелочи, но незнающие термина контактная кнопка, определить ноль бессильны. На конце ручки отвертки-индикатора металлическая площадка. Это контактная кнопка, которую потрудитесь касаться пальцем. Иначе лампочка при прикосновении к фазе светиться откажется.

    Объясним происходящее. Тело человека наделено емкостью. Не столь велика, хватает пропустить мизерный ток. Фаза начинает колебания, электроны идут в сеть и обратно. Создается небольшой ток. Размер сильно ограничен резистором, убиться, взявшись рукой за контактную площадку отвертки-индикатора, другой за трубу снабжения водой непросто. Обнаружить при помощи инструмента непосредственно землю невозможно.

    Обнаружение фазы имеет основополагающее значение, напряжение не должно выходить на патрон люстры при выключенном выключателе. В противном случае обычный процесс замены лампочки может стать опасным, последним. По нормативам, фаза розетки слева. Если выключатели стоят, как принято (включается нажатием вверх), способы определения фазы вырождаются умением найти левую руку, понять, где находится низ:

      В розетке фаза занимает левое гнездо. Соответственно, правое считается нулем. Остается провод, изоляция желто-зеленая — земля (в противном случае — резервный провод питания напряжением 220 вольт).

    Неверное положение нуля и фазы евророзетки

    Определение положения фазы по цвету изоляции жил провода

    Нулевой рабочий провод снабжен синей изоляцией, земля желто-зеленая. Соответственно, на фазу приходится красный (коричневый) цвет. Правило может грубо нарушаться. Дома старой застройки часто оснащались проводами двух жил. Цвет изоляции в каждом случае белый. Отдельные устройства, наподобие датчиков освещенности или движения, имеют другую раскладку. К примеру, нулевой провод черный. Здесь приготовьтесь смотреть руководство по эксплуатации, вариантов раскладки бесчисленное количество.

    Найти нулевой провод в квартире

    По правилам, корпус подъездного щитка заземлен. Выполняется при помощи солидных размеров клеммы, затянутой мощным болтом в домах старой постройки, жителям современных зданий проще ориентироваться количеством жил. Нулевая шина имеет самое большое число подключений, фазы разводятся по квартирам (добрые электрики вешают стикеры А, В, С; злые — не вешают). Легко проследим по раскладке автоматов защиты, счетчиков.

    Штекер 230 вольт Великобритании

    В каждом случае общий провод будет нулевым. Цвет не играет решающей роли. Хотя по нормам современные кабели снабжены разукрашенной изоляцией. Обратите внимание – если в доме обустроено заземление, жил на входе минимум 5. Корпус щитка сажается на желто-зеленую. Нулевой провод послужит отводу рабочего тока от приборов (замыкает цепь). Объединение ветвей на стороне потребителя запрещено. Вот тройка правил, помогающих разобраться в подъездном щитке (обратите внимание, по правилам, жилец туда не должен казать носу вовсе – предупредили):

    • Автомат защиты рвет фазу. Встречаются двухполюсные модели, используются сравнительно редко для помещений с особой опасностью (санузел). Поэтому по положению провода удастся сказать: это фаза. Потом стоит автомат вырубить, жилу прозвонить на стороне квартиры. Однозначно даст положение фазы.
    • Напряжение меж нулевым проводом, любой фазой составляет 230 вольт. По ключевому признаку выделим жилу, на другую дающая указанную разницу. Разброс меж фазами составляет 400 вольт. Значения процентов на 10 выше, российские сети стараются соответствовать европейским стандартам.
    • Токовыми клещами измерим значения на жилах. По каждой фазе проявится значение, сумма которых (по трем) должна течь обратно в сеть по нулевому (либо подходящему фазному). Заземление редко используется, ток здесь близкий нулевому при равномерной загрузке веток. Место, где значение больше всего, традиционно является нулевым проводником.
    • Клемма заземления распределительного щитка на виду. Признаку поможет найти нулевой провод в домах с NT-C-S. В других случаях сюда подводится заземление.

    Дополнительные сведения о нахождении земли, фазы, нулевого провода

    Напоминаем, рассматривались случаи, когда под рукой нет отвертки-индикатора, зато присутствуют токовые клещи, мультиметр. Затем до входа в квартиру обнаруживают землю, фазу, нулевой провод, домашняя сеть прозванивается. Жилы три, методика лежит на поверхности: меж фазой и другим проводом разность потенциалов составит 230 вольт. Обратите внимание, методика непригодна в других случаях. К примеру, разница напряжений меж двумя одинаковыми фазными жилами составляет круглый нуль. Тестером измерить и определить сложно.

    Добавим другой способ — промышленностью запрещен. Лампочка в патроне с двумя оголенными проводами. При помощи инструмента находят фазу, возможно жилу замыкать на заземление. Нельзя использовать водопроводные, газовые, канализационные трубы, прочие инженерные конструкции. По правилам, оплетка кабельной антенны снабжена занулением (заземлением). Относительно нее допустимо тестером (запрещенной стандартами лампочкой в патроне) находить фазу.

    Для решительных людей порекомендуем пожарные лестницы, стальные шины громоотводов. Нужно зачистить металл до блеска, звонить на участок фазу. Обратите внимание, далеко не все пожарные лестницы заземлены (хотя обязаны быть), шины громоотводов 100%. Если обнаружите столь вопиющий произвол, обратитесь в управляющие организации, при отсутствии реакции – сообщите государственным инстанциям. Указывайте нарушение правил защитного зануления зданий.

    Современные отвертки-индикаторы определения фазы, нулевого провода, земли

    Когда нельзя понять, какого цвета провода, полезно пользоваться отверткой-индикатором. Инструкция диковинки на батарейках говорит: удастся при помощи щупа найти землю. Спешим огорчить читателей – любой длинный проводник определяется ложно. Разорванная в области пробок фаза, нулевой провод, настоящая земля – ответ один. Не каждая отвертка-индикатор способна выполнять функции одинаково эффективно. Смысл операции следующий:

    • Активная отвертка-индикатор способна обнаружить длинный проводник путем излучения туда сигнала, ловли отклика.
    • На практике при плохом качестве контактов волна быстро затухает. Отвертка-индикатор показывает наличие земли на разомкнутой пробке фазы.
    • Для определения земли существует условие – нужно пальцем коснуться контактной площадки. В этом разница меж активной и пассивной отвертками-индикаторами. В первой возможно по этому принципу найти фазу, во второй правильное определение происходит при условии отсутствия контакта с данной областью.

    Современная отвертка-индикатор на расстоянии позволит судить, течет ли по проводу ток. Существует специальный дистанционный режим. Обычно даже два: повышенной и пониженной чувствительности. Позволит отсеять неиспользуемую часть проводки. Допустим, известны случаи: строители заводили в дом две фазы вместо одной, путали местами. Пользоваться проводкой нужно с большой осторожностью.

    Хочется отметить, на практике измерить сопротивление проводки, прозвонить непросто. Гораздо удобнее определять наличие фазы. Нет опасности сжечь китайский тестер (бывает временами при попытках измерить сопротивление жилы под током). Следует также знать, низкоомные цепи определяются с ошибкой. К примеру, большинство тестеров при прямом замыкании щупов не дают нуль шкалы. Зато если не получится определить землю при помощи активной отвертки-индикатора, плохие контакты – запросто. Если при выключенных пробках огонек горит с пальцем, прижатым к контактной площадке, время задуматься о покупке нового автомата распределительной коробки, скрутки замените современными колпачками.

    Часто занимающимся ремонтом рекомендуем выход из положения: маркировка проводов. Лучше делать краской принтера, цвета примерно совпадают:

    1. Красный – фаза.
    2. Синий – нулевой провод.
    3. Желтый – земля.

    Обычно водорастворимая краска смывается с трудом. Цвета электрических проводов допустимо проставить колерами принтеров. Приведенная выше система не одинока, часто встречается. В продаже найдем черный цвет. Можете использовать, как заблагорассудится. Обозначение проводов выполняется один раз навсегда. Смыть маркировку проще концентрированной уксусной кислотой, вещество понадобится вознамерившимся отчистить руки (не всегда просто выходит на практике). Напоследок – старайтесь не заляпать одежду.

    Как определить фазу и ноль

    При любых работах с электропроводкой, будь то установка выключателя или что-то еще, всегда возникает необходимость в определении нулевых и фазовых проводов.

    Честно говоря, это достаточно легкая процедура, но лишь при условии, что вы обладаете необходимыми навыками в работе с электричеством. В статье речь пойдет о том, как решить подобные вопросы.

    Вводная часть о принципах работы электроприборов

    Все мы знаем, что практически для всех домашних электроприборов необходима относительно небольшое напряжение — всего 220 вольт. И для того, чтобы подвести электрику к штепселю, нужно два провода (в некоторых случаях — три). Итак, вот они:

    1. Фазный.
    2. Нулевой.
    3. Заземление (если произойдет нарушение изоляции, то оно предотвратит удар током). И для чего же, спросите вы, простому обывателю знать о том, где фаза, а где ноль?

    Прежде всего, это пригодится при собственноручной замене выключателя, если его следует установить конкретно на фазный провод. Кто не знает, это позволит отремонтировать осветительный прибор, не отключая электричества во всем доме.

    Но не только их, а еще и бытовые приборы, работающие с проточной водой или имеющие железные корпуса. И чтобы подключить их, нужно задействовать не только ноль и фазу, но еще и заземление.

    Существует три способа того,  как определить фазу и ноль. Рассмотрим детально все их преимущества и недостатки.

    Определяем фазу и ноль фазоиндикатором

    В данном случае вам понадобится специальный пробник, или как его еще называют, индикатор. В целом это обычная плоская отвертка, имеющая пластиковую ручку, где и помещен визуальный датчик — неоновая или же полупроводниковая лампа.

    Процедура определения фазы таким образом проста. Необходимо лишь прикоснуться концом инструмента к нужному проводу или же засунуть его в розетку. Если напряжение там будет присутствовать, то отвертка загорится слабым светом.

    Стоит отметить, что это возможно при правильном применении отвертки: палец ладони, в которой находится инструмент, следует прижать к металлической части отвертки. Это замкнет цикл между землей и проводкой, но бояться при этом не стоит, поскольку металлическая часть прибора существенно снижает напряжение.

    Преимущества: простота и доступность способа, отвертку можно купить в любом магазине.

    Недостатки: риск поражения электрическим током, пусть преимущественно и на психологическом уровне.

    Видео по определению фазы и ноля индикаторной отверткой

    Определяем фазу и ноль тестером

    Здесь используется более современное устройство — фазовый тестер. Он позволит владельцу качественно измерять силу переменного или же постоянного напряжения. Для настройки прибора используется специальный вращающийся переключатель.

    Также есть два щупа, первый из который необходимо засунуть в розетку, а второй крепко зажать в ладони. Если мы попадем на нулевую проводку, то на дисплее отобразится незначительное напряжение или же несколько нулей. А если на фазовый — то напряжение будет существенно выше.

    Преимущества: современное устройство, широкодоступное на отечественном рынке; более высокая точность измерений.

    Недостатки: существенных нет.

    Видео по определению фазы мультиметром

    Определяем фазу и ноль по маркировке

    Это, пожалуй, наиболее ненадежный способ. Суть его в следующем: на сегодняшний день все проводка современных домов обладает специальной цветовой маркировкой, смотря какое назначение определенного провода.

    К примеру, к фазе подключается зачастую коричневый или черный провод, а тот, что к нулю, должен иметь голубые тона. Касательно заземляющего провода, то он выполняется в двух цветах — зеленом и желтом.

    Жаль, конечно, но в нашей стране нередко халатность электриков приводит к тому, что правила игнорируются и влекут за собой самые непредсказуемые последствия. Поэтому ни в коем случае не полагайтесь на добросовестность и профессионализм рабочих, устанавливающих в вашем доме электропроводку.

    Рекомендуется лучше применить один из описанных способов. Более того, еще три года назад провода маркировались совсем по-другому. К примеру, провод для заземления был тогда черного цвета.

    Когда фазный провод определен, мы его отгибаем и начинаем определять нулевой. К щитку внутри квартиры они прикреплены таким образом, что исключается система заземления как таковая. И если у вас есть доступ к щитку, то следует осведомиться о цвете провода, который проходит мимо автоматов, и выявить его.

    А если по причине того, что вы желаете подстраховаться, или непосредственный доступ к щитку невозможен, то в любой момент можно использовать старое доброе средство — патрон с лампочкой, к которой подключены провода. Если один из них присоединить или же просто прикоснуться им к фазному проводу, а второй провод замыкать на двух оставшихся поочередно, то вы можете также определить нужные вам категории. Если будет контакт с нулем, то лампочка загорится, а если с проводом заземления — то ничего не произойдет.

    И, как бы противопоставляя этот метод более продвинутому, можно применить уже описанный нами прибор — фазометр.

