Как самому сделать теплоаккумулятор: Как сделать теплоаккумулятор для котлов отопления своими руками

Содержание

Теплоаккумулятор (буферная емкость) своими руками

Теплоаккумулятор содержит большой объем воды (теплоносителя), поэтому может накапливать тепловую энергиюЮ и отдавать ее, когда котел не работает. Это позволяет значительно реже подходить к твердотопливному котлу, фактически раз в двое суток в межсезонье, если котел мощный и дом утепленный, а также дает возможность использовать по максимуму на благо отопления дешевый ночной тариф электроэнергии.

Идея установить буферную емкость (теплоаккумулятор) выглядит блестящей для всех умученных дежурством у котлов, но разбивается о ценник на теплоаккумуляторы. Оказывается, что увеличить комфорт не слишком то и дешево. Но может получится сделать теплоаккумулятор своими руками? Ведь на первый взгляд ничего сложного…

 

Как можно сделать теплоаккумулятор

Заводская конструкция теплоаккумулятора, как правило, – бочка, круглая в сечении. Объм обычно в пределах 500 – 2000 литров. Диаметр – до метра, высота до 2,5 метров. Размещается на ножках, с множеством вваренных штуцеров. Может содержать в себе 1 или 2 или больше спиральных теплообмеников, для подсоединения независимых контуров, например, солнечного коллектора, нагрева проточной воды…

Емкость утеплена слоем теплоизоляции, чтобы не перегревать воздух в котельной. В фирменных теплоаккумуляторах внутри организована сложное распределение потоков… Можно взглянуть на рекламу Buderus на видео…

 

Основа конструирования буферной емкости – как должны направляться потоки

Чтобы создать правильное направление потоков, подключение к буферной емкости выполняются следующим образом.

  • Подача с котла – в верхней части.
  • Подача из емкости на радиаторы – в верхней части, на уровне подачи котла
  • Обратка с радиаторов – в нижней части.
  • Обратка на котел – в нижней части, чуть ниже обратки с радиаторов.

При этом жидкость в теплоаккумуляторе обязательно должна двигаться сверху вниз, по кольцу контура котла, а также — от котла к радиаторам.

Отследить направление движения жидкости можно по температурным датчикам — обратка котла должна быть теплее, чем обратка радиаторов.

Важно соблюсти принцип:  – расход теплоносителя в контуре котла должен превышать расход в радиаторах, только тогда теплоаккумулятор сможет нормально работать. Это обычно обеспечивается большим гидравлическим сопротивлением контура потребителей, при одинаковых насосах.

Радиаторы получат горячий теплоноситель сразу, как он появится внутри теплоаккумулятора, забирая его своим насосом с верхней части, что обеспечивает оперативность управления всем отоплением и реагирование на суточные перепады температур.

Важнейший вопрос при установке теплоаккумулятора – защита котла от холодной обратки, выполняется обязательно, например с помощью трехходового клапана.

 

Основы конструирования буферной емкости

Гораздо предпочтительнее использовать большую готовую бочку или трубу, тогда будет намного меньше сварных швов, чем в самодельной прямоугольной конструкции.

  • Ввариваются патрубки 3/4 дюйма для подключения контуров. Но контур твердотопливного котла, для реализации аварийного самотечного циркулирования, желательно создавать не менее 1дюйма, при этом подача от котла, где возможен перегрев, – стальная.
  • Сливной патрубок, он же и очиститель шлама – в самой нижней части.
  • В крышке рекомендуется создать патрубок большого диаметра для подключения автоматического воздухоотводчика или группы безопасности.

Сделать буферную емкость самостоятельно может лишь квалифицированный сварщик. Пример создания теплоаккумулятора из бочек, но явных ошибок схемотехники повторять не стоит…

Одно из пропагандируемых некоторыми специалистами решений – 4 дешевые бочки 200 литров, попарно соединенные патрубками большого диаметра…

 

Какой объем буферной емкости понадобится

Ключевой вопрос – какой объем теплоаккумулятора можно считать достаточным. Обычный режим работы – разогрев до +90 градусов и остывание до +60 градусов, пока работа радиаторов будет эффективной… В разнице 30 градусов заключается та энергия, которую можно накапливать и использовать.

Несложный тепловой расчет показывает, что одной тонны воды будет достаточно для обогрева среднеутепленного дома 100 м кв в самые пиковые морозы в течении 5 часов. А при средне-сезонной температуре – сутки.

На практике, емкость 1,2 тонны в хорошо утепленном небольшом доме позволяет не подходить к котлу 30 кВт на дровах в течении 2 суток… Ставить буферную емкость менее 0.8 тонны особого смысла нет…

 

Вопрос утепления

Не нужно спешить накладывать утеплитель до завершения полных испытаний с нагревом и под давлением. При нагреве свыше 60 градусов полистиролы начинают усиленно разлагаться, выделяя яд. Для буферной емкости лучше использовать неплотную минеральную вату толщиной 5 см, ее изоляцию от жилого пространства сделать фольгированным вспененным полиэтиленом проклеенным скотчем.

 

Буферная емкость из еврокуба

Недорого можно приобрести б/у полиэтиленовые емкости на тонну воды, находящиеся в металлической решетке. Их допустимый предел нагревания — +70 градусов, — выше начинает проявляться текучесть материала. Но среди достоинств  – предельная дешевизна изготовления, можно все сделать своими руками без привлечения сварщика… Что из этого получается, смотрите видео.

чертежи, схема аккумулирующей емкость для отопления

В нынешние времена удорожания всех видов энергоносителей многих домовладельцев стал серьезно волновать вопрос их экономичного использования. Один из вариантов – это включение в схему отопления большой емкости с водой – теплового аккумулятора.
Но емкости заводского изготовления отличаются немалой стоимостью. В то же время некоторые домашние мастера – умельцы разобрались, как можно сделать теплоаккумулятор своими руками, что выйдет гораздо дешевле. Об этом опыте и будет рассказано в данной статье.

Немного о назначении и конструкции

Прежде чем давать рекомендации по изготовлению этого важного узла, вкратце определимся, для чего он нужен и рассмотрим его заводскую конструкцию. Итак, аккумулирующие емкости с водой применяются в случаях периодического отопления дома, а точнее:

  • при работе электрического котла с многотарифным счетчиком, когда нагреватели могут экономно функционировать лишь в ночное время. Агрегат, работая на полную мощность, обогревает дом и накапливает тепловую энергию в баке с водой;
  • накопление теплоты необходимо и для котлов на твердом топливе, которые наоборот, останавливаются в ночное или другое время, если некому заложить в топку новую порцию дров или угля;

Агрегаты заводского изготовления представляют собой бак круглой формы, заполненный водой. В нее погружены несколько змеевиков, в них циркулирует теплоноситель котлового и других контуров отопления. Конструкция достаточно сложна в производстве и оттого недешева, в этом можно убедиться, посмотрев чертежи теплоаккумулятора.

Если попытаться взять за основу подобное устройство, чтобы самостоятельно изготовить теплоаккумулятор, то в конечном счёте он обойдется ненамного дешевле заводского. Медные или нержавеющие трубки и работа по навивке из них змеевиков, герметизация вводов и утепление отнимут у вас массу времени и денежных средств. Для домовладельцев, желающих произвести сборку и установку самодельного накопителя тепла, есть более простое решение, описанное ниже.

Расчет объема накопительного бака

Данное решение заключается в том, что теплоаккумулятор, сделанный своими руками, представляет собой обычную утепленную емкость с двумя патрубками для присоединения к системе отопления. Суть заключается в том, что котел в процессе работы частично направляет тепловой носитель в накопительный бак, когда радиаторы в этом не нуждаются. После отключения источника тепла происходит обратный процесс: работа системы отопления поддерживается водой, поступающей из аккумулятора. Для этого нужно будет правильно выполнить обвязку накопительной емкости с теплогенератором.

Первым делом надо определить объем бака для аккумуляции тепловой энергии и произвести оценку возможности его размещения в котельной. Кроме того, изготовление теплоаккумуляторов для твердотопливных котлов необязательно начинать с нуля, есть различные варианты подбора готовых сосудов подходящей вместительности.

Мы предлагаем ориентировочно определить объем бака самым простым способом, основанным на законах физики. Для этого надо иметь такие исходные данные:

  • тепловая мощность, потребная на обогрев дома;
  • время, в течение которого источник тепла будет отключен и его место займет аккумулирующая емкость для отопления.

Способ расчета покажем на примере. Есть здание площадью 100 м2, где теплогенератор простаивает 5 часов в сутки. Укрупненно принимаем необходимую тепловую мощность в размере 10 кВт. Это значит, что каждый час аккумулятор должен отдавать в систему 10 кВт энергии, а на весь промежуток времени ее надо накопить 50 кВт. При этом вода в баке нагревается минимум до 90 ºС, а температура на подаче в системах отопления частных домов при стандартном режиме принимается равной 60 ºС. То есть, разность температур составляет 30 ºС, все эти данные мы подставляем в хорошо знакомую из курса физики формулу:

Q = cmΔt

Поскольку мы хотим узнать количество воды, что должен содержать тепловой аккумулятор, то формула принимает такой вид:

m = Q / c Δt, где:

  • Q – общий расход тепловой энергии, в примере равен 50 кВт;
  • с – удельная теплоемкость воды, составляет 4.187 кДж / кг ºС или 0.0012 кВт / кг ºС;
  • Δt– разность температур воды в баке и подающем трубопроводе, для нашего примера это 30 ºС.

m= 50 / 0.0012 х 30 = 1388 кг, что занимает ориентировочный объем 1.4 м3. Итак, тепловая батарея для твердотопливного котла емкостью 1.4 м3, наполненная водой, нагретой до 90 ºС, будет обеспечивать дом площадью 100 м2 теплоносителем с температурой 60 ºС в течении 5 часов. Потом температура воды упадет ниже 60 ºС, но еще какое-то время (3—5 часов) понадобится на полную «разрядку» аккумулятора и остывание помещений.