    В таком случае следует по очереди измерять различие напряжения (другими словами, потенциалов) между всеми проводами и уже определенными фазами. При этом категория фаза-ноль обязана существенно превышать все другие категории (земля-фаза).

    Преимущества: относительная простота.

    Недостатки: небезопасность.

    Итак, мы вместе разобрались, как определить фазу и ноль.

    [Всего:    Средний:  /5]

    Как определить фазу и ноль: самые действенные способы

    В домашнем хозяйстве возникают проблемы при монтаже розеток и выключателей, подключении систем освещения, бытовых электрических приборов и других подобных устройств. Обычно они питаются от однофазных источников, провода которых состоят из двух проводников — фазного и нулевого. В более безопасном варианте к ним добавляется третий провод — земля или заземление.

    Большинство бытовой электрической техники нормально функционируют при строго определенном, согласно рабочей схеме, подключении проводников. Основой для успешного решения вопроса будут навыки определения, где фаза, а где ноль. Выполнить эту достаточно несложную работу можно самостоятельно, без привлечения электриков, а значит с экономией на финансовых затратах.

    Способы, как найти фазу и ноль, имеют место, как с использованием приборов, так и без них.

    Определение рабочей фазы и нуля с помощью приборов

    Фазный проводник предназначен для подачи тока потребителю, поэтому на него подается рабочее напряжение ( в бытовой сети 220 В). В отличие от него нулевой проводник выполняет функции замыкания цепи и его потенциал близок к нулю. На этом отличии как раз основан принцип как идентифицировать фазу и ноль с помощью электрических приборов.

    С использованием индикаторной отвертки

    Основное предназначение индикаторных отверток проверка наличия/отсутствия напряжения. Данная техническая характеристика прибора позволяет определить фазный и нулевой провода питающей сети.

    Устройство отвертки обеспечивает удобное и безопасное ее использование. Принципиальная схема представлена на изображении.

    Токопроводящий металлический стержень с плоским жалом на конце выполняет функции непосредственно контактирующего элемента с испытуемым проводом. В схеме присутствует ограничивающий величину тока до безопасных значений для человека высокоомный резистор. Он соединяется с индикаторной лампочкой с помощью пружины.

    Замыкается цепь из перечисленных элементов на колпачке с контактом. Колпачок располагается на корпусе отвертки изготовленной из прозрачного пластика с возможностью удобного касания рукой человека. Его тело после контакта с колпачком будет выступать в качестве элемента цепи, по нему ток сбрасывается в землю.

    Загорание лампочки дает необходимую информацию, как определить фазу и ноль индикаторной отверткой. С касанием токопроводящим стержнем фазного провода лампочка индикатора горит, контакт с нулем оставляет ее потухшей.

    Важно: при выполнении работ с помощью индикаторной отвертки с целью предотвращения получения электрической травмы запрещается касаться руками рабочего токопроводящего стержня.

    Определение фазы и ноля мультиметром

    В однофазной проводке из трех проводов с помощью индикаторной отвертки можно определить только фазу, ноль и землю отличить с ее помощью невозможно. Мультиметром или как он называется в быту тестером можно решить весь комплекс вопросов как проверить функциональную принадлежность всех трех проводов.

    Мультиметры принадлежат к многофункциональным приборам, поэтому для определения принадлежности того или иного провода следует выбрать и установить рабочее состояние в положение «вольтметр». Предел измерения выставить больше 220 В.

    • Первое действие заключается в проверке напряжения на всех трех проводах щупом, который находится в гнезде тестера «V» (обозначение гнезд могут различаться, это самое распространенное). Провод с максимальным значением напряжения будет фазой.
    • Далее один из двух щупов соединяем с фазой, а другим касаемся поочередно двух оставшихся проводов.
    • В случае если напряжение на шкале мультиметра будет равно 220 В, то этот провод нулевой. При напряжении на проводе меньшем, чем 220 В, найдем заземляющий.

    Как определить ноль и фазу без приборов

    Согласно ПУЭ (Правил Устройства Электроустановок) каждому проводу имеющему свое функциональное назначение соответствует своя определенная цветовая маркировка:

    • фазный провод имеет изоляцию черного, белого, коричневого (наиболее часто используемого) цветов и их многочисленных оттенков;
    • нулевой провод имеет изоляцию синего цвета с любыми его оттенками;
    • земля находится в изоляции желто — зеленого цвета в полоску.

    Если бы нормативные акты строго соблюдались, то проблем с определением, где фаза, где ноль, а где земля не существовало. Для того чтобы легче было ориентироваться в коммутационных схемах на многих электрических приборах вводятся обозначения фазы, ноля и земли. Все проводники обозначаются в соответствии с государственными стандартами:

    • L — этой латинской буквой обозначается фаза;
    • N — по этому знаку находят нулевой провод;
    • PE — этим сочетанием букв всегда обозначалась земля.

    Однако визуальный метод имеет долю субъективизма, не всегда можно точно определить правильно цвет изоляции проводника. Кроме этого не все электрики придерживаются нормативных документов при проведении электромонтажных работ. В зданиях старой постройки, говорить о каких — либо стандартах цветовой маркировки проводки вообще не приходится.

    Поэтому такой метод найти фазу и ноль без приборов существует с большой степенью условности, 100 % гарантии он не имеет. Однако он является единственным реальным способом среди других, типа применения сырой картошки, как определить фазу и ноль без приборов. Для получения достоверного результата лучше воспользоваться данными о соответствии проводов фазе, нулю или заземлению проверенных с помощью индикаторной отвертки или мультиметра.

    Использование самодельной «контрольки»

    Бывают случаи, когда необходимо срочно подключить электрическое устройство, а в домашнем хозяйстве отсутствуют необходимые приборы для определения фазы и нуля. Часто это происходит на даче вдали от благ цивилизации. Однако найти там электрическую лампочку, патрон от нее и кусок электрического провода не представляет больших проблем.

    Изготовить самостоятельно контрольную лампочку не представляет труда. Достаточно подключить два провода к патрону и закрутить в него электрическую лампочку. Для удобства эксплуатации концы проводов оборудовать щупами (если такие удалось найти).

    Принцип идентификации проводов «контролькой» не отличается от того как определить индикаторной отверткой фазу и ноль. Для определения фазы следует один из контактов «контрольки» подключить к любому из проверяемых проводов, а второй контакт соединить с заземлением. Если лампа будет светиться, то узнаете о принадлежности его к фазе.

    Главный недостаток использования самодельной «контрольки» в отсутствии безопасности проведения работ. Существует реальная возможность получения удара электрическим током.

    Видео по теме

    Как найти фазу и ноль? несколько способов определения фазного и нулевого провода » сайт для электриков

    Способ №3 – Картошка в помощь!

    Забавная, но все же эффективная идея, которая позволяет определить фазу и ноль без индикатора, мультиметра либо другого тестера. Все, что Вам нужно – картошина, 2 провода по 50 см и резистор на 1 МОм. Найти напряжение можно по методике, описанной выше. Конец первого проводника подключается к трубе, второй конец вставляется в срез картошки, как показано на фото. Что касается второго провода, один его конец нужно вставить в тот же срез, на максимально возможном расстоянии от уже вставленной жилы, а вторым Вы будете щупать те выводы, на которых Вам нужно найти фазу и ноль без приборов. Определение происходит следующим образом:

    • Если на срезе образовалось небольшое потемнение – это фазный проводник;
    • Никакой реакции не произошло – Вы «нащупали» ноль.

    Следует сразу же отметить, что в данном случае определение должно происходить с небольшой выдержкой времени при контакте жилы со срезом картошки. Вы должны дотронуться проводом к картошине и подождать около 5-10 минут, после чего будет виден результат!

    Наглядный видео урок по определению полярности без приборов своими руками

    По похожей методике можно определить полярность контактов в цепи постоянного тока. Для этого два провода опускаются в чашку с водой и если возле одного из них начинают образовываться пузыри, как показано на фото ниже, значит, это минус и, соответственно, вторая жила – плюс.

    Цифровой мультиметр очень полезная вещь в быту. С помощью тестера просто определить, какой из проводов фаза, ноль, а какой заземление.

    Любая электросеть, как бытовая, так и промышленная может быть с постоянным током или с переменным. При постоянной подаче электронапряжения электроны перемещаются в одном направлении, при переменной подаче это направление постоянно меняется.

    Переменная сеть в свою очередь состоит из двух частей – рабочей и пустой фазы. На рабочую, которую называют в электричестве так и называют — «фазой», подаётся рабочее электронапряжение, а на пустую, которая получила название «ноль» — нет. Она нужна для создания замкнутой сети для работы и подключения электроприборов, а также для заземления сети.

    Домашняя электропроводка: находим ноль и фазу

    Установить в домашних условиях, где какой провод находится, можно разными способами. Мы разберем только самые распространенные и доступные практически любому человеку: с использованием обычной электрической лампочки, индикаторной отвертки и тестера (мультиметра).

    Про цветовую маркировку фазных, нулевых и заземляющих проводов на видео:

    Как найти фазу и ноль? несколько способов определения фазного и нулевого провода » сайт для электриков

    Способ №3 – Картошка в помощь!

    Забавная, но все же эффективная идея, которая позволяет определить фазу и ноль без индикатора, мультиметра либо другого тестера. Все, что Вам нужно – картошина, 2 провода по 50 см и резистор на 1 МОм. Найти напряжение можно по методике, описанной выше. Конец первого проводника подключается к трубе, второй конец вставляется в срез картошки, как показано на фото. Что касается второго провода, один его конец нужно вставить в тот же срез, на максимально возможном расстоянии от уже вставленной жилы, а вторым Вы будете щупать те выводы, на которых Вам нужно найти фазу и ноль без приборов. Определение происходит следующим образом:

    • Если на срезе образовалось небольшое потемнение – это фазный проводник;
    • Никакой реакции не произошло – Вы «нащупали» ноль.

    Следует сразу же отметить, что в данном случае определение должно происходить с небольшой выдержкой времени при контакте жилы со срезом картошки. Вы должны дотронуться проводом к картошине и подождать около 5-10 минут, после чего будет виден результат!

    Наглядный видео урок по определению полярности без приборов своими руками

    По похожей методике можно определить полярность контактов в цепи постоянного тока. Для этого два провода опускаются в чашку с водой и если возле одного из них начинают образовываться пузыри, как показано на фото ниже, значит, это минус и, соответственно, вторая жила – плюс.

    Цифровой мультиметр очень полезная вещь в быту. С помощью тестера просто определить, какой из проводов фаза, ноль, а какой заземление.

    Любая электросеть, как бытовая, так и промышленная может быть с постоянным током или с переменным. При постоянной подаче электронапряжения электроны перемещаются в одном направлении, при переменной подаче это направление постоянно меняется.

    Переменная сеть в свою очередь состоит из двух частей – рабочей и пустой фазы. На рабочую, которую называют в электричестве так и называют — «фазой», подаётся рабочее электронапряжение, а на пустую, которая получила название «ноль» — нет. Она нужна для создания замкнутой сети для работы и подключения электроприборов, а также для заземления сети.

    Домашняя электропроводка: находим ноль и фазу

    Установить в домашних условиях, где какой провод находится, можно разными способами. Мы разберем только самые распространенные и доступные практически любому человеку: с использованием обычной электрической лампочки, индикаторной отвертки и тестера (мультиметра).

    Про цветовую маркировку фазных, нулевых и заземляющих проводов на видео:

    Проверка с помощью электролампы

    Перед тем, как приступить к такой проверке, нужно собрать с использованием лампочки устройство для проверки. Для этого ее следует вкрутить в подходящий по диаметру патрон, после чего закрепить на клемме провода, сняв изоляцию с их концов стриппером или обычным ножом. Затем проводники лампы нужно поочередно прикладывать к тестируемым жилам. Когда лампа загорится, это будет означать, что вы нашли фазный провод. Если проверяется кабель на две жилы, уже понятно, что вторая будет нулевой.

    Проверка индикаторной отверткой

    Хорошим помощником в работе, связанной с электрическим монтажом, является индикаторная отвертка. В основе работы этого недорогого инструмента лежит принцип протекания сквозь корпус индикатора емкостного тока. В ее состав входят следующие основные элементы:

    • Металлический наконечник, имеющий форму плоской отвертки, который прикладывается к проводам для проверки.
    • Неоновая лампочка, загорающаяся при прохождении сквозь нее тока и сигнализирующая таким образом о фазовом потенциале.
    • Резистор для ограничения величины электрического тока, который защищает устройство от сгорания под воздействием мощного потока электронов.
    • Контактная площадка, позволяющая при прикосновении к ней создать цепь.

    Если вы проверяете наличие напряжения на проводе с помощью этого прибора при дневном свете, то придется приглядываться в ходе работы более внимательно, так как свечение сигнальной лампы будет плохо заметно.

    При касании жалом отвертки фазного контакта сигнализатор загорается. При этом ни на защитном нуле, ни на заземлении светиться он не должен, в противном случае можно сделать вывод, что в схеме подключения имеются неполадки.

    Пользуясь этим индикатором, будьте внимательны, чтобы нечаянно не коснуться рукой провода под напряжением.

    Про определение фазы наглядно на видео:

    Проверка мультиметром

    Для определения фазы с помощью домашнего тестера прибор нужно поставить в режим вольтметра и измерить попарно величину напряжения между контактами. Между фазой и любым другим проводом этот показатель должен составлять 220 В, а прикладывание щупов к заземлению и защитному нулю должно показывать отсутствие напряжения.

    Как отличить друг от друга фазу и ноль?

    Для того чтобы отличить «фазу» от других проводов можно воспользоваться таким инструментом, как индикаторная отвёртка.

    Если дотронуться до металлической части провода, жалом этой отвёртки при этом, придерживая противоположный торец указательным пальцем то индикатор, будет светиться при наличии фазного провода. Также можно определить «фазу» с помощью мультиметра.

    Для этого необходимо включить прибор в режим измерения переменного тока.

    Выставить максимально возможное напряжение на приборе. Минусовой щуп необходимо подсоединить к какому-нибудь заземлённому предмету, например, к радиатору отопления, а другой попеременно подключать к проводникам.

    Когда прибор покажет напряжение, которое примерно равно 220 В. то проводник, к которому вы подключились и есть фазный провод.

    Как определить «фазу» и «ноль» без измерительных приборов.

    Для того чтобы обнаружить фазу можно использовать проверенный временем, очень простой и недорогой способ.

    С помощью обыкновенного патрона с лампой накаливания несложно определить пару «ноль» — «фаза». Нужно взять патрон и два провода, которые отходят от него попеременно подсоединять к проводам с предполагаемыми фазным и нулевым проводами.

    Когда же лампочка загорится это будет означать что один из подключённых проводов является фазным. Теперь останется узнать какой именно. Очень просто это сделать если в электрической сети включена система УЗО. В этом случае если подключить патрон с лампой одним концом к третьему проводу, который является в данном случае заземлением, а другой попеременно к другим проводникам.

    В момент, когда произойдёт автоматическое отключение электричества, будет означать то, что второй провод, к которому вы подсоединили щуп мультиметра, является «фазой». Соответственно третий проводник будет «ноль».

    Если нет УЗО то после определения пары «фаза» — «ноль», один провод следует подключить к заземлению, а второй будет слегка искрить при соприкосновении с «фазой».

    Заблуждения, которые могут возникнуть при определения фазного провода.

    Это не совсем заблуждения, просто, если следовать этому способу определения фазы можно неправильно сделать вывод о том, где именно она находится.

    Способ определения фазы по цвету провода

    Если рабочие, которые занимались монтажом проводки сделали всё правильно то фазный провод должен быть чёрного или коричневого цвета.

    Но полностью полагаться на такой способ определения фазы нельзя, т. к. не исключено, что при подключении, провода просто перепутали. И вместо фазного провода чёрного цвета там будет «земля» или «ноль».

    В заключении стоит отметить, что заниматься самостоятельными электромонтажными работами стоит только в том случае если вы очень хорошо разбираетесь в том, что делаете, в противном случае стоит обратиться к специалистам, которые выполнят работы по монтажу проводки, качественно и в срок.

    О чем еще важно знать?

    Иногда определение назначения токоведущих жил может быть облегчено благодаря знанию их общепринятой цветовой маркировки:

    • Ноль может маркироваться латинской буквой N. Общепринятый цвет изоляции – голубой или синий. Другой вариант окраски изоляции – белая полоса на синем фоне.
    • Земля маркируется латиницей PE. В системе заземления, объединяющей функции защитного и рабочего нуля, обозначается PEN. Цвет применяемой изоляции – желтый, имеющий одну или две полосы ярко – зеленого оттенка.
    • Фаза может обозначаться латинской буквой L или маркироваться как фаза трехфазной электрической сети, то есть A, B или C. Цвет изоляции может быть произвольный, но не повторяющий тех, которыми обозначается земля (защитное заземление) или нулевой проводник. В большинстве случаев, это красный, коричневый или черный цвет.

    Полезно знать и правила монтажа электропроводки. Это также может помочь определить, где фаза, ноль и земля. Фаза всегда должна приходить в распределительный щиток на автоматический выключатель или плавкий предохранитель. Нулевая жила может крепиться на шине специальной конструкции, которая имеет несколько клемм. В металлических щитках и клеммных ящиках старого типа, ноль или земля крепились под гайку болтом, приваренным к корпусу ящика. Эти правила могут облегчить определение функций приходящих проводников. Узнать больше о том, как определить фазу и ноль без приборов, вы можете из нашей отдельной статьи.

    Теперь вы знаете, как определить фазу, ноль и землю мультиметром или же индикаторной отверткой. Надеемся, предоставленные рекомендации помогли вам решить вопрос самостоятельно!

    Наверняка вы не знаете:

    • Способы определения потребляемой мощности электроприборов
    • Что такое чередование фаз
    • Как определить сечение кабеля по диаметру жилы

    Как определить ноль и фазу? Самые быстрые способы

    Часто при монтаже бытового электрооборудования мастеру важно знать, где находится «фаза». Такая необходимость возникает в тех случаях когда, например, требуется установить выключатель или подключить чувствительные к правильной фазировки электротехнические устройства

    Если выключатель света подключён правильно, то при положении «выкл» будет обесточен участок проводки который ведёт к патрону и можно абсолютно спокойно проводить монтажные работы в этом месте, например замену лампочки, не опасаясь удара электрическим током.

    Определить наличие или отсутствие электрического тока в цепи «на глаз» не представляется возможным, поэтому стоит приобрести специальные приборы и инструменты.

    • Индикаторная отвёртка.
    • Тестер или мультиметр.
    • Пассатижи.

    Цена их, как правило, не велика. При выборе стоит отдать предпочтение только тем моделям, которые имеют надёжную изоляцию.

    Определение фазы, нуля и заземляющего провода

    Если сеть трехпроводная, но выполнена проводом одного цвета, либо вы не уверены в правильности их подключения, необходимо определять назначение проводников перед установкой каждого элемента сети.

    1. Определите описанным выше способом фазный провод с помощью индикаторной отвертки и отметьте его маркером.
    2. Для определения нулевого и заземляющего провода понадобится мультиметр. Как известно, из-за перекоса фаз в нулевом проводе может появиться напряжение. Его величина обычно не превышает 30В. Установите мультиметр в режим измерения напряжения переменного тока. Одним щупом прикоснитесь к фазному проводу, вторым поочередно к двум другим проводам. Там, где значение напряжения окажется меньше, вторым проводом будет являться нулевой проводник.
    3. Если значение напряжения одинаково, необходимо измерить сопротивление заземляющего провода. Для этого уже определенный фазный провод лучше изолировать, чтобы избежать случайного прикосновения к нему. Мультиметр ставят в режим измерения сопротивления. Находят заведомо заземленный элемент, например, трубу или батарею. Зачищают при необходимости краску и прикасаются одним щупом мультиметра к металлу, а другим поочередно к проводникам, назначение которых неясно. Сопротивление заземляющего провода по отношению к заземленным элементам не должно превышать 4 Ом, сопротивление нулевого провода будет больше.
    4. Измерение сопротивления может также быть недостоверным, если нейтраль заземлена в щитке. В этом случае вам нужно найти заземляющий проводник, присоединенный к шине внутри щитка, и отключить его. После этой операции необходимо взять патрон с лампой и подключенными проводами, зачистить их концы и подключить один провод лампы к фазному проводу, а второй – поочередно к двум другим. Лампа загорится при касании нулевого проводника.

    Если все указанные мероприятия не привели к желаемому результату, лучше обратиться к профессиональным электрикам, которые с помощью специальных приборов произведут вызвонку всех цепей. Не забывайте, что речь идет, прежде всего, о безопасности.

    Для отыскания фазного провода или клеммы в розетке, вам понадобится один из приборов — индикаторная отвертка или мультиметр.

    Правила работы с индикаторной отверткой

    При отсутствии заземляющего провода решить задачу, как определить фазу будет очень легко. Достаточно воспользоваться обыкновенной индикаторной отверткой.

    В этом случае действия происходят следующим образом:

    • Вначале обесточивается сеть путем отключения автомата. После этого на проводах острым ножом зачищается изоляция примерно на 1-1,5 см. Жилы нужно развести между собой, чтобы исключить случайное соприкосновение.
    • Включается автомат и подается напряжение. Концом индикаторного устройства нужно по очереди коснуться зачищенных мест проводников. При попадании на фазовый провод светодиод начнет светиться.
    • Обнаруженную фазу следует отметить, после чего вновь выключить автомат и сделать все запланированные подключения.
    • Подключая освещение, выключатель нужно соединять с фазным проводом. Именно он будет обеспечивать разрыв контакта, выключение и включение осветительных приборов.

    При работе с трехпроводной сетью все проводники могут оказаться одинакового цвета, поэтому нужно обязательно установить назначение каждого из них. Процесс обнаружения происходит в следующем порядке:

    • Задача, как найти фазу решается теми же способами, что и в двухпроводной сети, после этого провод нужно отметить, отделив его от других проводов.
    • Ноль и землю определяют мультиметром в режиме измерения напряжения. Один щуп касается фазного провода, а другой – нулевого и заземляющего, по очереди. Меньшее напряжение показывает нулевой провод.
    • В случае одинакового напряжения измеряется сопротивление провода заземления. Оно должно быть не выше 4 Ом, а сопротивление нуля будет заметно выше.

    Как определить фазу и ноль

    Индикаторная отвертка

    Что такое фаза, как определить фазу и ноль в электричестве

    Цвет проводов фаза, ноль, земля

    Схема подключения люстры с 3 лампами

    Как определить сечение провода

    Народный способ

    Существует также народный способ идентификации нулевой и фазовой жилы. Несмотря на то, что некоторые специалисты относятся к нему довольно саркастически, этот метод работает достаточно эффективно.

    Для определения понадобятся следующие элементы:

    • 2 многожильных провода, длиною около полуметра;
    • резистор номиналом на 1 МОм;
    • крупная картофелина.

    Схема проверки напоминает идентификацию фазы на контрольной лампочке. Один конец провода крепят к металлу (зачастую используют отопительные или водопроводные трубы), другой плотно примыкают к разрезанной вдоль картофелине. Второй проводник также примыкают к овощу, а другой его конец соединяют с резистором и интересующей жилой.

    Результат исследования придется подождать около 10 мин. При контакте с фазой мякоть овоща потемнеет, а в случае с нулем она останется неизмененной.

    Проверить назначение проводника можно с помощью подручных средств. Но такие методы далеко не безопасны. Поэтому применять их нужно исключительно в крайних случаях. А лучше – обзавестись специальной индикаторной отверткой.

    Назначение фазы и нуля

    Чтобы полностью понять, что же именно подразумевает словосочетание “фаза и ноль в электрике” обратимся к аналогии. Электрический ток наиболее удобно сравнивать с водой, а токонесущие провода – с трубами.

    Итак, представим следующее. У нас имеется одна труба, по которой горячая вода из резервуара поступает в большую кастрюлю. Также имеется вторая труба, которая по мере наполнения кастрюли сбрасывает излишек поступающей горячей воды обратно в резервуар. Теперь расшифровка: первая труба – фаза, кастрюля – полезная нагрузка, вторая труба – ноль. Ток по фазе приходит к нагрузке, а по нулевому проводу уходит обратно. Вот и все.

    Теперь представим что произойдет, если из-за неисправности второй трубы горячая вода из кастрюли не будет уходить обратно в резервуар. В этом случае кастрюля очень быстро наполнится, а кипяток начнет с нее выливаться и может нас ошпарить.

    Чтобы этого избежать, подводим к кастрюле третью трубу. Эта труба будет играть роль аварийного выхода для поступающей воды. Тогда, если вторая труба, отводящая воду отказывается работать, то излишек воды будет уходить через третью трубу. А третья труба идет в землю в специально выкопанный для этого котлован. Вот именно этот пример нам наглядно демонстрирует заземление.

    Выше мы описали работу тока в однофазной сети, а также назначение фазы и нуля. В трехфазной происходит то же самое, только ток течет одновременно по трем проводам, а возвращается по четвертому.

    Из примера становится понятно, что нельзя путать фазу с нулем, а также нельзя их соединять между собой. Для удобства все кабеля имеют свою цветовую маркировку, благодаря которой можно без всяких приборов определить принадлежность провода к фазе или нулю.

    Внимание! Для пущей уверенности лучше перед началом работы все-таки прозвонить кабель, несмотря на цветовую маркировку. Очень часто в силу собственного незнания, неопытные электрики вообще не заморачиваются по поводу цвета проводов, и именно из-за этого существует опасность

    Тут хорошо работает правило: доверяй, но проверяй!