Важно! Для того чтобы тепловой аккумулятор, изготовленный своими руками, успевал полностью «зарядиться» во время работы котла, последний должен иметь не менее чем полуторный запас по мощности. Ведь отопителю надо одновременно обогревать дом и загружать накопительный бак горячей водой.

Рекомендации по изготовлению

Если требуется сделать аккумулирующую емкость с нуля, то лучше всего для этой цели использовать обычный листовой металл толщиной 2 мм. Варить бак можно и из нержавейки, но вовсе не обязательно, так как подобный материал обойдется очень дорого. Для удобства последующего утепления и простоты изготовления емкость лучше делать прямоугольной формы. Зная объем бака, легко рассчитать его габариты в соответствии с условиями его монтажа в котельной.

Совет. Если вы хотите обеспечить совместное функционирование накопительного сосуда и самотечной системы отопления, то нужно смастерить теплоаккумулятор открытого типа, то есть, обеспечить его сообщение с атмосферой через трубку в верхней части бака. Ставить его надо выше уровня радиаторов, для чего придется дополнительно сварить подставку из стальных труб или уголков.

В некоторых случаях нет смысла варить емкость с нуля, можно сделать водяной теплоаккумулятор из бочки. Хорошо подойдет железная бочка большой вместительности, в нее потребуется врезать два патрубка для присоединения к системе. Пластмассовые бочки применять рискованно из-за высокой температуры воды, разве что на маркировке изделия будет указана максимальная температура содержимого до 100 ºС.

Такое же предостережение мы даем тем домашним умельцам, что мастерят теплоаккумуляторы из еврокуба. Конечно, это очень удобный способ, но данная пластмассовая емкость рассчитана на максимальную температуру не более 70 ºС. Поэтому еврокуб подойдет в качестве накопительного бака, работающего с теплыми полами, где температура теплоносителя редко превышает 50 ºС, для радиаторных систем он не годится.

Чем утеплить теплоаккумулятор

Даже когда бак находится в теплом помещении, то разность температур между воздушной средой и теплоносителем слишком велика – от 50 до 70 ºС. Чтобы не терять тепло и не обогревать им топочную, надо обязательно выполнять утепление теплоаккумулятора. Проще всего это сделать с помощью пенопласта толщиной 100 мм и плотностью 25 кг/м3. Его легко клеить к металлическим стенкам и вырезать отверстия под патрубки.

Сгодится для утепления и минеральная вата той же толщины, хотя крепить ее несколько сложнее. Плотность материала – 135—145 кг/м3. Для круглых баков из бочек придется использовать рулонные утеплители типа ISOVER, тут придется изрядно повозиться с крепежом, особенно в нижней части емкости.

Ниже на видео показана установка и схема теплоаккумулятора с подключением его к котлу и отопительной системе:

Статья в тему: Как сделать отопление в частном доме – подробное руководство

Заключение

Использование накопительного бака позволяет экономить топливо при работе дровяных котлов и пользоваться выгодным ночным тарифом в случае с теплогенератором электрическим. В изготовлении бак не столь уж сложен, надо только иметь некоторые навыки.

Теплоаккумулятор своими руками - описание и изготовление!

Самостоятельное изготовление теплоаккумулятора под силу каждому человеку, имеющему навыки работы с элементарными слесарными и хозяйственными инструментами. Для сборки такого агрегата не придется покупать какие-либо дорогостоящие детали и материалы. Комплектующие для самой простой модели можно найти в гараже либо кладовой любого запасливого и хозяйственного человека.

Теплоаккумулятор

После изучения следующего руководства вы сможете самостоятельно изготовить теплоаккумулятор и подключить его к отопительной системе.

Устройство и особенности работы теплоаккумулятора

По своей конструкции типичный теплоаккумулятор является стальным баком с патрубками вверху и внизу, одновременно являющимися концами змеевика, изготовленного из медной трубки. Нижние патрубки соединяются с тепловым источником, верхние – с системой отопления. Внутри установки находится жидкость, которую потребитель может использовать для решения нужных ему задач.

Схема подключения

Принцип работы агрегата построен на высокой теплоемкости воды. В целом механизм действия теплоаккумулятора можно описать так:

  • в боковые стенки емкости врезано две трубы. Через одну в бак поступает холодная вода от водопровода или из резервуаров, через вторую подогретый теплоноситель отводится в радиаторы отопления;
  • верхний конец змеевика, установленного в баке, соединяется с патрубком холодной воды котла, нижний – с патрубком горячей;
  • циркулируя через змеевик, горячая вода нагревает жидкость в баке. После выключения котла, вода в отопительных трубах начинает остывать, но продолжает циркулировать. При поступлении в теплоаккумулятор прохладная жидкость выталкивает накопленный там горячий теплоноситель в отопительную систему, благодаря чему обогрев помещений продолжается еще в течение некоторого времени (в зависимости от емкости накопителя) даже при выключенном котле.

Важно! Для обеспечения движения теплоносителя система укомплектовывается циркуляционным насосом.

Цены на теплоаккумуляторы для систем отопления

Теплоаккумуляторы для систем отопления

Ключевые функции теплонакопителей

Принцип работы теплоаккумулятора

Теплоаккумулятор имеет множество полезных функций, в числе которых:

  • обеспечение пользователя горячей водой;
  • нормализация температурного режима в обогреваемых помещениях;
  • повышение показателей полезного действия отопительной системы с одновременным уменьшением расходов на обогрев;
  • возможность объединения нескольких тепловых источников в единый контур;
  • накопление лишней энергии, которую вырабатывает котел и т.д.

При всех своих преимуществах теплоаккумуляторы имеют всего 2 недостатка, а именно:

  • ресурс накапливаемой теплой жидкости напрямую зависит от объема используемого бака, но при любых обстоятельствах он остается строго ограниченным и заканчивается довольно оперативно, поэтому нужно обязательно продумать вопрос обустройства дополнительной системы нагрева;
  • более объемные накопители требуют достаточно много места для установки, к примеру, котельного помещения.
Бак-теплоаккумулятор для твёрдотопливного котла WIRBEL CAS-500Устройство для эффективной работы твердотопливного котла и зарядки теплового аккумуляторного бакаСхема установки

Сборка простого теплоаккумулятора

Простейший тепловой накопитель работает по принципу термоса. Стенки установки практически не проводят тепло и позволяют воде оставаться теплой в течение достаточно продолжительного времени.

Для сборки такого агрегата нам понадобятся следующие приспособления:

  • бак. Объем подбирайте индивидуально, по своим потребностям и возможностям. Объективный минимум – 150 л;
  • материал для теплоизоляции. Отлично подходит минеральная вата;
  • клейкая лента;
  • медные трубки для изготовления змеевика;
  • бетонная плита либо доски для опалубки и раствор для заливки.

Теплонакопитель можно собрать на основе железной бочки. Объем, как уже отмечалось, подбирается индивидуально, однако в использовании бака вместительностью меньше 150 л особого смысла нет.

Первый шаг

Подготавливаем бочку к дальнейшей работе. Если это старая емкость, тщательно очищаем ее от различных загрязнений и зачищаем следы коррозии.

Теплоаккумулятор, общий видТеплоаккумулятор, патрубки. 1 — система отопления. 2 — верхний змеевик. 3 — нижний змеевик. 4 — охлаждение ТА. 5 — группа безопасности. 6 — магниевый анодТеплоаккумулятор, патрубки с другой стороны. 1 — термометры Wats. 2 — твердотопливный котел. 3 — термодатчики для контроллера солнечных систем
Второй шаг

Оборачиваем внешние стенки теплоизоляционным материалом. Хорошо подойдет минеральная вата. Окутанную теплоизоляцией бочку дополнительно обматываем скотчем в несколько слоев.

Третий шаг

Окутываем бак фольгированной пленкой. Для фиксации материала также используем клейкую ленту. При желании обшиваем изолированную конструкцию листовым металлом.

Четвертый шаг

Делаем змеевик, по которому будет транспортироваться теплоноситель. Для этого используем медную трубку длиной 8-15 м (зависит от объема выбранной бочки) и диаметром порядка 20-30 м. Сгибаем трубу в спираль и помещаем внутрь бака. Змеевик соединяется с котлом. В дальнейшем эта спираль будет нагреваться и отдавать полученное тепло воде в баке.

ТеплоаккумуляторЗмеевик — теплообменникТрубы довольно неплохо зажимаются между шляпками саморезовПодключение теплообменникаПодключение теплообменникаПодключение теплообменникаУтепление теплоаккумулятора
Пятый шаг

Делаем патрубки в боковых стенках накопителя. Через один патрубок в бак будет поступать холодная вода, через другой выходить горячая. Патрубки оснащаем кранами для быстрого перекрытия циркуляции воды.

Шестой шаг

Устанавливаем тепловой накопитель и выполняем его подключение.

Для лучшего понимания порядка подключения теплоаккумулятора смотрим на схему.

Важно! Бочку можно ставить только на плиту из бетона. Покупаем готовое изделие либо отливаем основание самостоятельно.

По рассмотренному способу выполняется подключение накопителя к системе обогрева, работающей с использованием 1 котла. В случае применения большего количества отопительных агрегатов, схема существенно усложнится. Систему придется оснастить датчиками давления и температуры, взрывным и предохранительным клапанами и т.д. К сборке подобного агрегата рекомендуется приступать только при наличии соответствующих навыков и должного опыта.

Использование теплоаккумулятора в разных системах обогрева

Схема ГВС

Теплоаккумуляторы эффективно показывают себя при использовании в самых разнообразных системах обогрева. При этом в каждом случае подобный накопитель позволяет существенно сэкономить на отоплении.

Чаще всего тепловыми аккумуляторами комплектуются системы твердотопливного обогрева. Установка будет способствовать более экономичному расходу топлива и эффективному обогреву, а также предотвратит преждевременный износ отопительных радиаторов.