    По поводу цветовой маркировки. В электричестве приняты следующие обозначения: фазный провод коричневого, черного либо белого цвета, нулевой – голубого или синего, а провод заземления имеет желто-зеленый цвет.

    Имейте ввиду, цвета не всегда могут быть такими: не так давно мне в трехфазной сети попались три красных провода (фаза), а нулевой провод был черного цвета.

    Другие варианты проверки

    Кроме перечисленных способов проверки фазы и нуля мультиметром, существует проверка с использованием контрольной ламы.
    Способ довольно необычный и требует особой осторожности, но действенный. Для такого устройства необходим патрон, лампа, провод со срезанной на концах изоляцией

    При использовании лампы удастся определить — есть фаза или нет, а какой именно фазный проводник — установить не получится. Если во время соединения проводки контрольной лампы с определяемыми жилам она засветится, тогда один из проводов фазный, а второй вероятнее ноль. Если не засветится, то фазы нет либо фазы, либо ноля, что тоже возможно

    Для такого устройства необходим патрон, лампа, провод со срезанной на концах изоляцией. При использовании лампы удастся определить — есть фаза или нет, а какой именно фазный проводник — установить не получится. Если во время соединения проводки контрольной лампы с определяемыми жилам она засветится, тогда один из проводов фазный, а второй вероятнее ноль. Если не засветится, то фазы нет либо фазы, либо ноля, что тоже возможно.

    Правильно определить фазу

    Провода трехжильные

    Начнем терминами. Слова ноль русский язык лишен. Зато употреблялось обиходом за счет легкого произношения. Ноль – искаженный нуль, восходящий корнями к латинскому языку. Программист знает: под термином NULL принято подразумевать пустые, неопределенные переменные (лишенные типа). Иногда вид данных удобен для составления алгоритмов (при передаче значений функции).

    Теперь попробуем найти фазу. Типичная отвертка-индикатор образована стальным щупом, вслед идет высокоомное сопротивление (к примеру, углерода), ограничивающее ток, источником света выступает газоразрядная лампочка малого размера. Мелочи, но незнающие термина контактная кнопка, определить ноль бессильны. На конце ручки отвертки-индикатора металлическая площадка. Это контактная кнопка, которую потрудитесь касаться пальцем. Иначе лампочка при прикосновении к фазе светиться откажется.

    Обнаружение фазы имеет основополагающее значение, напряжение не должно выходить на патрон люстры при выключенном выключателе. В противном случае обычный процесс замены лампочки может стать опасным, последним. По нормативам, фаза розетки слева. Если выключатели стоят, как принято (включается нажатием вверх), способы определения фазы вырождаются умением найти левую руку, понять, где находится низ:

    1. В розетке фаза занимает левое гнездо. Соответственно, правое считается нулем. Остается провод, изоляция желто-зеленая – земля (в противном случае – резервный провод питания напряжением 220 вольт).

    2. В двойном выключателе входные, выходные контакты разнесены по разную сторону. Одни находятся внизу, другие – наверху. Бок, где один-единственный контакт, станет фазой. Два других, соответственно, – нулевым проводом (рабочий плюс защитный). Подразумевается, разводка электрики квартиры сделана верно, в старых домах часть раскладки верна, другая выполнена наоборот.
    3. Для одинарного выключателя столь просто определить фазу не получится, контакты лежат на одном боку (хотя если есть исключение, нуль находится снизу, если выполнены условия, указанные выше). Допускается попросту прозвонить тестером патрон. Сразу говорим, это нарушение техники безопасности, и прибор может сломаться. Поэтому рекомендовать метод штатным не можем. Попробуйте измерить переменное напряжение: 230 вольт окажется лишь меж двумя точками: фаза выключателя и нуль патрона.

    Фазы автомобиля

    Электрические сети помогают многим объектам. Автомобиль считается относительно простым устройством. Основу снабжения составляют аккумулятор 12 вольт (реально – 14,5 В), генератор, уровень выходного напряжения которого регулируется сообразно вариациям оборотов. Напряжение после выпрямления пригодно подпитывать аккумулятор бортовой сети. Активация вала генератора ведется аккумулятором через специальное регулирующее устройство.

    Трехфазная схема Ларионова

    Выпрямляемые диодным мостом схемы Ларионова фазы питают авто. Популярная сегодня методика. Диодов присутствует шесть штук. Фазы сливаются механическим объединением после выпрямления единой магистралью. Обеспечивает максимальную мощность. Чувствительные компоненты авто (бортовой компьютер), дополнительно выпрямляют нестабильный ток. Чтобы продлить срок службы устройства.

    Далее напряжение идет потребителям. Дворники, система индикации, освещение, зажигание. Бортовой компьютер может выдать закодированное сообщение: пора проверить датчик фаз. Элемент, работа которого использует эффект Холла, определяет положение распределительного вала двигателя. Подобными оснащают стиральные машины, оценивая скорость вращения. Авто определяет угловое положение вала. Датчик выдает импульсы, оценивая параметры которых компьютер получит нужную информацию.

    Сенсорами авто напичкан. На две клеммы подается питание, третья формирует сигнал. Для проверки посмотрим схему: местонахождение узлов. Затем вплотную займемся прозвонкой. Имитируя условия формирования импульсов, пользуйтесь постоянным магнитом.

    Вопрос, как определить фазу и ноль мультиметром на авто, отпадает. Опорой служит корпус автомобиля – масса. Понятное дело, генератор работает только при запущенном двигателе. Внутри квартиры ищем фазу и нуль, здесь масса задана априори. Можно вызванивать пробитую изоляцию (например, диодов выпрямительного моста). На авто проще простого измерить три фазы мультиметром. Действующее значение косвенно сказали. Порядка 20 вольт (учитывая потери неидеального моста).

    Ошибки пользователей мультиметра

    Китайские мультиметры настроены работать, даже если неправильно поставлены щупы. Сломать прибор случайно остерегайтесь. Избегайте способа: воткнуть черный провод в разъем измерения высоких токов, красный – на свое место. Попытаетесь измерить переменное напряжение высоковольтной линии – ремонт обеспечен. Нельзя применять неправильные диапазоны. Зарекитесь пытаться измерить переменное напряжение, применив шкалу постоянного. Проверка фаз станет последней в жизни мультиметра.

    Прибор выводится из строя большим напряжением переменной полярности. Прочее (к примеру, неправильная полярность щупов) не так страшно.

    Фаза и нуль в электрике

    Электроэнергия появляется в результате упорядоченного движения заряженных частиц в проводах — электронов. Рождаются эти электроны в огромных электростанциях — таких как, например, Волгоградская ГРЭС (гидроэлектростанция), Нововоронежская АЭС (атомная электростанция) и многих других в нашей стране. Далее по очень толстым проводам эта энергия передается на промежуточные подстанции (как правило, такие стоят по периферии городов), а от них — до местных КТП (комплектная трансформаторная подстанция), которые есть почти в каждом дворе.

    Уровни напряжения в таких сетях варьируются от 750000 вольт до 380 вольт в конечной КТП. И именно последние делают так, что в розетке обычного дома появляется 220В. Казалось бы, все просто, но! В розетке находятся два провода. И из уроков физики каждый знает, что в электрике есть «фаза» и «нуль». Эти два слова дают нам свет, тепло, воду, газ и многое другое, чем мы пользуемся каждый день. Теперь по-порядку.

    Замер сопротивления «кольца фаза-нуль»

    Для планового контроля и своевременного обнаружения и устранения нарушений безопасности в электросети обеспечения её нормальной работы, проводятся систематические замеры сопротивления кольца фаза-нуль, так как причинами поломок приборов освещения являются сетевые перегрузки и короткое замыкание.

    Самый быстрый и эффективный способ выявления и предотвращения таких случаев – это замер сопротивления.

    Не всем известно, что значит понятие «кольцо фаза-нуль». Оно означает контур, созданный соединением нулевого проводника, расположенного в заземленной нейтрали. Замыкание этой электрической сети образует кольцо фаза-нуль.

    Сопротивление в контуре измеряется:

    1. Падением напряжения в выключенной цепи.
    2. Падением напряжения вследствие сопротивления растущей нагрузки.

    По цвету провода

    Узнать назначении жилы можно по цвету ее изоляции. Существует стандарт цветовой маркировки проводников. Нулевые провода принято обозначать голубым либо синим цветом. Заземление можно найти по зеленому цвету изоляционного материала. Впрочем, здесь допустимо использовать также желтую маркировку либо сочетание зеленого и желтого цветов.

    С фазовым проводом дело обстоит труднее. Палитра оттенков его обозначения довольно широка:

    • белый;
    • черный;
    • красный;
    • коричневый;
    • серый;
    • оранжевый;
    • розовый;
    • фиолетовый цвет.

    Встречаются фазы даже бирюзового цвета. В этом случае следует быть очень аккуратным, чтобы случайно не перепутать его с зеленым заземлением или с голубым нулем.

    Строго говоря, определение по цвету изоляции – не самый надежный способ. Поэтому специалисты часто называют его условным. Во-первых, цветная маркировка встречается далеко не всегда, – например, в старых постройках использовали исключительно белый цвет изоляции для всех кабелей. Во-вторых, сами специалисты-электромонтажники часто пренебрегают установленными правилами маркировки, подсоединяя к системе те провода, которые оказались под рукой.

    Как определить чередование фаз на обесточенном двигателе • JM Test Systems

    Тестер двигателя и чередования фаз — Megger

    • Полное испытание чередования фаз и вращения двигателя в одном приборе
    • Обеспечивает правильное подключение фаз за один простой тест
    • Прочный портативный тестер
    • Выполняет дополнительные проверки полярности и целостности

    ОПИСАНИЕ

    Megger 560060 Motor and Phase Rotation Tester позволяет электрическому подрядчику или промышленному электрику по техническому обслуживанию постоянно подключать и обматывать клеммы устанавливаемого двигателя без необходимости предварительного включения двигателя с помощью временного подключения от источника питания, если таковой имеется, к определить вращение двигателя.Таким образом, испытательный комплект устраняет необходимость во временных соединениях, которые могут быть трудоемкими, дорогостоящими и весьма опасными, особенно когда задействовано много больших высоковольтных двигателей.

    Кроме того, некоторые типы приводов никогда не следует вращать в неправильном направлении. В таких случаях временное соединение или пробный метод, имея пятьдесят на пятьдесят шансов ошибиться, могут нанести серьезный вред. Три вывода двигателя на левой стороне испытательного комплекта предназначены для подключения к клеммам проверяемого двигателя для определения вращения.

    Предохранители вставлены в измерительные провода двигателя A и C в качестве защиты в случае, если пользователь случайно коснется этих выводов и приведет к возникновению цепи под напряжением. Эти стандартные предохранители легко снимаются и заменяются из держателей, установленных на панели. Три линии, ведущие справа от испытательного комплекта, предназначены для непосредственного подключения к системам переменного тока под напряжением до 600 В для определения последовательности фаз системы.

    Четырехпозиционный переключатель выбирает выполняемый тест — последовательность фаз системы, вращение двигателя и полярность трансформатора.Селекторный переключатель подключает сухой элемент размера D к цепи, когда проверяется вращение двигателя или полярность трансформатора. В положении ВЫКЛ и счетчик, и аккумулятор отключены от всех цепей.

    Кнопочный переключатель, подключенный последовательно к батарее, размыкает цепь во время проверки полярности трансформатора. Сухая ячейка легко снимается и заменяется из держателя, установленного на панели, крышкой для доступа к гнезду для монет. Амперметр с нулевым центром постоянного тока указывает правильное или неправильное вращение или полярность, отклоняя указатель вправо или влево.Для амперметра предусмотрен регулятор нуля или нуля.

    ПРИМЕНЕНИЕ

    Тестер двигателя и чередования фаз обеспечивает надежный способ определения выводов отключенного многофазного двигателя; он также определяет правильную последовательность фаз находящихся под напряжением линий электропередач переменного тока с частотой 60 Гц и напряжением до 600 вольт. Оба они необходимы для обеспечения того, чтобы двигатель вращался в заданном направлении под напряжением.

    Есть еще три важных применения этого уникального испытательного устройства:

    1. Может определять полярность силовых и измерительных трансформаторов
    2. Может определять фазу и полярность секций обмоток многообмоточных двигателей (соединенных треугольником и звездой)
    3. И его можно использовать как тестер непрерывности при проверке электрических цепей.

    ОСОБЕННОСТИ И ПРЕИМУЩЕСТВА

    • Определяет направление вращения одно-, двух- или трехфазных двигателей перед подключением к линии
    • Определяет чередование фаз или последовательность силовых цепей под напряжением
    • Определяет полярность измерительных и силовых трансформаторов
    • Определяет фазу / полярность обмоток двигателя без маркировки
    • Определяет правильную последовательность фаз линий питания переменного тока напряжением до 600 вольт (более высокие напряжения можно проверить, установив понижающий трансформатор.)

    Этот тестер используется для определения выводов отключенного многофазного двигателя, чтобы при подключении с чередованием фаз ABC (или с модификацией процедуры CBA) он работал в желаемом направлении. Тестер также используется для определения чередования фаз ABC (или с модификацией процедуры CBA) находящихся под напряжением линий питания переменного тока напряжением до 600 вольт включительно. Другие применения включают определение полярности трансформатора и проверку целостности цепи.

    Вышеупомянутые функции также обеспечивают в одном приборе средства для определения фазы и полярности секций обмоток многообмоточного двигателя.Если схемы подключения потеряны или маркировка клемм стерта, этот процесс идентификации необходим перед повторным подключением двигателя.

    Теория работы

    Когда постоянный ток подается на обмотки многофазного асинхронного двигателя, создается поле, и железо ротора намагничивается. Если повернуть намагниченный ротор, поле будет вращаться вместе с ним на короткое время из-за гистерезиса в утюге. Движение этого поля вызывает напряжение в обмотках.Направление индуцированного напряжения зависит от направления вращения. Те же факторы, которые определяют направление вращающегося поля в подключенном двигателе, определяют направление напряжения, индуцируемого, когда двигатель вращается вручную, когда он подключен к цепи вращения двигателя. Схема вращения двигателя использует вышеупомянутые принципы для определения вращения двигателя.


    Схема представляет собой мост, в котором две соседние фазные секции обмотки двигателя уравновешены потенциометром.Самый простой случай, когда каждая фазовая секция представляет собой одну сторону катушки, показан на рисунке 13a. Когда ротор находится в состоянии покоя, ZERO ADJ. потенциометр R1 настраивается так, чтобы на измерителе M1 был нулевой ток. В. в этой точке на каждой из двух фазных секций имеется одинаковое напряжение.

    Когда постоянный ток входит в одну фазу (на клемме C) и покидает соседнюю фазу (на клемме A), создается поле, как показано стрелками воздушного зазора на рисунке 13a. Теперь, когда ротор поворачивается так, что он перемещается от одной фазы к соседней фазе, в одной фазе будет индуцироваться напряжение, противоположное направлению постоянного тока.Напряжение также будет индуцироваться в соседней фазе, но оно будет в том же направлении, что и постоянный ток. Когда индуцированное напряжение противоположно постоянному току, оно снижает общее напряжение на фазе. Если наведенное напряжение совпадает с направлением постоянного тока, оно добавляется к фазному напряжению. Поскольку фазные напряжения были сбалансированы перед вращением, индуцированные напряжения, добавляемые к одной фазе и вычитаемые из другой, вызывают разбалансировку цепи. Напряжение дисбаланса перемещает ток через измеритель в положительном направлении и, следовательно, вызывает ПРАВИЛЬНОЕ показание.

    Если бы двигатель был подключен к многофазной системе питания так, чтобы фаза A следовала за фазой C (последовательность A, B, C), ротор также двигался бы в том же направлении, что и только что описано. Таким образом, маркировка двигателя при получении ПРАВИЛЬНОГО отклонения указывает на правильное подключение фаз. Чтобы показать, как эта простая теория применяется к более сложным обмоткам, рассмотрим двухполюсный трехфазный двигатель с соединением звездой, приведенный к его простейшей форме, в которой все катушки одной группы фаз представлены одной катушкой, расположенной в центре фазовая группа, которую он представляет.

    Развернутый вид обмотки показан на рисунке 13b. Также показано схематическое расположение катушек. На всех схемах на рисунке 13 направление приложенных d-c указано стрелками на проводке. Направление индуцированных напряжений показано стрелками, параллельными проводке. На рисунке 13b поверхность ротора представлена ​​прямоугольником. Поток показан распределенным по всей поверхности ротора, чтобы показать эффект распределенной обмотки. Заштрихованная часть указывает поток, поступающий в ротор.Незаштрихованная область показывает уход флюса.

    Нет необходимости в указании величины магнитного потока, но можно отметить, что величина равна нулю в точке, где имеет место инверсия. Эта нулевая точка поля находится в средней точке любой группы проводников, проводящих ток в одном направлении. Стрелка сбоку от прямоугольника указывает направление движения ротора и потока. На рисунке 13c показано соединение обмоток трехфазного двигателя открытым треугольником. На рисунке 13d показан двухфазный двигатель.На рисунке 13e показан двигатель, подключенный по схеме трехфазного треугольника. Загрузите продолжение обсуждения Theory of Operation

    Загрузить техническое описание Megger 560060

    JM Test Systems — дистрибьютор продукции Megger на складе

    Компания

    JM Test Systems предлагает для покупки и аренды тестер двигателя и чередования фаз Megger 560060. Позвоните нам сегодня, чтобы узнать цену на 800-353-3411 , или отправьте нам сообщение.

    Служба калибровки — С 1982 года JM Test Systems предоставляет своим клиентам прослеживаемые по стандартам NIST калибровки.Мы стремимся к единой цели: предоставлять наилучший сервис как для наших продуктов, так и для наших клиентов.

    ISO / IEC 17025 Аккредитация A2LA ISO / IEC 17025 — это ваша гарантия того, что наша работа соответствует самым высоким стандартам.

    Проверка чередования фаз в системах распределения электроэнергии

    Есть старая поговорка, что при первом подключении трехфазного двигателя он вращается в обратном направлении. Если вам повезет, это только заставит вас выглядеть глупо. В противном случае это может серьезно повредить дорогое оборудование и стоить вам или вашему работодателю значительных денег.

    Разрушение компрессоров

    Вот пример того, что может пойти не так. Коммунальное предприятие на Северо-Западе устанавливало новое компьютерное распределительное устройство. Он был предназначен для обслуживания довольно большой территории, включающей как промышленных потребителей, так и несколько различных коммерческих объектов. Бригада, производившая установку, была опытной, но оборудование было для них новым. Бригадир, который отвечал за определение того, какие провода и где были подключены, непреднамеренно поменял местами фазы.

    После того, как утилита завершила свою работу, она снова включила питание.

    В будущем у крупного производителя целый набор винтовых компрессоров для системы отопления, вентиляции и кондиционирования воздуха мощностью от 25 до 50 л.с. начал работать в обратном направлении. Винтовые компрессоры смазываются внутренними масляными насосами, «и если они работают в обратном направлении, они не перекачивают масло», — сказал начальник технического обслуживания производителя. Через несколько секунд все компрессоры поджарились. «Слава Богу, наши чиллеры не сработали до того, как мы обнаружили проблему, — сказал начальник технического обслуживания, — потому что это было бы очень плохо.»

    Коммунальное предприятие в конечном итоге оплатило все новые компрессоры, плюс арендную плату за агрегаты, введенные на временной основе. Хотя оно также провело энергетические исследования и установило новую, более эффективную систему для клиента, оно все еще оставалось с яйцом.

    Всего этого можно было бы предотвратить, если бы обслуживающая бригада лучше понимала инструкции на новом оборудовании и использовала индикатор чередования фаз, такой как Fluke 9040, для проверки чередования фаз на Выход 480 вольт трансформаторов, питающих компрессоры.Эти несколько минут сэкономили бы клиенту значительное время простоя, а коммунальному предприятию — кучу денег.

    Делаем правильно

    Другая утилита, после многих лет использования устройств с вращающимися дисками старого образца, была заменена на Fluke 9040s. Чаще всего они используются после замены базы измерителя или блока трансформаторов, чтобы убедиться в правильности вращения перед подключением нагрузки. Интересно, что это не учитывается при новой установке, потому что тогда ответственность ложится на электрика заказчика, чтобы убедиться, что вращение правильное, прежде чем подключать двигатели.Если он умен, у него будет свой 9040.

    Утилита уже использует 9040 уже около трех лет. Первоначально они были привлечены к инструменту, потому что это была единственная единица Категории IV, которую они могли найти. Необходимость в этом стала совершенно очевидной, когда электрики заказчика пошли проверять чередование фаз на трансформаторе, на паспортной табличке которого было указано 240 В переменного тока, с использованием фазового блока с вращающимся диском. К сожалению для них, на самом деле напряжение в системе было 2400 В, и они задымили свой индикатор чередования фаз.Это заставило инженеров подумали: «Если это случилось с ними, и у нас есть вторичные цепи 2400 В в нашей системе, есть вероятность, что кто-то может неправильно прочитать паспортную табличку в нашей системе. Давайте продолжим и получим категорию IV на случай, если кто-то испортит. вверх.»

    Так вот утилита купила 9040с. Некоторые из старых техников сначала сопротивлялись, настаивая, что им удобнее старые вращающиеся точки, но молодые привыкли к электронным устройствам. А что может быть проще: он имеет маркировку L1, L2, L3, красный, бело-синий, поэтому вы не ошибетесь.

    Еще больше испорченного оборудования

    Конечно, вам действительно нужно использовать 9040. Однажды коммунальное предприятие купило новый двигатель и переместило существующую измерительную базу для его питания, но электрик не подключил его, как это было раньше, и в то время как основание измерителя показывало красный белый и синий против часовой стрелки, на самом деле это было по часовой стрелке. Техник проверил вращение на другом основании метра, нашел его правильным и, по-видимому, предположил, что этот будет таким же. Подключили счетчик, выкинули прерыватель, сломали мотор.

    В другой раз работа заключалась в замене группы трансформаторов на более тяжелые блоки с более тяжелым проводом. Несмотря на то, что все на работе были опытными, ротацию по каким-то причинам никто не брал. Они закончили подключать все, подключили, включили… а затем закупили все новое ротационное оборудование для заказчика, находящегося ниже по течению. Сумма, которую стоил этот инцидент, даже не сравнивается со стоимостью нового 9040 для каждого члена экипажа.

    Стандартизация на Fluke 9040

    Другая утилита использовала старые устройства механического вращения, которые были отраслевым стандартом в течение многих лет, но они начали ломаться и даже перекрестно перекрещиваться внутри, и производитель не реагировал быстро или даже кажется, что они серьезно относятся к проблеме безопасности.

    Специалисты по счетчикам и линейные монтажники теперь используют 9040 для проверки чередования фаз на новых установках и маркируют панели выключателей с существующим чередованием. Позже, если они устраняют неисправность или выполняют плановую замену, бригады проверят ротацию как до, так и после, используя эту маркировку и 9040. Идея состоит в том, чтобы обеспечить заказчику одинаковое чередование фаз. Эта проверка происходит внутри трансформаторов, при отключениях на панелях счетчиков, на опоре для проверки обслуживания воздушных линий, на батареях воздушных трансформаторов и в хранилищах для проверки в последней точке отключения перед подачей этого источника потребителю.

    Начальник технического обслуживания коммунального предприятия полюбил оборудование Fluke и говорит, что его продукция проверена годами. По его словам, оборудование «сделано прочно для этой отрасли. Эти вещи будут падать, промокать, бить, падать с шестов и из карманов». И он прост в использовании, с ответом «да» или «нет». «Пора нам обзавестись чем-то другим, кроме этих механических вещей», — заключает он.

    Как проверить трехфазное напряжение

    В жилых домах и на большинстве малых предприятий используется однофазный электрический ток, но это не та форма, которую принимает электричество, когда оно перемещается по электросети.Электроэнергетические предприятия вырабатывают трехфазный электрический ток высокого напряжения, который передается и преобразуется в двухфазный и однофазный ток через трансформаторные коробки. Трехфазный ток зарезервирован для использования на заводах и аналогичных установках, где он питает большие двигатели, электрические печи и другую тяжелую технику. Проверить трехфазное напряжение можно, осмотрев трехфазный трансформатор.

    TL; DR (слишком длинный; не читал)

    Чтобы проверить трехфазное напряжение, с помощью электрического мультиметра проверьте все шесть проводов в коробке трансформатора, начиная с проводов с маркировкой line и заканчивая проводами с маркировкой нагрузка.

    Перед проверкой

    Перед проверкой трехфазного напряжения крайне важно соблюдать осторожность и принимать соответствующие меры безопасности. Рекомендуется надевать заземляющий браслет. Когда все будет готово, переведите выключатель двигателя высоковольтного трансформатора в положение «выключено». Выкрутите винты, удерживающие крышку на выключателе, и снимите крышку. Настройте мультиметр на определение напряжения переменного или постоянного тока в зависимости от того, что указано на коробке, подключите выводы щупа к «общему» и «вольтному» разъему и выберите диапазон напряжения несколько выше, чем напряжение, которое вы намереваетесь проверить.