Не лишним будет тепловой аккумулятор и в системе электрического отопления, в особенности в регионах с двойным тарифом за электричество. Ночью, когда электроэнергия продается потребителю по более доступной стоимости, аккумулятор будет накапливать тепло. Днем же можно будет на некоторое время выключить котел и топить силами теплоаккумулятора.

Используются накопители и в многоконтурных отопительных системах. Благодаря ним обеспечивается распределение теплоносителя между контурами. Монтаж патрубков может быть выполнен на разной высоте, что позволит получать воду, нагретую до разной температуры.

Несколько слов о модернизации

Схема подключения

При необходимости собранный нами тепловой аккумулятор легко модернизируется. Существует несколько способов.

  1. Мы можем установить снизу дополнительный теплообменник, благодаря которому будет накапливаться энергия, получаемая солнечным коллектором. Актуально для современных систем, использующих энергию солнца для обогрева помещений.
  2. Мы можем разделить внутреннее пространство емкости на несколько сообщающихся секций, что обеспечит более выраженное расслоение воды по температурам. Актуально для многоконтурных систем.
  3. Мы можем немного увеличить бюджет и выполнить теплоизоляцию стенок бака пенополиуретаном вместо минеральной ваты. Этот материал позволит дополнительно уменьшить потери тепла.
  4. Мы можем увеличить количество патрубков и подключить накопитель тепла к более сложной системе обогрева, построенной на базе нескольких независимых контуров. Актуально для отопительных систем, обслуживающих большие дома с помощью котлов высокой мощности.
  5. Мы можем установить дополнительный теплообменник для накопления воды. Ее можно будет использовать для различных бытовых и хозяйственных нужд.
Солнечный коллекторАбсорбер частично выгнут буквой UПрактически замкнут в кольцоОбщий вид готового теплообменника для самодельного теплоаккумулятора

Теперь вы владеете всеми необходимыми знаниями для самостоятельной сборки, установки, подключения и модернизации теплового аккумулятора.

Удачной работы!

Видео – Теплоаккумулятор своими руками

 

Теплоаккумулятор Jaspi (л)Время нагрева (час.) при мощности        
20 кВт25 кВт30 кВт35 кВт40 кВт45 кВт50 кВт55 кВт60 кВт
500
10002,3
12002,82,2
15003,52,82,3
18003,42,82,42,1
20003,12,72,32,1
24003,22,82,52,22,0
30003,53,12,82,52,3
35003,33,02,7
40003,43,1
45003,5

Теплоаккумулятор своими руками + Схемы и порядок установки

Для большинства любая отопительная система состоит из трех основных частей:

  1. Радиаторов отопления
  2. Трубных магистралей
  3. Отопительного прибора или котла

Однако современные системы могут оснащаться множеством других полезных устройств, одним из которых является тепловой аккумулятор. С его помощью удается накапливать тот избыток энергии, который вырабатывается в котле и расходуется совершенно напрасно.

Содержание статьи:

Большинство моделей представляют собой не что иное, как стальной бак, оснащенный несколькими нижними и верхними патрубками. К первым подключаются источники тепла, ко вторым – потребители. Внутри него располагается жидкость, которую можно использовать в желаемых целях. Изготовить теплоаккумулятор своими руками не составит труда – достаточно времени, рабочих материалов с инструментом и желания.

Вводное видео по установке

Принцип работы

В основе принципа работы теплового аккумулятора лежит высокая теплоемкость воды. Описать его можно следующим образом:

  • Трубопровод котла подключается к верхней части бака, в которую поступает горячая вода – максимально нагретый теплоноситель
  • Внизу располагается циркулирующий насос, который выбирает холодную воду и пускает по системе отопления обратно в котел
  • Очень быстро остывшая ранее жидкость сменяется вновь нагретой

Когда котел прекращает работать, вода в трубопроводных магистралях системы отопления начинает постепенно остывать. Циркулируя, она попадает в бак, в котором начинает выдавливать горячий теплоноситель в трубы. Таким образом, обогрев помещений будет продолжаться определенный временной промежуток.

Функции, которые выполняет теплоаккумулятор

Современные тепло накопительные устройства – сложные аппараты, которые выполняют не одну полезную функцию:

  1. Способны обеспечивать дом горячим водоснабжением
  2. Стабилизируют температурный режим в помещениях
  3. Позволяют увеличить КПД систем отопления до максимально возможного, снижая денежные затраты на топливо
  4. Способны объединять более одного источника тепла в общий контур и наоборот
  5. Накапливают избыточную энергию, вырабатываемую котлом

Несмотря на все положительные функции, которые выполняет тепловой аккумулятор в системе отопления, он имеет два существенных недостатка:

  • Ресурс воды напрямую зависит от вместимости установленного бака, тем не менее он остается ограниченным и имеет быстрое свойство заканчиваться. Будет не лишним дополнительная система подогрева из вне
  • Из первого недостатка плавно появляется второй: более ресурсоемкие установки требуют большой свободной площади для их размещения, например, отдельного помещения в виде котельной

В дополнение советуем прочитать наше руководство по сборке солнечного коллектора своими руками

Простой тепловой аккумулятор

Самый простейший теплоаккумулятор своими руками можно изготовить, основываясь на принципе работы термоса – он за счет своих непроводящих тепло стенок не позволяет жидкости остывать на протяжении продолжительного временного периода.

Для работы необходимо подготовить:

  • Бак желаемой емкости (от 150 л)
  • Теплоизоляционный материал
  • Скотч
  • Тэны или медные трубки
  • Бетонную плиту

Вначале очередь следует подумать над тем, что будет представлять собой непосредственно бак. Как правило, используют любую имеющуюся под руками металлическую бочку. Объем ее каждый определяет индивидуально, но брать емкость менее 150 л не имеет практического смысла.

Выбранную бочку необходимо привести в порядок. Ее следует почистить, удалить изнутри пыль и прочий мусор, обработать участки, на которых начала образовываться коррозия.

Затем готовится утеплитель, которым будет оборачиваться бочка. Он будет отвечать за то, чтоб тепло как можно дольше сохранялось внутри. Для самодельной конструкции прекрасно подойдет вата минеральная. Окутав с внешней стороны емкость, необходимо ее хорошенько обмотать скотчем. Дополнительно поверхность накрывают листовым металлом или окутывают фольгированной пленкой.

Для того, чтобы вода внутри подогревалась, необходимо выбрать один из вариантов:

  1. Установка электрических тэнов
  2. Установка змеевика, по которому будет пускаться теплоноситель

Первый вариант достаточно сложен и не безопасен, поэтому от него отказываются. Змеевик же можно соорудить самостоятельно из медной трубки диаметром 2-3 см и длиной около 8-15 м. Из нее сгибается спираль и помещается в внутрь.

В изготавливаемой модели тепловым аккумулятором является верхняя часть бочки – из нее необходимо пустить отводной патрубок. Снизу устанавливается еще один патрубок – вводной, через который будет поступать холодная вода. Следует их оснастить кранами.

Простое устройство готово к использованию, но перед этим предстоит решить вопрос, связанный с пожарной безопасностью. Располагать такую установку рекомендуется исключительно на бетонной плите, по возможности отгородив стенками.

Как подключить

Человек, который много раз сталкивался с устройством систем отопления, без труда должен изготовить тепловой аккумулятор своими руками и произвести дальнейшее подключение. Не должна составить особой сложности подобная работа и для новичка.

Словами схему подключения можно описать следующим образом:

  1. Транзитом сквозь весь бак должен проходить по тепловому аккумулятору обратный трубопровод, на его концах должны быть предусмотрены полуторадюймовый вход и выход
  2. Вначале между собой соединяются обратка котла и бак. Между ними должен размещаться циркуляционный насос, гонящий воду из бочки в отсекающий кран, расширительный бак и отопительный прибор
  3. Циркуляционный насос и отсекающий кран также монтируют со второй стороны
  4. Соединять подающий трубопровод необходимо по аналогии с предыдущим, однако теперь тепловые насосы не устанавливаются

Стоит отметить, что подобным образом подключается теплоаккумулятор к отопительной системе, работающей на базе всего одного котла. Если их количество увеличивается, схема значительно усложнится.

Емкость должна дополнительно оснащаться термометром, датчиками давления внутри и взрывным клапаном. Накапливая постоянно тепло, бочка может со временем перегреться. Чтобы не допустить взрыва, необходимо сбрасывать периодически избыточное давление.

Теплоаккумулятор и разные виды отопительных систем

Устанавливать тепловой аккумулятор можно совместно с различными отопительными системами. Взаимодействуя с каждой из них, он предоставляет ряд преимуществ и быстро окупается.

Наиболее распространены теплоаккумуляторы, установленные совместно отопительным оборудованием, работающем на твердом топливе, у которых количество остатков минимально. Доведя КПД до максимально-возможного, они очень быстро разогревают отопительные радиаторы, которые вскоре изнашиваются. Часть вырабатываемой энергии лучше копить и воспользоваться, когда в ней действительно возникнет потребность.

Двукратный ночной тариф за электроэнергию – проблема для владельцев электрических отопительных котлов. Таким образом в дневное время теплоаккумулятор будет накапливать в себе тепло по более выгодной стоимости, а в ночное – отдавать его отопительной системе.

Применяются подобные установки в многоконтурных системах, распределяя воду между контурами. Если установить патрубки на разных высотах, можно осуществить отбор воды с разной температурой.