    Испытательные линии

    Установив и откалиброванный мультиметр, проверьте внутреннюю часть трансформатора. В высоковольтных передачах чаще всего используются три провода: всего вы должны увидеть шесть проводов, по три с каждой стороны коробки. Клеммы, к которым прикреплены эти провода, должны быть помечены L1, L2 и L3 с одной стороны и T1, T2 и T3 с другой — провода L являются входящими или линейными проводами, каждый из которых несет одну фазу трехфазного тока. . Чтобы проверить входящее напряжение, поместите один из щупов мультиметра на L1, а другой — на L2.Подождите, пока мультиметр покажет напряжение, а затем повторите тесты, проверяя L1 и L3, затем L2 и L3. Если трансформатор работает нормально, показания напряжения должны быть одинаковыми после каждого теста.

    Испытательные нагрузки

    После проверки входящего напряжения необходимо проверить выходное напряжение. Не снимая коробку, проверьте мультиметром выводы T1 и T2, как вы это делали с линейными проводами. Проверьте T2 и T3, затем T1 и T3. Показание напряжения для каждого теста должно быть нулевым вольт.Когда вы будете готовы, осторожно включите коробку и повторите этот тест проводов нагрузки, чтобы определить исходящее трехфазное напряжение. Между тестами должно быть небольшое изменение напряжения.

    Как понять и определить чередование фаз в энергосистеме • Услуги по обучению электротехнике Valence

    Понимание чередования фаз жизненно важно при соединении двух систем вместе, потому что результаты могут быть катастрофическими, если кто-то не понимает, как интерпретировать рисунки чередования фаз.Можно подумать, что такая важная вещь, как чередование фаз, будет иметь согласованные условия во всей отрасли. К сожалению, вы ошиблись.

    Давайте начнем с повторения по теории генераторов.

    На видео ниже показан генератор с «вращением по часовой стрелке», потому что ротор генератора вращается по часовой стрелке внутри статора. Я думаю, что это ужасное определение, потому что ротор, казалось бы, вращается против часовой стрелки, если вы обойдете его и посмотрите на противоположную сторону генератора.Все зависит от вашей точки зрения. Некоторые люди называют напряжения, создаваемые этим генератором, «по часовой стрелке», потому что если вы начнете с A:

    • Напряжение A-фазы сначала достигает пика,
    • , за которым следует напряжение фазы B, а затем
    • , за которым следует напряжение C-фазы.

    Генератор, работающий против часовой стрелки, можно определить как ротор, который вращается против часовой стрелки внутри статора, как показано в следующем видео. Некоторые люди будут называть напряжения, создаваемые этим генератором, «против часовой стрелки», потому что если вы начнете с A:

    • Напряжение A-фазы сначала достигает пика,
    • , за которым следует напряжение C-фазы, а затем
    • , за которым следует напряжение фазы B.

    Оба эти определения — ужасный способ сообщить о чередовании фаз.

    Например, какая последовательность фаз является выходным напряжением генератора в следующем видео?

    Генератор вращается по часовой стрелке, но напряжения против часовой стрелки, потому что сначала напряжение фазы A достигает своего пика, затем следует напряжение фазы C, а затем напряжение фазы B.

    Какой правильный термин для этой системы… по часовой стрелке или против часовой стрелки? Оба применимы, не так ли? Вот почему такое определение чередования фаз сбивает с толку.

    Нас не волнует, в каком направлении вращается генератор в энергосистеме. Мы хотим знать порядок или последовательность напряжений, создаваемых генератором, и убедиться, что система имеет одинаковую последовательность фаз, прежде чем подключать их. Следовательно, вы должны исключить правую и против часовой стрелки из своей терминологии, если вы хотите эффективно передавать информацию о последовательности фаз с кем-то еще.

    Как определить поворот фазы по чертежам осциллограмм

    Правильная терминология должна ссылаться на обозначения напряжения и всегда начинаться с одного и того же обозначения.

    Система A-B-C-A-B-C на следующем изображении является системой A-B-C, если я выберу A в качестве ссылки.

    На изображении ниже показана система C-A-B-C-A-B, которая также является системой A-B-C, если я использую A в качестве ссылки. Ее также можно было бы назвать системой C-A-B или системой B-C-A, в зависимости от ссылки.

    На изображении ниже показана система A-C-B, система C-B-A или система B-A-C, в зависимости от ссылки.

    Как лучше всего сообщить последовательность фаз?

    Есть два правила, которые вы должны использовать при передаче информации о последовательности или чередовании фаз:

    1. Всегда используйте обозначения напряжения.
    2. Всегда начинайте с одного и того же обозначения.

    Если вы всегда будете следовать этим двум правилам, ошибок связи быть не должно.

    Если вам нужна дополнительная информация о том, что мы обсуждали до сих пор, ознакомьтесь с нашим онлайн-курсом 1-1: Трехфазная электрическая система (4 CTD NETA).

    Определение чередования фаз с помощью фазорных диаграмм

    По-прежнему существует проблема, с которой я сталкиваюсь в большинстве моих классов … вращение фазора НЕ изображается на рисунках сигналов; они изображены на векторных диаграммах. Многие из моих учеников не могут определить правильное вращение с помощью типичных обозначений фазового вращения на чертеже, например:

    Давайте проверим ваши знания.Какое чередование фаз показано на следующем рисунке?

    Чередование фаз — A-B-C.

    Вы не можете определить чередование фаз с помощью векторной диаграммы, если не знаете одно универсальное правило в мире тестирования реле. ВСЕ ФАЗОРЫ ВРАЩАЮТСЯ ПРОТИВ ЧАСОВОЙ СТРЕЛКИ.

    На видео ниже показано, как взаимосвязаны формы сигналов и векторы.

    Обратите внимание, что векторы вращаются против часовой стрелки и что соответствующие формы сигналов соответствуют вращению A-B-C из рисунков сигналов ранее?

    Всегда должна быть стрелка, указывающая направление вращения векторов, и она всегда должна быть направлена ​​против часовой стрелки.

    Какое вращение показано на векторной диаграмме ниже?

    Это все еще вращение A-B-C.Вы всегда можете определить вращение, представив, что фазоры вращаются, как это показано на видео ниже.

    Если вы хотите быть уверены, что правильно понимаете поворот фаз, поместите палец в любое место на векторной диаграмме и представьте, что фазоры вращаются против часовой стрелки. Начните обращать внимание, когда эталонный вектор пересекает ваш палец. Какой фазор пересечет ваш палец следующим? Какой вектор последний пересечет ваш палец? Это поможет вам определить чередование фаз, как показано в следующем видео:

    Давай попробуем еще один тест!

    Какое чередование фаз показано на следующем рисунке?

    Это снова A-B-C, как показано в следующем видео:

    Теперь, когда вы знаете, что искать и как определить чередование фаз,

    Можно ли определить последовательность фаз с помощью фазорных диаграмм?

    Что такое чередование фаз при использовании 1 в качестве ссылки на рисунке ниже?

    Чередование фаз 1-3-2, как показано в следующем видео:

    Вы должны уметь надежно определять чередование фаз в системе и эффективно передавать эту информацию кому-то еще.Если вы не можете этого сделать, результаты могут быть катастрофическими, поэтому это жизненно важный навык, который должны знать все тестеры реле.

    Вы можете получить больше информации о векторных диаграммах в нашем онлайн-курсе 1-2: Фазорные чертежи для тестеров реле (4 CTD NETA).

    Дополнительную информацию о том, как чередование фаз применяется к тестированию реле, можно найти в будущих публикациях или на нашем онлайн-семинаре «Как тестировать реле защиты» (16 CTD NETA).

    Здесь вы можете получить более подробную информацию обо всех наших курсах.

    Надеюсь, этот пост был вам полезен. Если вы это сделали, нажмите одну из кнопок ниже или оставьте комментарий. Я читаю каждый ваш комментарий.

    Как измерить фазовый угол с помощью измерителя фазового угла • Услуги по обучению электротехнике Valence

    Я заметил, что многие студенты, кажется, не имеют опыта работы с измерителями фазового угла, и они не могут догадаться, что измеритель фазового угла может измерить в простой схеме. Эти знания КРИТИЧНЫ, если вы хотите правильно выполнить тест счетчика защитного реле.Любой желающий может подать напряжение и ток в реле и записать результаты в тестовый лист. Хороший тестер реле может интерпретировать эти результаты и с помощью простого теста найти ГЛАВНЫЕ проблемы с настройкой и установкой реле.

    Давайте посмотрим на простую цепь постоянного тока для запуска:

    Что бы вы измерили, если бы вы подключили красную (+) клемму измерителя к A, а клемму Volts (Volts) измерителя к C, как показано на следующем рисунке?

    Что, если вы подключите (+) к B и (Volts) к D, как показано на следующем рисунке?

    Это будет +100 В, потому что вы все еще подключены к A и C, за вычетом небольшого падения напряжения, которое мы можем проигнорировать в нашем примере.

    Что бы вы измерили, если бы подключили (+) к D и (Вольт) к B, как показано на следующем рисунке?

    Измеритель измеряет падение напряжения на двух клеммах, которое будет отрицательным, поскольку положительный вывод измерителя подключен к отрицательному выводу аккумуляторной батареи. Показание счетчика будет -100В.

    Что, если вы удалите провод между A и B и подключите (+) к A, а (Amps) к B?

    Измеренный ток составит +10 А по закону Ома (100 В / 10 Ом).

    Что, если вы замените CD на (+) и (Amps)?

    Текущая величина такая же, но текущее направление будет противоположным. Измеритель будет измерять -10А.

    Вы должны увидеть в нашей цепи постоянного тока, что:

    1. напряжение задает потенциальную энергию, а также направление тока,
    2. нагрузка (резистор) определяет, сколько тока будет протекать при заданном напряжении, а
    3. измеренная полярность зависит от соединений проводов, а не от схемы.

    Давайте попробуем более сложную схему:

    Что бы вы измерили через B (+) и K (Вольт)?


    А как насчет H (+) до F (Вольт)?

    Вы бы измерили -100 В, потому что:

    1. D-K имеет два параллельно включенных резистора 20 Ом, что обеспечивает эквивалентное сопротивление 10 Ом.
    2. B-C составляет 10 Ом и включен последовательно с D-K, создавая равный делитель напряжения. На D-K будет ½ напряжения.
    3. D и F — это одна и та же точка, а K и H — также одна и та же точка; так что будет 100V через H-F.
    4. Выводы счетчика находятся напротив батареи; поэтому измеренное значение будет -100 В.

    Можете ли вы заполнить эту таблицу?

    (+) Соединение (Вольт) Подключение Измерение
    А I
    А К
    А D
    D К
    G D
    С B
    К A

    Хотите подсказку?

    Помогает, если вы нанесете маркировку полярности на каждый резистор.

    Теперь, если вывод (+) находится на той же стороне положительного полюса цепи, а вывод (Вольт) подключен к отрицательному, результат будет положительным.

    Вот ответы

    (+) Соединение (Вольт) Подключение Измерение
    А I + 200В
    А К + 200В
    А D + 100 В
    D К + 100 В
    G D -100В
    С B -100В
    К A -200В

    Теперь посмотрим на постоянный ток

    Что бы вы измерили, если бы измеритель заменил провод между C (+) и D (Ампер)?

    Измеритель будет измерять +10 А, потому что клеммы (+) и (Ампер) имеют ту же полярность, что и резисторы выше и ниже точек измерения.


    Что бы вы измерили, если бы измеритель заменил провод между D (+) и F (Ампер)?

    Вы бы измерили + 5А, потому что +10 ампер течет в D, который разделится пополам, потому что оба пути имеют одинаковое сопротивление. Следовательно, + 5A течет в E, а + 5A течет в F.

    Можете ли вы заполнить эту таблицу?

    (+) Соединение (А) Подключение Измерение
    А B
    С D
    D E
    Ф D
    К H
    G Дж
    I Дж

    Вот ответы

    (+) Соединение (Вольт) Подключение Измерение
    А B + 10A
    С D + 10A
    D E + 5A
    Ф D -5A
    К H -5A
    G Дж + 5A
    I Дж -10A

    Теперь давайте посмотрим на простую цепь переменного тока с измерителем фазового угла.

    Измерители фазового угла измеряют величины И углы на основе опорного угла.

    Можете ли вы угадать, что измерит фазовый угол на следующем рисунке?

    Измеритель фазового угла будет измерять 100 В, но угол будет случайным числом, которое может постоянно меняться, потому что измеритель фазового угла не имеет эталона.


    Вы можете подойти к любой части цепи постоянного тока и измерить падение напряжения на устройстве (или ток, протекающий через него), потому что в системе постоянного тока существует только одно направление, используя определения измерения от положительного к отрицательному.(Я знаю, что физика определяет это как положительное или отрицательное, но наши счетчики работают не так).

    Вы можете измерить величину тока и напряжения в системе переменного тока так же, как и в цепи постоянного тока, но форма сигнала переменного тока постоянно переключается с положительного на отрицательный с каждым циклом. Это значительно затрудняет определение «полярности» схемы.

    Наша цепь переменного тока имеет начальную точку, но наш измеритель фазового угла не может ее записать без ссылки. Мы можем измерить фазовый угол, добавив опорное соединение, как показано ниже.

    Что бы измерил измеритель фазового угла?

    Измеритель фазового угла будет измерять 100 В при 0 ° при условии, что эталон откалиброван на ноль градусов.

    Что измерил бы измеритель фазового угла, используя следующий рисунок?

    Он все равно будет измерять 100 В при 0 °, потому что измерительные входы и опорные входы подключены в одном направлении.

    Что бы измерил фазовый угловой измеритель сейчас?

    Он будет измерять 100 В при 180 °, потому что измерительные входы и опорные входы подключены в противоположном направлении.


    Важно отметить, что ЦЕПЬ не изменилась. Причина, по которой два последних измерения угла различаются, заключается в наших ПОДКЛЮЧЕНИЯХ, точно так же, как переключение выводов на измерителе постоянного тока.

    Последний легкий. Что бы теперь показывал измеритель фазового угла?

    Он будет измерять 100 В при 180 °, потому что измерительные входы и опорные входы подключены в противоположном направлении.

    Теперь мы можем включить в цепь трансформатор тока, чтобы измерить ток, протекающий через резистор.

    Что измерит измеритель фазового угла в следующей цепи?

    Измеритель фазового угла будет измерять 10 А при 0 °, потому что полярность опорного сигнала такая же, как у измерительной цепи.

    Мы можем перерисовать схему с отметками полярности, чтобы лучше видеть, как ток, идущий на отметку первичной полярности ТТ, выходит из отметки вторичной полярности, чтобы соответствовать полярности опорного сигнала.

    Что измерит измеритель фазового угла в следующей цепи?

    Измеритель фазового угла по-прежнему будет измерять 10 А при 0 °, потому что полярность опорного сигнала такая же, как у измерительной цепи.

    Маленький грязный секрет трансформаторов тока состоит в том, что маркировка полярности не имеет значения, если установка трансформатора тока соответствует чертежам. Направление потока тока — это все о эталоне в измерителях фазового угла. В этом случае провода нашего измерителя фазового угла не изменились.

    Если мы используем маркировку полярности из предыдущего рисунка, мы предполагаем, что ток течет от A к B, потому что наши опорные провода подключены с полярностью к A и неполярностью к C. КТ; Таким образом, ток будет течь через отметку неполярности ТТ на плюсовую клемму, в результате чего измерение фазового угла будет равно 0 °.

    Что измерит измеритель фазового угла в следующей цепи?

    Измерение фазового угла будет измерять 10 А при 180 °, потому что эталон сообщает нам, что ток 0 градусов будет течь от A к C, а наш измерительный провод + подключен к C, напротив эталона.

    100% резистивные цепи всегда будут находиться под углом 0 ° или 180 °.

    Можете ли вы заполнить эту таблицу измерениями напряжения с помощью измерителя фазового угла?

    (+) Соединение (Вольт) Подключение Измерение
    А I
    А К
    А D
    D К
    G D
    С B
    К A

    Вот ответы

    (+) Соединение (Вольт) Подключение Измерение
    А I 100 В при 0 °
    А К 100 В при 0 °
    А D 50 В при 0 °
    D К 50 В при 0 °
    G D 50 В при 180 °
    С B 50 В при 180 °
    К A 100 В при 180 °

    Можете ли вы заполнить эту таблицу измерениями тока с помощью измерителя фазового угла?

    Представьте, что полярность ТТ подключена к клемме [+], как показано в примере AB ниже, а обозначения [+] и [Ампер] в таблице определяют направление ТТ.

    (+) Соединение (А) Подключение Измерение
    А B
    С D
    D E
    Ф D
    К H
    G Дж
    I Дж

    Вот ответы

    (+) Соединение (Вольт) Подключение Измерение
    А B 5A при 0 °
    С D 5A при 0 °
    D E 2.5A при 0 °
    Ф D 2,5 А при 180 °
    К H 2,5 А при 180 °
    G Дж 2,5 А при 0 °
    I Дж 5A при 180 °

    Что произойдет, если мы подключим наш измеритель угла сдвига фаз к нерезистивным цепям?

    Какое напряжение вы бы измерили при 100% -ной емкостной цепи, как показано на следующем рисунке?

    Вы все равно будете измерять 100 В при 0 °, потому что напряжение определяет источник, а не нагрузка.

    Какой ток вы бы измерили в 100% -ной емкостной цепи, как показано на следующем рисунке?

    Вы бы измерили провод 10 А при 90 °, потому что емкостной ток опережает напряжение на 90 °.

    Обратите внимание, я не указал + 90 ° или -90 °? Это потому, что разные устройства могут иметь разные обозначения фазового угла для одного и того же положения. Лучший способ точно передать информацию о векторном изображении — использовать обозначения «опережения» и «запаздывания» вместо абсолютных ссылок.

    Мы освещаем эту тему в нашем онлайн-курсе «Чертежи фазоров для тестеров реле».

    Что измерит фазомер в следующей цепи со 100% чистой индуктивностью?

    Измеритель фазового угла может измерять 100 В при 180 °, потому что опорные соединения находятся напротив измерительных соединений.

    Какой ток вы бы измерили со 100% индуктивной цепью, как показано на следующем рисунке?

    Вы бы измерили 10 А при запаздывании на 90 °, потому что индуктивный ток будет отставать от напряжения на 90 °, а опорный и измерительный провода синфазны.

    К настоящему моменту вы должны увидеть, насколько важна РЕФЕРЕНЦИЯ вашего измерителя фазового угла. Помните, что каждое устройство, измеряющее фазовые углы, ДОЛЖНО иметь эталон, и этот эталон может быть не тем, что вы думаете. Некоторые измерители фазового угла используют то, к чему они подключены, в качестве эталона. Некоторые используют все, что связано с V1, Van или Vab. Некоторые используют все, что подключено к I1 или Ia. Если вы не знаете эталон, вы не сможете проверить правильность своих измерений.

    Также помните, что система определяет величину и угол напряжения, а нагрузка определяет ток и угол тока. Не существует чисто резистивных, емкостных или индуктивных нагрузок. Это означает, что вы никогда не должны подавать ток при 0 °, 90 ° или опережении 90 °, потому что ваше реле или измеритель никогда не увидит эти значения в реальном мире. Всегда старайтесь имитировать реалистичные условия, когда это возможно.

    Теперь у вас есть фундамент, необходимый для понимания того, что происходит во время проверки счетчика.Попытайтесь выяснить, что вы должны измерить, прежде чем проводить следующий тест счетчика. Вы можете получить некоторую помощь в нашей публикации «Поиск направления в направленных реле максимального тока», прежде чем мы рассмотрим тестирование счетчиков в следующей публикации.

    Основы трехфазного тестирования — Снижение гармоник тока

    Электрический проводник нагревается, когда по нему проходит ток. Если нагрев достаточно высок, проводник может быть поврежден, поэтому рекомендуется ограничить ток. Трехфазные системы распределения электроэнергии очень эффективны в ограничении протекания тока без уменьшения мощности, подаваемой на нагрузку.Они делают это, разделяя фазы, а также балансируя нагрузку. Схема, состоящая из горячих ветвей, сдвинутых по фазе на 120 ° друг с другом, может обеспечивать большую мощность через проводники меньшего диаметра.

    Галилео Феррарис, Михаил Доливо-Добровольский, Йонас Венстрём и Никола Тесла в 1880-х годах независимо друг от друга изобрели многофазные системы. Тесла задумал и разработал трехфазную систему и трехфазный асинхронный двигатель.

    Идеальные формы сигналов трехфазного напряжения — реальные обычно имеют наложенный шум.

    Трехфазная мощность обычно вырабатывается в одной из двух конфигураций: Y или треугольник. Генератор электросети имеет три обмотки, расположенные симметрично, так что ток в каждой обмотке отделен от двух других на один и тот же фазовый угол, равный одной трети цикла. Это 120 ° или 2π / 3 радиана. Вне генератора ток от каждой обмотки может проходить через один или несколько трансформаторов, в которых ток и напряжение, обратно пропорциональные, повышаются или понижаются без изменения разноса фаз или частоты.На стороне заказчика трансформатор, установленный на опоре или опоре, преобразует мощность до желаемого уровня и подает ее по трем проводам к точке подключения.

    Трехфазные конфигурации, Y и треугольник.

    Более распространенная Y-образная конфигурация соединяет одну сторону каждой обмотки с одной из трех шин на входной панели, а другую ветвь — с общей, обычно заземленной нейтралью. На входной панели трехфазные выключатели зажимают три шины для питания трехфазных нагрузок, а однополюсные выключатели зажимают только одну из шин для питания однофазных нагрузок.Таким образом, трехфазное и однофазное питание может быть получено от одной входной панели или центра нагрузки без использования трансформатора или фазового преобразователя, поворотного или электронного. Там, где должны быть запитаны междуфазные нагрузки, используются двухполюсные выключатели.

    Обмотка трансформатора, соединенная треугольником (греческая буква «Дельта», Δ), соединена между двумя первичными фазами. В системе с открытым треугольником используются только два трансформатора, в то время как в системе с закрытым треугольником используются три трансформатора, по одному на каждую фазу.Если один из трансформаторов выходит из строя или его необходимо удалить, система продолжит функционировать как система с открытым треугольником при мощности 58%.

    С точки зрения электрика, проводящего проводку от трехфазной коробки, двухполюсный выключатель снимает напряжение между двумя фазами. Однополюсный выключатель снимает напряжение в одной фазе вместе с нулевым проводом шины. В любом случае следует проложить заземляющий провод оборудования для облегчения работы от сверхтока.

    В некоторых системах с треугольником заземление выполняется посередине между двумя из трех фаз. Они называются трехфазными системами, соединенными треугольником с заземлением от центра. Из-за этого центрального отвода одна из трех фаз будет иметь более высокое напряжение относительно земли, чем две другие. Следует проявлять осторожность в отношении этой высокой ножки. Он имеет оранжевый цвет, чтобы отличить его от двух других ножек.

    Трехфазный двигатель меньше, дешевле и служит дольше, чем однофазный двигатель той же мощности, поскольку он не подвержен вибрации и требует меньшего рассеивания тепла.По этой причине большинство асинхронных двигателей мощностью более пяти лошадиных сил являются трехфазными, хотя также доступны трехфазные двигатели с дробной мощностью. Их легко подключить. Просто проложите три питающих провода с защитой от перегрузки по току с правильной амплитудой к двигателю и подключите их к двигателю. При необходимости используйте контроллер мотора.

    Чтобы повернуть в обратном направлении, поменяйте местами две из трех линий. Некоторые моторные нагрузки, такие как вентиляторы или насосы, работают более эффективно в одном направлении, чем в другом.Причина в форме лопастей или крыльчатки. Правильное вращение можно определить методом проб и ошибок, измерив выходную мощность. Однако некоторые насосы мгновенно выходят из строя из-за неправильного вращения.

    Этот индикатор чередования фаз от Fluke показывает последовательность подключения для вращения по и против часовой стрелки.

    В трехфазной системе Y или схеме треугольника без заземленного центрального ответвителя в одной из обмоток однофазные нагрузки могут подключаться от одной фазы к нейтрали или между любыми двумя фазами. Это делает возможными многочисленные однофазные напряжения, которые можно использовать в различных приложениях.Если эти нагрузки сбалансированы, т.е. имеют равное сопротивление, трансформаторы и проводники используются наиболее экономично.

    В сбалансированной системе Y все три фазных провода имеют одинаковый ток и напряжение относительно нейтрали системы. При линейных нагрузках измеренное напряжение между линейным проводом при равных нагрузках представляет собой квадратный корень из трех значений напряжения между фазой и нейтралью.

    Проблема сегодня в том, что постоянно увеличивающаяся часть подключенных нагрузок является нелинейной. Люминесцентное освещение с балластом, которое широко распространено в офисных помещениях, а также импульсные источники питания и асинхронные двигатели являются примерами нелинейных нагрузок.Они производят дорогостоящие гармоники третьего порядка, которые синфазны во всех трех ветвях. В результате они складываются в нейтральных проводниках. Эта избыточная нагрузка вызывает нагрев нейтрали в параллельных цепях и распределительных линиях на всем пути вверх по потоку, включая генераторы энергоснабжения.

    Однофазные электронные нагрузки генерируют гармоники, кратные основной гармонике. Наиболее вредными из них являются тройные гармоники, поскольку их амплитуда наибольшая. Гармоники более высокого порядка уменьшаются по амплитуде по мере того, как они удаляются от основной гармоники, как показано на оси X в частотной области осциллографа.