Варианты модернизации

Глядя на простейший теплоаккумулятор своими руками, человек с инженерным образованием наверняка задумается о вариантах его модернизации. Сделать это можно следующими способами:

  • Внизу устанавливают еще один теплообменник, посредством которого может происходить аккумуляция энергии, полученной солнечным коллектором
  • Можно разделить внутреннее пространство бака на несколько секций, сообщающихся между собой, чтобы расслоение жидкости по температурам было более выраженным
  • Тратиться на теплоизоляцию или нет – каждый решает сам для себя. Но несколько сантиметров пенополиуретана существенно снизят тепловые потери
  • Увеличив количество патрубков, можно будет монтировать установку к более сложным отопительным системам с несколькими контурами, работающими независимо
  • Можно сделать дополнительный теплообменник, в котором будет накапливаться питьевая вода

Видео — Тепловой аккумулятор в доме с периодической топкой

Подводим итоги

Собирать теплоаккумуляторы своими руками может абсолютно каждый. Для него нет необходимости покупать дорогостоящее оборудование, а самая простая модель состоит из комплектующих, которые у хорошего человека всегда в гараже или кладовой.

Все те, кто не доверяет самодельным устройствам, могут ознакомиться с богатым выбором моделей на рынках. Их стоимость более чем приемлемая, а вложенные средства быстро окупаются.

Теплоаккумулятор своими руками - инструкция по изготовлению

Не многие знают, что в странах Западной Европы на законодательном уровне запрещается использовать твердотопливный котел без теплоаккумулятора (ТА).

У нас такого запрета пока не ввели, но и без него уже довольно многие обзавелись этим устройством.

Какая в нем есть необходимость, и из чего можно сделать теплоаккумулятор своими руками – об этом пойдет речь в нашем материале.

Использование теплоаккумуляторов

От того, как именно сгорает твердое топливо в топке котла, зависит очень многое. Распознать режим горения можно по цвету пламени:
  1. Белый цвет означает, что в топку подается чересчур большой объем воздуха и значительная часть тепла, которое могло бы быть усвоено, вылетает вместе с ним в дымоход.
  2. Желтый цвет говорит о том, что топливо сгорает в оптимальном режиме: КПД котла в это время является максимальным, а выхлоп – наиболее экологичным. Котел проектируется так, чтобы на номинальной мощности он работал именно в таком режиме.
  3. Красный цвет говорит о недостатке кислорода: топливо горит дольше и с меньшей теплоотдачей, но КПД при этом сильно падает, а в выхлопе содержится много тяжелых углеводородных радикалов (недоокисленные части молекул топлива) и большое количество угарного газа.

Приобретая котел, мы подбираем его мощность в расчете на самую низкую температуру, которая может наблюдаться в нашем регионе. И в сильный мороз отопитель работает на номинальной мощности, при которой топливо сгорает в оптимальном режиме. Но экстремальные холода царствуют недолго, и в остальное время заслонку приходится перекрывать, уменьшая теплоотдачу. При этом режим горения превращается из оптимального в наименее выгодный.

Владельцам русских печей такая проблема не знакома: данный агрегат всегда протапливается в оптимальном режиме, а избыток тепла накапливается кирпичным массивом и затем в течение долгого времени постепенно отдается в помещение.

Хорошо бы такую тактику применить и для стального или чугунного котла, но стенки таких приборов не обладают достаточной теплоемкостью. Остается только одно: создать и подключить к котлу отдельное устройство, способное аккумулировать тепло.

Теплоаккумулятор для котла отопления

Попутно уменьшается объем угарного газа в выбросах, а подкладывать дрова или уголь нужно будет гораздо реже. При этом возможность перегрева и закипания теплоносителя в теплообменнике котла почти полностью исключается.

Не помешает теплоаккумулятор и владельцу электрического котла. Ночью, как известно, электроэнергия стоит в 3 раза дешевле, чем днем. При наличии теплоаккумулятора можно перейти на дифференцированный тариф и пользоваться электрокотлом только ночью.

Для организации экономичного отопления, особенно если обогрев помещения осуществляется от твердотопливного или электрического котла, целесообразно устанавливать теплоаккумулятор для котлов отопления. О плюсах и минусах данной системы расскажем в статье.

О том, как изготовить и собрать теплообменник своими руками, читайте далее.

Решили приобрести газовый котел отечественного производства? Здесь https://microklimat.pro/otopitelnoe-oborudovanie/kotly/gazovyj-konord-otzyvy.html вы можете ознакомиться с отзывами пользователей газовых котлов Конорд.

Принцип работы

Проводя аналогию с русской печью, несложно догадаться, что под солидным термином «теплоаккумулятор» подразумевается просто большой объем какого-либо материала, имеющего значительную теплоемкость. В системах водяного отопления в этом качестве логичнее всего использовать сам теплоноситель – теплоемкость у воды достаточно велика.

Итак, накопитель тепла представляет собой большую емкость, заключенную в теплоизолирующую оболочку и заполненную водой. Применяются разные схемы подключения такого устройства, но принцип его работы остается неизменным: за счет избытка производимого котлом тепла вода в ТА нагревается до высокой температуры и впоследствии накопленное тепло постепенно отбирается в систему отопления.

Схема работы теплового аккумулятора

Помимо основной своей функции ТА может играть роль водонагревателя, для чего внутрь него достаточно встроить змеевик. Правда, получить горячую воду в больших объемах с его помощью не получится.

Зарядку ТА можно осуществлять не только при помощи котла, но и посредством солнечного коллектора – для этого в емкость также нужно встроить змеевик, через который будет протекать нагретый солнцем теплоноситель.

Простой тепловой аккумулятор своими руками

Теплоаккумулятор для твердотопливного котла изготовить своими руками довольно просто, если следовать инструкции. Создание ТА следует начинать с расчета его объема. Можно воспользоваться следующей методикой:

Задаемся исходными данными

Максимальная температура воды: Tmax = 90 градусов.

Минимальная температура воды: Tmin = 50 градусов.

Время работы без участия котла: t = 8 часов.

Также для расчета понадобится требуемая тепловая производительность системы отопления (СО).

Следует брать средний показатель, а не тот, который соответствует самым экстремальным морозам. В противном случае ТА получится неоправданно большим и дорогим, а для его зарядки понадобится очень мощный теплогенератор.

Самый правильный способ определить мощность теплоотдачи – рассчитать теплопотери дома. Но для примера мы воспользуемся упрощенной методикой, согласно которой для обогрева площади в 10 кв. м в самый холодный период зимы требуется 1 кВт тепла. Тогда максимальная мощность СО для дома площадью 200 кв. м составит 20 кВт, а средний показатель примем равным W = 10 кВт.

Расчет объема

Исходя из полученных данных, определим количество энергии, которое должен запасти ТА:

Q = W x t x 3600 (переводим часы в секунды) = 10000 х 8 х 3600 = 288 МДж.

Теплоемкость воды составляет (возьмем значение для температуры в 70 градусов): с = 4190 Дж/кг*градус.

Тогда воды нам понадобится:

m = Q/c(Tmax – Tmin) = 288 000 000 / 4190 (90 – 50) = 1718 кг.

Принимая высоту емкости равной 2 м, определим площадь основания: S = 1,718 / 2 = 0.859 кв. м. Такую площадь будет иметь круг диаметром 1040 мм.

Для дальнейших расчетов понадобится площадь поверхности емкости без днища. Она будет равна S = 0.859 + 3.14х1,04х2 = 7,39 кв. м.

Расчет толщины теплоизоляции

Толщину теплоизоляции следует выбирать с учетом того, какая тепловая мощность требуется для отопления котельной. Теплопроводность современных теплоизоляционных материалов составляет Л = 0,040 Вт/м*градус. Следовательно, если взять теплоизолятор толщиной d = 100 мм (0,1 м), то из полностью заряженного ТА (температура воды – 90 градусов) в котельную будет проникать

q = S*(Tmax – 20) * Л / d = 7,39 * (90 – 20) * 0,040 / 0,1 = 206,9 Вт тепла (20 – температура воздуха в помещении).

Если такой показатель не устраивает, толщину теплоизоляции нужно уменьшить.

Изготовление

Итак, рассмотрим, как изготовить теплоаккумулятор для котлов отопления своими руками. Проще всего изготовить ТА из готовой стальной бочки.

За неимением таковой емкость нужно будет сварить из стальных листов. Она должна выдерживать давление, на которое рассчитан теплообменник котла (обычно 3 атм).

Расположение штуцеров зависит от схемы подключения. Если ТА подключается в качестве гидравлического разделителя, то вверху и внизу в него нужно будет врезать по два штуцера, длина которых должна соответствовать толщине утеплителя.

Одна пара (верхний + нижний) врезается со стороны котла, другая – с противоположной (здесь будет подключаться отопительный контур). К нижним патрубкам нужно будет подсоединить тройники с термометрами.

Бочку оборачивают фольгой, а затем – утеплителем. В качестве последнего следует использовать материал, не выделяющий ядовитых испарений при контакте с горячими поверхностями.

Пенопласт этому условию не удовлетворяет – понадобится минеральная вата, причем такая, которая не содержит фенол-формальдегидных смол в качестве связующего. Такой утеплитель (базальтовая вата) выпускается для теплоизоляции дымоходов.

Остается обитую теплоизолятором емкость закрыть снаружи кожухом из жести или тонколистовой стали.

Теплоаккумулятор из бочки

Если ТА предполагается параллельно использовать для приготовления горячей воды, его нужно оборудовать змеевиком. Последний делается из медной трубы диаметром 20 мм.

В крышку емкости необходимо вмонтировать предохранительный клапан для сброса избыточного давления.

Чтобы гарантированно обезопасить СО от замерзания при долгом простое котла, установите в верхней части ТА электронагреватель (ТЭН) с термостатом, настроенным, к примеру, на температуру в 40 градусов.

Этапы установки теплоаккумулятора дома

Первым делом необходимо оценить несущую способность пола на месте установки. Она может оказаться недостаточной, поскольку вес ТА имеет довольно солидный. В таком случае необходимо соорудить бетонный фундамент. Поверх фундамента нужно уложить подсыпку из керамзита и уже на нее ставить бак.

Обвязка

В нашем примере применена схема обвязки с гидравлическим разделением, в которой ТА играет роль гидрострелки. Согласно ей, накопитель нужно подключать следующим образом:

  1. С одной стороны – к котлу: подающий трубопровод (от котла) – к верхнему патрубку, обратный – к нижнему. При этом в обвязке котла, как обычно, делается перемычка с узлом подмеса, предотвращающим попадание в теплообменник холодной воды.
  2. С другой стороны – к отопительному контуру, также снабженному перемычкой и узлом подмеса. Забор воды в контур должен осуществляться сверху, а возврат – снизу.

В каждый контур врезается по циркуляционному насосу. Тот, который установлен между ТА и котлом, прогоняет теплоноситель через теплогенератор, заряжая накопитель. Второй насос, установленный на стороне отопительного контура, гоняет теплоноситель через радиаторы.

Теплоаккумулятор – схема монтажа

Как только его температура опустится ниже определенной отметки, откроется клапан смесительного узла и в контур поступит из ТА новая порция горячей воды.

Настройка

Для правильного движения среды внутри теплоаккумулятора нужно добиться, чтобы насос между ТА и котлом прокачивал больше жидкости, чем второй агрегат.

Для того чтобы точно определить мощность каждого насоса, пришлось бы выполнить сложнейший гидравлический расчет, ведь сопротивления контуров значительно отличаются. На практике вместо этого предусматривают возможность регулировки производительности каждого нагнетателя, что дает возможность точно согласовать их работу.

Есть два пути:
  1. Установить нагнетатели со ступенчато регулируемой скоростью вращения двигателя. Сегодня в продаже можно найти 3-скоростные циркуляционные насосы.
  2. В точке подключения обратки отопительного контура к тепловому аккумулятору можно установить регулирующий вентиль. Меняя его проходное сечение, мы добьемся изменения расхода через циркуляционный насос отопительного контура.

Настройку производительности насосов осуществляют при полностью открытом смесительном клапане отопительного контура. При правильной балансировке температура на термометре со стороны отопительного контура должна быть ниже, чем на термометре со стороны котла.

Владельцу автономной отопительной системы необходимо знать, как осуществить ремонт циркуляционного насоса своими руками в случае неожиданной поломки и невозможности обратиться к специалистам. Разберем методы определения и устранения неисправностей.

Для чего нужен предохранительный клапан для бойлера и как его правильно установить, вы узнаете в этом материале.

Видео на тему

Как самому сделать теплоаккумулятор для отопления

В нынешние времена удорожания всех видов энергоносителей многих домовладельцев стал серьезно волновать вопрос их экономичного использования. Один из вариантов – это включение в схему отопления большой емкости с водой – теплового аккумулятора.
Но емкости заводского изготовления отличаются немалой стоимостью. В то же время некоторые домашние мастера – умельцы разобрались, как можно сделать теплоаккумулятор своими руками, что выйдет гораздо дешевле. Об этом опыте и будет рассказано в данной статье.

Немного о назначении и конструкции

Прежде чем давать рекомендации по изготовлению этого важного узла, вкратце определимся, для чего он нужен и рассмотрим его заводскую конструкцию. Итак, аккумулирующие емкости с водой применяются в случаях периодического отопления дома, а точнее:

  • при работе электрического котла с многотарифным счетчиком, когда нагреватели могут экономно функционировать лишь в ночное время. Агрегат, работая на полную мощность, обогревает дом и накапливает тепловую энергию в баке с водой;
  • накопление теплоты необходимо и для котлов на твердом топливе, которые наоборот, останавливаются в ночное или другое время, если некому заложить в топку новую порцию дров или угля;

Агрегаты заводского изготовления представляют собой бак круглой формы, заполненный водой. В нее погружены несколько змеевиков, в них циркулирует теплоноситель котлового и других контуров отопления. Конструкция достаточно сложна в производстве и оттого недешева, в этом можно убедиться, посмотрев чертежи теплоаккумулятора.

Если попытаться взять за основу подобное устройство, чтобы самостоятельно изготовить теплоаккумулятор, то в конечном счёте он обойдется ненамного дешевле заводского. Медные или нержавеющие трубки и работа по навивке из них змеевиков, герметизация вводов и утепление отнимут у вас массу времени и денежных средств. Для домовладельцев, желающих произвести сборку и установку самодельного накопителя тепла, есть более простое решение, описанное ниже.

Расчет объема накопительного бака

Данное решение заключается в том, что теплоаккумулятор, сделанный своими руками, представляет собой обычную утепленную емкость с двумя патрубками для присоединения к системе отопления. Суть заключается в том, что котел в процессе работы частично направляет тепловой носитель в накопительный бак, когда радиаторы в этом не нуждаются. После отключения источника тепла происходит обратный процесс: работа системы отопления поддерживается водой, поступающей из аккумулятора. Для этого нужно будет правильно выполнить обвязку накопительной емкости с теплогенератором.

Первым делом надо определить объем бака для аккумуляции тепловой энергии и произвести оценку возможности его размещения в котельной. Кроме того, изготовление теплоаккумуляторов для твердотопливных котлов необязательно начинать с нуля, есть различные варианты подбора готовых сосудов подходящей вместительности.

Мы предлагаем ориентировочно определить объем бака самым простым способом, основанным на законах физики. Для этого надо иметь такие исходные данные:

  • тепловая мощность, потребная на обогрев дома;
  • время, в течение которого источник тепла будет отключен и его место займет аккумулирующая емкость для отопления.

Способ расчета покажем на примере. Есть здание площадью 100 м2, где теплогенератор простаивает 5 часов в сутки. Укрупненно принимаем необходимую тепловую мощность в размере 10 кВт. Это значит, что каждый час аккумулятор должен отдавать в систему 10 кВт энергии, а на весь промежуток времени ее надо накопить 50 кВт. При этом вода в баке нагревается минимум до 90 ºС, а температура на подаче в системах отопления частных домов при стандартном режиме принимается равной 60 ºС. То есть, разность температур составляет 30 ºС, все эти данные мы подставляем в хорошо знакомую из курса физики формулу:

Q = cmΔt

Поскольку мы хотим узнать количество воды, что должен содержать тепловой аккумулятор, то формула принимает такой вид:

m = Q / c Δt, где:

  • Q – общий расход тепловой энергии, в примере равен 50 кВт;
  • с – удельная теплоемкость воды, составляет 4.187 кДж / кг ºС или 0.0012 кВт / кг ºС;
  • Δt– разность температур воды в баке и подающем трубопроводе, для нашего примера это 30 ºС.

m= 50 / 0.0012 х 30 = 1388 кг, что занимает ориентировочный объем 1.4 м3. Итак, тепловая батарея для твердотопливного котла емкостью 1.4 м3, наполненная водой, нагретой до 90 ºС, будет обеспечивать дом площадью 100 м2 теплоносителем с температурой 60 ºС в течении 5 часов. Потом температура воды упадет ниже 60 ºС, но еще какое-то время (3—5 часов) понадобится на полную «разрядку» аккумулятора и остывание помещений.

Важно! Для того чтобы тепловой аккумулятор, изготовленный своими руками, успевал полностью «зарядиться» во время работы котла, последний должен иметь не менее чем полуторный запас по мощности. Ведь отопителю надо одновременно обогревать дом и загружать накопительный бак горячей водой.

Рекомендации по изготовлению

Если требуется сделать аккумулирующую емкость с нуля, то лучше всего для этой цели использовать обычный листовой металл толщиной 2 мм. Варить бак можно и из нержавейки, но вовсе не обязательно, так как подобный материал обойдется очень дорого. Для удобства последующего утепления и простоты изготовления емкость лучше делать прямоугольной формы. Зная объем бака, легко рассчитать его габариты в соответствии с условиями его монтажа в котельной.

Совет. Если вы хотите обеспечить совместное функционирование накопительного сосуда и самотечной системы отопления, то нужно смастерить теплоаккумулятор открытого типа, то есть, обеспечить его сообщение с атмосферой через трубку в верхней части бака. Ставить его надо выше уровня радиаторов, для чего придется дополнительно сварить подставку из стальных труб или уголков.

В некоторых случаях нет смысла варить емкость с нуля, можно сделать водяной теплоаккумулятор из бочки. Хорошо подойдет железная бочка большой вместительности, в нее потребуется врезать два патрубка для присоединения к системе. Пластмассовые бочки применять рискованно из-за высокой температуры воды, разве что на маркировке изделия будет указана максимальная температура содержимого до 100 ºС.

Такое же предостережение мы даем тем домашним умельцам, что мастерят теплоаккумуляторы из еврокуба. Конечно, это очень удобный способ, но данная пластмассовая емкость рассчитана на максимальную температуру не более 70 ºС. Поэтому еврокуб подойдет в качестве накопительного бака, работающего с теплыми полами, где температура теплоносителя редко превышает 50 ºС, для радиаторных систем он не годится.

Чем утеплить теплоаккумулятор

Даже когда бак находится в теплом помещении, то разность температур между воздушной средой и теплоносителем слишком велика – от 50 до 70 ºС. Чтобы не терять тепло и не обогревать им топочную, надо обязательно выполнять утепление теплоаккумулятора. Проще всего это сделать с помощью пенопласта толщиной 100 мм и плотностью 25 кг/м3. Его легко клеить к металлическим стенкам и вырезать отверстия под патрубки.

Сгодится для утепления и минеральная вата той же толщины, хотя крепить ее несколько сложнее. Плотность материала – 135—145 кг/м3. Для круглых баков из бочек придется использовать рулонные утеплители типа ISOVER, тут придется изрядно повозиться с крепежом, особенно в нижней части емкости.

Ниже на видео показана установка и схема теплоаккумулятора с подключением его к котлу и отопительной системе:

Статья в тему: Как сделать отопление в частном доме — подробное руководство

Заключение

 

Использование накопительного бака позволяет экономить топливо при работе дровяных котлов и пользоваться выгодным ночным тарифом в случае с теплогенератором электрическим. В изготовлении бак не столь уж сложен, надо только иметь некоторые навыки.

Источник

устройство, принцип работы, сборка теплонакопителя для твердотопливного котла

Некоторые элементы обвязки обогревателей в частном доме возможно изготовить самостоятельно. Так, сделанная своими руками буферная емкость для твердотопливного котла позволит обеспечить бесперебойную и эффективную работу системы отопления.

Этот резервуар называют еще теплоаккумулятором или накопителем, так как он способен накапливать тепловую энергию и отдавать ее в систему, даже когда котел не работает на полную мощность.

Устройство теплового агрегата

В настоящее время тепловой аккумулятор представляет собой довольно сложную конструкцию. Более простой агрегат по своему устройству напоминает термос. В его конструкцию входят следующие элементы:

  • внутренний бак;
  • внешняя обшивка;
  • утеплитель.

Внутренний бак имеет четыре патрубка: два соединяют с твердотопливным котлом, два — с контуром системы отопления. В верхней части резервуара устанавливают предохранительный клапан для сброса лишнего давления.

В низшей точке бака находится кран для слива жидкости. В схему обвязки встроены два циркулирующих насоса, которые осуществляют движение теплоносителя под определенным давлением.

В общей схеме системы отопления агрегат занимает место непосредственно между котлом и радиаторами.

Если он отсутствует, то для того чтобы процесс проходил равномерно, необходимо постоянно подкладывать дрова в топку. Иногда эту процедуру невозможно выполнить вследствие конструктивных особенностей котлов.

Принцип действия

Принцип работы буферной емкости можно сравнить с действием автомобильного аккумулятора. Пока двигатель работает, генератор вращается и вырабатывает электрический ток, который накапливается в автомобильной батарее.

Как только мотор глушат, снабжение электрооборудования электрическим током обеспечивает аккумулятор. Так и в этом случае, когда разжигают твердое топливо в котле, охлажденная жидкость из резервуара насосом подается в обогреватель, где она нагревается.

Поступающий в буферную емкость горячий теплоноситель поднимается в верхнюю часть, так как он легче холодной жидкости. Сначала движение воды в системе осуществляется по малому кругу: между котлом и тепловым аккумулятором.

Когда теплоноситель в емкости нагреется, он начинает поступать по трубопроводам к батареям. Затем остывшая жидкость по обратным трубопроводам попадает в нижнюю часть буферного бака.

Одним из недостатков такой конструкции является длительный начальный период прогрева теплоносителя. Иногда он может занимать от 2 до 4 часов. Но все же у этого устройства немало положительных свойств, а именно:

  • экономия топлива;
  • простота конструкции, что позволяет сделать теплоаккумулятор своими руками;
  • повышение коэффициента полезного действия твердотопливного котла;
  • легкое обслуживание оборудования;
  • защита элементов системы отопления от перегрева.

В основу работы теплоаккумулятора заложена высокая теплопроводность жидкости. Например, при остывании 1 л воды на 1° C позволяет нагреть 1 м³ воздуха в помещении на 4° C.

Поэтому если в определенный момент передать тепловую энергию некоторому объему воды, то затем его хватит для обогрева жилища в течение длительного времени.

Расчет объема бака

Прежде чем приступить к изготовлению теплонакопителя для отопления своими руками, необходимо рассчитать примерный объем будущего агрегата. Сначала следует узнать приблизительную мощность теплоотдачи емкости, учитывая, что для обогрева в зимний период 10 м² помещения расходуется 1 кВт мощности.

То есть для отопления большого загородного дома площадью 200 м² потребуется 20 кВт тепловой энергии, но для расчета принимают средний показатель — 10 кВт. При этом максимальная температура теплоносителя берется равной 90° C, а минимальная — 50° C.

Время действия буферного бака без участия котла составляет 8 часов. В дальнейшем, проведя расчет по формуле m=Q/c (tmax-tmin), можно узнать количество воды, поступающее в бак. В формуле следующие обозначения:

  • Q — расход тепловой энергии;
  • c — удельная теплоемкость воды;
  • (tmax-tmin) — разница между максимальной и минимальной температурами.

После расчета получится 1718 кг воды, то есть примерный объем будет равен 1,8 м³. Объем резервуара можно определить и по каталогу заводских видов теплоаккумуляторов, сравнив их технические характеристики, которые могут подойти к требуемой площади помещения.

Самостоятельное изготовление

Чтобы проще изготовить теплоаккумулятор для котлов отопления своими руками, лучше всего выбрать прямоугольную форму конструкции. Для этого подойдут детали из листовой гофрированной стали, так как они обладают повышенной жесткостью.

Обязательно присутствие сварочного аппарата, так как все основные сборочные работы проводят при помощи этого агрегата. Кроме листов стали, понадобится металлический уголок для установки распорок.

Дело в том, что конструкция будет работать под давлением, поэтому ее следует усилить. Сначала сваривают внутреннюю емкость, расперев уголками противоположные стенки. Затем собирают наружный корпус, который по размерам будет немного больше, чтобы хватило места для установки утеплителя.

Одну сторону кожуха не закрывают, через нее вставляют внутреннюю емкость. Затем вваривают патрубки в рабочий бак для подключения системы отопления, предохранительного клапана, сливного крана, а пустоты между ним и кожухом заполняют утеплителем.

Для этого подойдет минеральная вата или монтажная пена. Далее приваривают стенку кожуха и подключают теплоаккумулятор к системе отопления. Не стоит забывать после сварки конструкций проверить их на герметичность.

Как сделать теплоаккумулятор своими руками

В большинстве случаев любая система отопления имеет три основных части, среди которых можно выделить трубопроводы, радиаторы отопления и бойлер, который заменяется отопительными приборами. Но системы последнего поколения часто комплектуются и другими полезными устройствами, среди которых можно выделить теплоаккумулятор. Сделать своими руками в домашних условиях довольно просто. С помощью этой добавки вы можете накапливать лишнюю энергию, произведенную в котле и потраченную зря.В большинстве случаев эти варианты представляют собой металлическую емкость, которая оснащена несколькими насадками, расположенными сверху и снизу. К последним подключаются источники тепла, а к последним подключаются потребители. Внутри находится жидкость, которую владельцы могут использовать в своих целях.

Производственные манипуляции можно произвести довольно просто, для этого необходимо подготовить определенный набор инструментов и материалов, а также запастись терпением.

Особенности конструкции


Если вы решили изготовить теплоаккумулятор своими руками, для начала необходимо ознакомиться с особенностями и принципом работы этого оборудования.Основа функционирования - значительная теплоемкость воды. Трубопровод котла подключается к верхней части бака, в последний из которых поступает горячая вода максимально возможной температуры. Внизу должен располагаться циркуляционный насос, отвечающий за отбор холодной воды и прокачку ее по системе отопления. Затем жидкость стекает обратно в бойлер.


В кратчайшие сроки ранее охлажденная жидкость заменяется свеже нагретой. После прекращения работы котла вода в магистралях системы начинает медленно остывать.В процессе циркуляции он попадает в резервуар, в котором начинается выдавливание горячего теплоносителя в трубы. Это позволяет обеспечить отопление на определенный период времени.

Необходимость в тепловом аккумуляторе


Если вы решили изготовить тепловой аккумулятор своими руками, следует знать, какие функции он выполняет. Стоит учесть, что современные накопители тепла - это довольно сложные устройства, выполняющие множество функций. Они обеспечивают жилье горячей водой, позволяют максимально повысить эффективность систем отопления дома, при этом снижая финансовые затраты на топливо.Помимо прочего, устройство способно стабилизировать температурный режим в помещении.

С помощью этого оборудования можно объединить несколько источников тепла, включив их в единую цепь. Также может быть выполнена обратная задача. Теплоаккумулятор своими руками изготавливается довольно просто. В нем будет накапливаться избыточное количество энергии, вырабатываемой котлом.



Недостатки теплового аккумулятора


Если вы решили изготовить теплоаккумулятор для котла своими руками, то нужно учитывать, что у него есть существенные недостатки, среди них можно выделить то, что водный ресурс будет зависят от объема установленной мощности.Емкость - понятие очень ограниченное, поэтому вода имеет тенденцию к выходу. Ввиду этого владельцы частных домов часто запасаются дополнительной системой отопления. Первый недостаток порождает второй: он выражается в необходимости внушительной площади, которая требуется более ресурсоемким установкам. Это может быть отдельное помещение, имеющее вид котельной. Не в каждом доме есть возможность обустроить такое помещение.

Изготовление простого теплового аккумулятора


Если вам нужен тепловой аккумулятор, сделать это оборудование своими руками будет довольно просто.В его основе должен быть принцип работы термоса. Наличие стен, не способных проводить тепло, не позволяет теплоносителю достаточно продолжительное время остывать. Для работы потребуется подготовить емкость, объем которой составляет 150 литров и более. Потребуются скотч, бетонная плита, утеплитель, а также медные трубы. Последние можно заменить ТЭНами.

Рекомендации специалистов


При изготовлении аккумуляторов тепла для собственного отопления на первом этапе нужно подумать о том, как будет выглядеть бак.Чаще всего для его изготовления используется металлическая бочка, которую можно найти даже в своем районе. Конечный объем можно определить индивидуально, однако использовать бак емкостью менее 150 литров не стоит. Это связано с несоответствием работы.

Технология изготовления


Если вы решили изготовить своими руками теплоаккумулятор, чертежи которого можно подготовить самостоятельно, на первом этапе выбранную бочку необходимо привести в порядок.Для этого его тщательно очищают, убирают мусор и пыль изнутри. Если есть участки, на которых уже образовалась коррозия, то этот дефект необходимо утилизировать.

Теперь мастеру предстоит подготовить теплоизоляцию, которой будет обертываться тара. Изоляционный материал отвечает за сохранение тепла внутри ствола в течение более длительного времени. Минеральная вата отлично подходит для самодельных устройств. Ей нужно обернуть емкость снаружи, закрепив все скотчем.Дополнительно конструкция покрывается листовым металлом, который можно заменить фольгированной пленкой. С его помощью нужно тщательно обернуть емкость.

Внутреннее наполнение


Если вы будете делать теплоаккумулятор из бочки своими руками, важно определиться, при каком варианте вода внутри будет нагреваться. Можно использовать электрические нагревательные элементы, а также змеевик, последний из которых подводит теплоноситель. Первый вариант довольно сложен, к тому же небезопасен.Именно поэтому от него рекомендуется отказаться. Что касается катушки, то ее можно сделать самостоятельно, используя медную трубку. Диаметр последних должен составлять 3 см, а длина может варьироваться от 8 до 15 метров. Из этого элемента готовится спираль, которую затем помещают внутрь.

Заключительные работы

Верхняя часть бака выполняет роль аккумулятора тепла в изготавливаемой модели. От него придется проложить патрубок. В нижней части монтируется еще одна труба, которая будет вводной.По нему будет течь холодная вода. Эти компоненты системы должны поставляться с кранами. По этому можно считать, что довольно простое устройство полностью готово к эксплуатации. Однако перед его использованием важно решить один вопрос, связанный с пожарной безопасностью. В правилах написано, что установка должна располагаться только на бетонной плите, по возможности конструкцию следует отгородить стенами.

Особенности подключения

Если вы задумываетесь о том, как сделать теплоаккумулятор своими руками, то вам необходимо ознакомиться с особенностями подключения.Возвратная линия должна проходить через весь резервуар при транспортировке, на концах которой должны быть вход и выход. Изначально необходимо соединить бак и обратку котла между собой. Между ними находится циркуляционный насос. Последний устанавливается со второй стороны, а также запорная арматура. Подводящий трубопровод стыкуется по той же технологии, что и предыдущий, но теперь тепловые насосы не устанавливаются.

Накопление солнечной энергии для дома, фермы и малого бизнеса: предложения по выбору и использованию материалов и оборудования для аккумулирования тепла

AE-89


AE-89

Университет Пердью

Служба расширения сотрудничества

West Lafayette, IN 47907





Стив Экхофф и Мартин Окос

Департамент сельскохозяйственной инженерии
Университет Пердью

Содержание

Вступление

Типы материалов, используемых для хранения солнечного тепла

Преимущества и недостатки различных материалов для хранения

Как материалы с фазовым переходом работают в солнечном аккумуляторе

Размер и тип горных пород, наиболее подходящих для хранения тепла

Тип используемого теплоносителя

Определение размера вашего складского помещения

Расположение вашего хранилища

Важность конфигурации хранилища (форма)

Уменьшение необходимого объема хранения

Предложения при покупке коммерческого накопителя тепла

Связанные публикации

 

Никому не нужно определять для рядового гражданина термин «энергия». хруст ».Наши ежемесячные счета за топливо и коммунальные услуги - постоянное напоминание о том, что стоимость уровня жизни Америки. А «эксперты» предупреждают, что кризис здесь, чтобы остаться.

Из альтернатив традиционным формам энергии одна получение самого серьезного внимания - по крайней мере, для дома, фермы и небольших Потребности бизнеса в отоплении - это солнечная энергия. Сегодня много новых домов проектируются и строятся для размещения солнечного отопления системы. Различные типы переносных коллекторов и солнечного отопления пакеты конверсии легко доступны на розничном рынке.

К сожалению, слишком многие перспективные пользователи солнечной энергии тоже мало информации о некоторых аспектах строительства или преобразования к солнечной системе отопления. Одна область неадекватной или дезинформации в особенным (и дорогостоящим из-за того, что допускаются ошибки) является хранение собранная энергия. Таким образом, цель данной публикации - ответить на несколько основных вопросов о правильном выборе и использовании устройства хранения тепла.

В публикацию включены обсуждения различных аккумуляторов тепла. материалы и средства массовой информации, и как выбрать "правильный"; размер, расположение и форма запоминающего устройства; и предложения по покупкам для такого устройства.Включены два рабочих листа (с примерами) - один для определение того, сколько тепла вам может понадобиться, а другой для выяснения того, насколько вы сможете сократить расходы за счет правильного изоляция. Перечисленные в конце этой публикации доступны Purdue Extension публикации, которые касаются связанных аспектов солнечного отопления и энергосбережение.

Какие материалы используются для хранения солнечного тепла и есть ли "лучший" один?

Ряд материалов будет работать как носитель информации дома, на ферме или системы солнечного отопления для малого бизнеса; но только три обычно рекомендуется в это время - камень, вода (или водно-антифризные смеси) и химическое вещество с фазовым переходом, называемое глауберовской солью.Эти материалы, наиболее последовательно соответствующие критериям выбора носитель информации, а именно способность (1) передавать тепло своему точки нанесения при желаемой температуре, и (2) сделать это дешево, исходя не столько из стоимости материала, сколько из стоимости самого общая система и ее обслуживание.

Таким образом, не существует одного «лучшего» теплоаккумулирующего материала; а скорее каждый из трех имеет характеристики, которые могут сделать его наиболее желанным при определенных условиях.

Каковы преимущества и недостатки каждого материала для хранения, и при каких условиях его можно будет использовать?

Скалы

В качестве материала для хранения камни дешевы и легко доступны, имеют хорошие характеристики теплопередачи с воздухом (теплоносителем) при низкие скорости и действуют как собственный теплообменник. Основной недостатками являются их высокое соотношение объема на единицу хранения по сравнению с вода и материалы с фазовым переходом (что означает больший запас тепла области), а также трудности с конденсацией воды и микробиологическим Мероприятия.Если точка росы поступающего в хранилище воздуха выше температуры породы, влага в воздухе конденсируется на камни. Влага и тепло в горном дне могут привести к возникновению микробов. рост.

Каменное хранилище - самая надежная из трех систем хранения. из-за своей простоты. После того, как система установлена, обслуживание минимален, и некоторые вещи могут снизить производительность хранилища.

Воздушные солнечные коллекторы обычно используются с каменными хранилищами. устройств.Поскольку воздухосборники дешевле и не требуют обслуживания чем жидкостные коллекторы, система, использующая каменные накопители и солнечные коллекторы кажется наиболее логичным вариантом для отопления жилых домов. Тем не мение, другие обстоятельства, такие как наличие дешевых материалов, ограниченное коллектор или место для хранения или несовместимость с существующим система отопления, может диктовать использование воды или фазового перехода устройство хранения материала. Помните, однако, что окончательный решающим фактором должны быть начальные затраты и затраты на обслуживание система.

Обсуждается тип и размер горных пород, которые лучше всего хранят тепло. позже.

Вода

Вода в качестве материала для хранения имеет преимущества в том, что она недорогая. и легко доступны, имеют отличную теплопередачу характеристики и совместимость с существующей горячей водой системы. К его основным недостаткам можно отнести трудности с системой. коррозия и утечки, а также более дорогие строительные расходы.

Благодаря хорошему соотношению теплоемкости к объему (в пять раз больше, чем скала) и большая эффективность жидкостных солнечных коллекторов, Системы сбора и хранения жидкостей могут быть очень практичными: (1) где доступно тщательное техническое обслуживание (например, в многоквартирном доме или промышленные здания), (2) где конечным использованием является горячая вода (например, как в молочном сарае или на предприятии пищевой промышленности), или (3) где система хранения воды может быть напрямую соединена с существующим отоплением система как в жилом водонагревателе плинтус отопления.

Вместо камня можно также рассмотреть систему хранения воды. хранение в ситуациях, когда пространство ограничено. Бак для воды может легко закапывать под землю для экономии места.

Материалы с фазовым переходом (PCM)

Глауберова соль вещества с фазовым переходом из-за низкого содержания объема на каждую хранимую БТЕ, требует только 1/8 пространства камней и 2/5 пространство воды для сопоставимого хранения тепла (см. рисунок 1).Это также поглощает и отдает большую часть тепла при постоянном температура. Недостатки глауберовской соли, по крайней мере, на данный момент, его стоимость относительно камня и воды, а также различные технические проблемы (например, проблемы с упаковкой из-за плохой термической проводимость и ее коррозионный характер). Такие проблемы нужно устраняется до того, как можно будет гарантировать надежность PCM.

Рисунок 1. Сравнительные объемы для того же количества аккумуляторов тепла. с использованием трех разных материалов для хранения.

Материалы с фазовым переходом чаще всего используются в ситуациях, когда существуют ограничения по пространству. Часто стоимость дополнительного места в новый дом для каменного хранилища будет больше, чем добавленная стоимость о покупке ПКМ, такого как глауберова соль. Эти материалы также очень желательно, если ставка делается на поддержание постоянного температура. Жилые помещения, отапливаемые PCM, часто более комфортны, так как температура воздуха в хранилище более равномерная, пока разрядка.

Как материалы с фазовым переходом работают в солнечном аккумуляторе?

PCM - это химические вещества, которые претерпевают твердое-жидкое переход при температурах в желаемом диапазоне нагрева целей. В процессе перехода материал поглощает энергию поскольку он переходит из твердого состояния в жидкость и высвобождает энергию по мере продвижения обратно в твердое состояние. Что делает PCM желательным для хранения тепла, так это его способность удерживать одновременно очень разное количество энергии температура.

Чтобы проиллюстрировать это, рассмотрим фазовые изменения, которые происходят с водой. Если вода помещается в морозильную камеру, тепло отводится из нее хладагент, пока он не станет льдом. Если затем поместить лед в жидкость при комнатной температуре, она тает, поскольку поглощает энергию из этого окружающая жидкость. Количество поглощенного тепла составляет около 143 БТЕ на фунт, что означает, что фунт льда может охладить фунт воды от От 175 ° F до 32 ° F, в то время как само по себе только меняет форму (т.е., от льда при 32 ° до воды при 32 °).

В настоящее время изучаются потенциальные теплоаккумулирующие материалы на минимум дюжина химических соединений, которые изменяют фазу при температуре в пределах полезного диапазона для отопления помещений. Однако на данный момент продается только глауберова соль (декагидрат сульфата натрия) коммерчески. Соль Глаубера меняет фазы при 90 ° F и имеет 108 БТЕ на фунт «скрытого тепла» (количество поглощенного или выделенного тепла во время смены фазы).Из-за высокой скрытой теплоты глауберова соль требует меньшего объема хранения, чем камень или вода; что могло означает более низкую стоимость складских помещений и больше полезного пространства в доме чтобы компенсировать относительно высокую стоимость материала.

У ПКМ есть некоторые химические свойства, которые могут вызывать проблемы при нагревании. хранение и передача; но большинство из них были преодолены или преодолеваются. Один что PCM имеют тенденцию к переохлаждению при отводе тепла. Это значит, что, вместо того, чтобы отдавать скрытую теплоту при температуре фазового перехода, соль PCM может оставаться жидкостью, пока не упадет, возможно, до 15-30 ° ниже этой температуры.Для борьбы с этим сверхохлаждением »по Глауберу соль, около 3 процентов химического вещества, декагидрат тетрабората натрия, добавляется, чтобы вызвать фазовый переход при надлежащей температуре.

Еще одна проблема с солевыми ПКМ - это неконгруэнтное плавление, что происходит, когда соль частично нерастворима в воде кристаллизация. В случае глауберовской соли при ее плавлении температуре около 15 процентов сульфата натрия остается в нерастворимая безводная форма.Будучи вдвое более плотным, чем насыщенный раствор, безводный осаждается и не перекристаллизовывается при тепло отводится. Чтобы предотвратить это, используется загуститель, чтобы сохранить водный раствор в суспензии, пока он не сможет преобразоваться в кристалл структура при отводе тепла.

Способность аккумулировать тепло снизится со 108 примерно до 60 БТЕ на фунт по мере оседания безводного. В настоящее время лучшее загущение Используемым агентом является аттапульгитовая глина, которая при добавлении к глауберовской соль в количестве 7-10 процентов, препятствует оседанию безводный и не разлагается со временем.

Примечание : Остерегайтесь смесей, содержащих целлюлозу, крахмал, опилки, силикагель, диоксид кремния и т. д. Эти типы загустителей хорошо подходят для некоторое время, но в конечном итоге либо гидролизуются солью, либо разлагается бактериями и становится неэффективным. Имея дело с уважаемая компания должна устранить некоторые из этих опасений. Не позволяйте продавец продаст вам «секретный» загуститель; если бы это было хорошо он был бы запатентован, и не было бы необходимости в секретах.)

Если в качестве материала для хранения используется камень, какой размер и тип лучше всего подойдут?

Хотя размер выбранной породы будет определяться в первую очередь стоимость, как правило, чем больше размер, тем лучше для хранения целей. Основная причина в том, что требуется меньше энергии, чтобы заставить теплопередача воздуха через большие камни, чем через маленькие. Горные породы менее дюйма в диаметре обычно слишком малы; тогда как еще более 4-6 дюймов в диаметре слишком велики из-за недостаточного площадь поверхности теплопередачи.

Собирая камень для хранения, ищите округлое поле. камни диаметром от 4 до 6 дюймов. При коммерческой покупке у каменный карьер, самый крупный из имеющихся, вероятно, "септический" гравий », диаметр которого составляет 1–3 дюйма. Но не переусердствуйте. озабочен размером; соглашайтесь на 2-дюймовый септический гравий, если у вас есть платить больше за камень большего размера. Если есть, старый кирпич дома хороший материал для хранения при штабелировании для обеспечения циркуляции воздуха.

Вероятно, более важным, чем размер камня, является его однородность. Если слишком много вариаций, более мелкие камни заполнят пустоты между более крупными камнями, тем самым увеличивая мощность воздуходувки требование. Кроме того, избегайте камней, которые имеют тенденцию к масштабированию и чешуйки, например известняк. Образовавшаяся «пыль» улавливается теплопередающий воздух и либо забивает фильтры печи, либо, если печь обходится, выдувается прямо в зону нагрева.

Поскольку воздух необходимо продувать через каменное дно, необходимо знать необходимое количество энергии. В общем, чем быстрее поток воздуха и / или чем меньше размер камня, тем больше потребляемая мощность.

Например, скорость воздуха 50 футов в минуту через 10-футовый слой 1-дюймовой породы имеет перепад давления около 1 дюйма. вода (статическое давление). Снижение скорости до 30 футов в минуту сократит падение давления до 1/2 дюйма водяного столба.Падение давления по всей системе (т. е. коллектор, платформа для хранения и воздуховоды) должно быть не более 3-4 дюймов водяного столба (статическое давление).

Перед заполнением хранилища рассмотрите возможность мытья или проверки. из «штрафов», которые в противном случае могли бы заполнить пустоты. Каменное хранилище должен позволять отвод скопившейся влаги. Также, рассмотреть способы предотвращения роста плесени и бактерий, одним из которых является поддержание высокой температуры хранения даже в периоды малой нагрузки.

Какой тип теплоносителя мне следует использовать?

Средствами переноса, наиболее часто используемыми в системах солнечного отопления, являются: воздушные, водяные и водо-антифризные смеси. Какой из них вам следует использовать вполне может быть продиктовано типом выбранного материала для хранения. Для Например, для хранения горных пород в качестве среды передачи требуется воздух; вода или хранилища воды-антифриза используют ту же жидкость для передачи тепла; Хранилище PCM. с другой стороны, использовал бы воздух или жидкость, в зависимости от типа теплообменника.

Многие из первых домов, построенных на солнечной энергии, использовали водные коллекторы. с накоплением воды из-за преимуществ повышенной эффективности и уменьшенного размера. Однако в настоящее время солнечные системы отопления, использующие воздух в качестве средства переноса рекомендуется для домашнего использования. Один причина - меньшая вероятность повреждения; неисправная система передачи воздуха почти не вызовет проблем, связанных с протекающей или замерзшей водой. система будет. Кроме того, воздуховоды и воздуховоды обычно дешевле и требуют меньшего обслуживания.До более надежной и «отказоустойчивой» жидкости. системы разработаны, воздух, вероятно, по-прежнему будет рекомендован теплоноситель для домашнего солнечного отопления.

Насколько большим должен быть мой солнечный накопитель тепла?

Необходимый объем хранилища зависит от четырех факторов: (1) нагрев потребность отапливаемой площади, (2) дня резерва хранения желаемый, (3) температурный диапазон, в котором сохраняется тепло, и (4) тип используемого материала для хранения.Ниже приводится краткое обсуждение каждого коэффициент и рабочий лист I (с примером) для расчета необходимого тепла емкость хранилища с использованием различных материалов для хранения.

Потребность в обогреве - это количество тепла, необходимое для поддержания желаемого температура в доме или другом здании. Это равно сумме тепла, которое конструкция теряет в окружающую среду через стены и кровля за счет теплопроводности и конвекции. Эта потеря тепла может быть оценивается по простым уравнениям, найденным в большинстве тепловых переводные книги (см. Связанные публикации на стр. 9) или часто газ и Представители теплотехнической компании примут такие решения, как услуга.

Запас хранения - это количество тепла, необходимое, если энергия не может быть собираются в течение заданного количества дней. Хотя и весьма изменчивый, сумма резерва, обычно планируемая для солнечного отопления дома при настоящее время от 3 до 5 дней.

Температурный диапазон, в котором сохраняется тепло - разница между максимальной температурой полки для хранения при заполнении и минимальная температура, которой должен быть теплоноситель обогрев.В домах с солнечным отоплением максимальная температура "кровати", вероятно, будет ниже быть 130-150 ° F, в зависимости от используемого коллектора; тогда как минимум температура передачи составляет около 75-80 ° F, если предположить, что желаемая комната температура 70 ° F. Таким образом. хороший показатель «температурный диапазон» до использование в расчетах объема хранилища будет 50 ° F (130 ° - 80 °) (Имеется тенденция к максимально возможному сохранению тепла. температура для минимизации размера хранилища; но как температура от коллектора повышается, КПД падает).

Теплоаккумулирующие материалы отличаются определенными характеристиками, которые также необходимо учитывать при определении емкости хранилища. В таблице 1 перечислены насыпная плотность, удельная теплоемкость (теплоемкость) и скрытая теплота три распространенных материала для хранения солнечного тепла - камень, вода и глауберовский соль. На рисунке 1 показан сравнительный объем каждого материала для такое же количество аккумулированного тепла, на основе примера на Рабочем листе I.

Таблица 1.Характеристики теплоаккумулятора трех обычных видов солнечного тепла Материалы для хранения.

  Накопительный материал Насыпная плотность Удельная теплоемкость Скрытая теплота 
-------------------------------------------------- --------------------------
Камень 100 фунтов / куб. Фут. 0,2 БТЕ / фунт ° F ---------------

Вода 62,4 фунта / куб. Фут. 1 БТЕ / фунт ° F ---------------

Глауберова соль 56 фунтов / куб. Фут. 0,5 БТЕ / фунт.° F 108 БТЕ / фунт. при 90 ° F
(фазовый переход (включая нагрев ниже 90 ° F
температура, 90 ° F) теплообменник) 0,8 БТЕ / фунт ° F
                                         выше 90 ° F
-------------------------------------------------- ---------------------------
 

Рабочий лист 1. Расчет необходимого объема накопления солнечного тепла

Пример: предположим, что вашему дому требуется отопление (расчетное количество тепла потери) 15000 БТЕ в час, и вы хотите, чтобы ваша солнечная система отопления иметь 3-дневный резерв хранения.Каким будет ваше необходимое хранилище емкость с использованием камня, воды или глауберовской соли в качестве материала для хранения?

                                                                                       Наш Ваш
                      Ситуация с позициями и расчетами


1. Требуемый объем при использовании ROCK в качестве носителя.

   а. Потребность в отоплении здания: Расчетные потери тепла (