    Трехфазные нагрузки не генерируют тройные гармоники. Следовательно, на промышленных объектах с большой трехфазной нагрузкой наибольшую проблему представляют нечетные гармоники более высокого уровня — пятая, седьмая, одиннадцатая и так далее.

    Активные фильтры могут подавлять гармоники, но они сложны и дороги в реализации. Они синтезируют в цифровом виде реактивную мощность для подавления гармоник. Более экономичным решением является использование фазосдвигающих трансформаторов для ослабления гармоник. Они работают, комбинируя гармоники от разных источников, которые сдвинуты по фазе относительно друг друга, так что гармоники затем компенсируются.Другие методы подавления гармоник включают использование сетевых дросселей, ловушек гармоник, 12- и 18-импульсных выпрямителей и фильтров нижних частот.

    Гармоники

    также дороги, потому что они приводят к превышению полной мощности в системе и нагрузке на активные и реактивные компоненты. Более того, поскольку они имеют более высокую частоту, чем основная гармоника, они уменьшают емкостное реактивное сопротивление, параллельное явление, до определенной степени шунтируя намеченную нагрузку и нагревая проводку питания. При наличии гармоник конденсаторы испытывают более высокое приложенное напряжение, что может вызвать диэлектрические потери и реальные повреждения.Трехфазные асинхронные двигатели также испытывают потери и нагрев своих обмоток. Гармоники увеличивают ток и перегревают нейтральные проводники, которые обычно не имеют защиты от сверхтоков.

    Когда большие двигатели не загружены на полную мощность, кумулятивный эффект внутри объекта добавляется к наличию гармоник для уменьшения коэффициента мощности. Электроэнергетические компании часто взимают с промышленных потребителей более высокую плату, когда коэффициент мощности падает ниже 90%.

    Коэффициент мощности можно улучшить, добавив в электрическую систему конденсаторы коррекции коэффициента мощности.Обычная реализация включает автоматический переключатель, который подключает конденсаторы только по мере необходимости.

    Конденсаторы коррекции коэффициента мощности требуют периодического осмотра и обслуживания. Тепловидение — хороший способ начать. Рабочие должны знать, что эти устройства способны сохранять смертельное напряжение еще долгое время после отключения питания. Вспышка дуги также представляет собой потенциальную опасность. В связи с этим любой, кто работает с испытательными приборами в непосредственной близости от трехфазных цепей питания, должен носить средства индивидуальной защиты (СИЗ) в соответствии с требованиями стандартов безопасности.

    При измерении трехфазных электрических параметров необходимо учитывать несколько тонкостей. Один касается трехфазного режима 480Y. В этой конфигурации используются четыре провода, три контакта, нейтраль и заземляющий провод. Напряжение между любой ногой и землей будет 277 В, а между любыми двумя горячими проводами вы получите 480 В. Для работы с однофазными и трехфазными нагрузками 120/208 должен использоваться трансформатор. Трансформатор должен иметь первичную обмотку 480 Ом и вторичную обмотку 208 Ом.

    Трехфазное оборудование обычно работает от напряжения Delta, в конфигурации с тремя горячими проводами и без нулевого провода.Если автомат на 230 В по ошибке подключить к 480 В, его двигатель, скорее всего, сгорит. Напряжение не влияет на частоту вращения двигателя, но частота напряжения влияет.

    Наконец, существуют разные способы измерения трехфазной мощности. Возможно, самым простым является использование одного измерителя мощности для измерения мощности в одной фазе за раз. Потенциальная проблема этого метода заключается в том, что он предполагает, что мощность в неизмеряемых фазах такая же, как и измеренная после того, как измеритель мощности введен в эту фазу.

    Самый простой метод — использовать измеритель мощности одновременно в каждой фазе. Здесь фазное напряжение для измерения мощности измеряется относительно нейтрального провода. Очевидно, общая мощность — это сумма их показаний.

    Интересно, что есть способ точно измерить трехфазную мощность с помощью всего двух измерителей мощности. Одна из фаз служит нулевым эталоном, и мощность необходимо измерять только для оставшихся двух фаз.

    Но есть сравнительный расчет, связанный с этим методом, который используется для проверки его точности.Легко понять, когда источник напряжения и нагрузка имеют Y-образную конфигурацию. Поскольку нейтраль не подключена, сумма мгновенных токов в трех фазах должна быть равна нулю по закону Кирхгофа: I 1 + I 2 + I 3 = 0.

    Затем можно продемонстрировать, что сумма мгновенных мощностей трех фаз равна мгновенным мощностям двух фаз с третьей фазой (L2) в качестве опорного напряжения:

    V 1 × I 1 + V 2 × I 2 + V 3 × I 3 = [(V 1 — V 2 ) × I 1 ] + [(V 3 — V 2 ) × I 3 ]

    Объяснение трехфазного питания

    | Объяснение трехфазного питания

    В этом видео подробно рассматривается трехфазное питание и объясняется, как оно работает.Трехфазную мощность можно определить как общий метод производства, передачи и распределения электроэнергии переменного тока. Это разновидность многофазной системы, которая является наиболее распространенным методом передачи электроэнергии в электрических сетях по всему миру.

    Дополнительные ресурсы Raritan


    Расшифровка:
    Добро пожаловать в это анимированное видео, в котором быстро объясняется трехфазное питание. Я также объясню загадку того, почему 3 линии электропередачи разнесены на 120 градусов, потому что это важный момент для понимания трехфазного питания.

    Питание, которое поступает в центр обработки данных, обычно представляет собой трехфазное питание переменного тока, что означает трехфазное питание переменного тока.

    Давайте посмотрим на упрощенный пример того, как генерируется трехфазная мощность.

    Этот пример отличается от того, что я использовал бы для описания того, как трехфазный двигатель использует мощность. В видео с переменным током мы показали, как вращение магнита мимо одного провода заставляет ток течь вперед и назад. Теперь мы собираемся покрутить магнит через 3 провода и посмотреть, как он влияет на ток в каждом из проводов.

    В этом трехфазном примере северный положительный конец магнита направлен прямо вверх по линии один.

    Чтобы облегчить объяснение концепции, давайте воспользуемся циферблатом и скажем, что первая линия находится в позиции двенадцати часов. Электроны в строке 1 будут течь к северному полюсу магнита. Что происходит, когда магнит теперь поворачивается на 90 градусов?

    Как мы видели на видео с переменным током, поскольку магнит перпендикулярен линии 1, электроны в линии 1 перестанут двигаться.Затем, когда магнит поворачивается более чем на 90 градусов, южный полюс магнита приближается к линии один, и электроны меняют направление, что означает, что направление тока изменится. Это было подробно описано в видео по переменному току. Если вы нажали на это видео, не понимая, что такое переменный ток, сначала просмотрите это видео.

    Глядя на график, вы можете понять, почему я выбрал аналоговый циферблат. Круг составляет 360 градусов, и часы делят круг на 12 частей, так что каждый час покрывает 30 градусов круга.Переход от 12 к 3 составляет 90 градусов, а переход от 12 к 4 — 120 градусов.

    При генерации 3-х фазного питания медные провода расположены на расстоянии 120 градусов друг от друга. Итак, когда вы находитесь в позиции «четыре часа» в нашем примере, это 120 градусов от первой линии. А в положении «восемь часов» он находится на 120 градусах от обоих положений: «4 часа» и «12 часов». Три линии равномерно расположены по кругу.

    Если северный полюс находится ближе к одному из 3-х проводов, электроны движутся в этом направлении.Чем ближе южный полюс подходит к каждому проводу, тем больше электроны удаляются от южного полюса. В каждой из трех линий электроны движутся вперед и назад, и они не всегда движутся в том же направлении или с той же скоростью, что и две другие линии.

    Давайте еще раз посмотрим на пример. Когда магнит вращается, когда северный полюс находится в положении 1 часа, он становится перпендикулярным линии 2, поэтому, конечно, электроны перестают двигаться по линии 2. Но они все еще движутся по линии 1, привлеченные более близким северным полюсом, и они движутся по линии 3, которую отталкивает южный полюс.Когда северный полюс магнита смотрит на 2 часа, тогда на линии 1 и [линию] 2 воздействует северный полюс, но южный полюс находится прямо напротив линии 3, так что теперь у него пиковый ток. В 3 часа магнит перпендикулярен линии 1, поэтому электроны перестают двигаться, но на линию 2 влияет северный полюс, а на линию 3 — южный полюс, поэтому ток течет по линиям 2 и 3.

    Надеюсь, , этот пример показывает вам, как в любое время ток всегда течет как минимум по 2 линиям. Он также показывает взаимосвязь между 3 линиями при вращении магнита по кругу.Когда магнит вращается вокруг циферблата, на каждую из трех линий будет воздействовать либо северный, либо южный полюс, за исключением случаев, когда магнит перпендикулярен линии.

    Давайте сосредоточимся на линии 1. Она находится на пике тока, когда северный полюс указывает на 12 и 6 часов. Это при нулевом токе, когда северный полюс указывает на 3 и 9 часов. Только 1 из 3 линий всегда находится на пике, но поскольку есть 3 линии, есть 3 положительных пика и 3 отрицательных пика для каждого цикла.В 6 различных положениях на циферблате одна из линий находится на пике. Позиции 12 и 6 — это чередующиеся пики линии 1, позиции 2 и 8 — чередующиеся пики линии 3, а 4 и 10 — чередующиеся пики линии 2.

    Теперь давайте объясним те запутанные формы сигналов, которые часто используются для изображения трех фаз. Если вы посмотрите на пример формы сигнала, вы увидите первую строку синего цвета, которая начинается с нуля. Это означает, что магнит перпендикулярен этой линии. По мере движения магнита вы можете видеть, как ток достигает своего пика.Затем, когда положительный полюс вращается мимо этого провода, ток начинает ослабевать, пока магнит снова не станет перпендикулярным, что приведет к нулевому току. Когда отрицательный полюс начинает приближаться, ток меняет направление и движется в другом направлении к другому пику, прежде чем вернуться к нулевому току. Это завершает 1 полный цикл для этой линии.

    Для того, чтобы двумерная диаграмма показывала взаимосвязь между линиями, теперь на ней отображается зазор, обозначающий время, за которое магнит вращается на 120 градусов.Это когда красная линия имеет нулевой ток. По мере того как магнит продолжает вращаться, красная линия будет двигаться в сторону своего пикового положительного тока, затем вернется к нулю, после чего ток изменит направление. График также показывает, что третья линия начнется при нулевом токе через 120 градусов после второй строки. Итак, если вы посмотрите на эти 3 линии, вы увидите, что, когда одна линия находится на пике, другие 2 линии все еще генерируют ток, но они не на полную мощность, то есть они не на пике. Таким образом, когда электроны перетекают от положительного пика к отрицательному, ток отображается как переходящий от положительного значения к отрицательному.Помните, что положительные и отрицательные стороны не отменяют друг друга. Положительная и отрицательная коннотации используются только для описания того, как меняется ток.

    В трехфазной цепи вы обычно берете одну из трех токоведущих линий и подключаете ее к другой из трех токоведущих линий. Одно исключение из этого описано в видео «Дельта-звезда».

    В качестве примера возьмем трехфазную линию на 208 В. Каждая из 3 линий будет передавать 120 вольт. Если вы посмотрите на диаграмму, вы легко увидите выходную мощность любых двух линий.Если одна линия на пике, другая линия не на пике. Вот почему в трехфазной цепи неправильно умножать 120 вольт на 2, чтобы получить 240 вольт.

    Итак, если вам интересно, почему у вас дома есть 110/120 вольт для обычных розеток, но у вас также есть приборы на 220/240 вольт, что дает? Что ж, это не трехфазное питание. Фактически это 2 однофазные линии.

    Итак, как вы рассчитываете мощность объединения двух линий в трехфазной цепи? Формула рассчитывается как умножение вольт на квадратный корень из 3, который округляется до 1.732. Для 2 линий, каждая по 120 вольт, вычисление для этого составляет 120 вольт, умноженное на 1,732, и результат округляется до 208 вольт.

    Вот почему мы называем это трехфазной цепью на 208 вольт или трехфазной линией на 208 вольт. Трехфазная цепь на 400 вольт означает, что каждая из трех линий проходит по 230 вольт.

    Последняя тема, о которой я расскажу в этом видео: почему компании и центры обработки данных используют 3 фазы?

    А сейчас позвольте дать вам простой обзор. Для трехфазного подключения вы подключаете линию 1 к линии 2 и получаете 208 вольт.В то же время вы [можете] подключить линию 2 к линии 3 и получить 208 вольт. И вы [можете] соединить линию 3 с линией 1 и получить 208 вольт. Если провод может выдавать 30 ампер, то передаваемая мощность составляет 208 вольт, умноженное на 30 ампер, умноженное на 1,732, при общей доступной мощности 10,8 кВА.

    Для сравнения, для однофазной 30-амперной цепи с напряжением 208 вольт вы получите только 6,2 кВА.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *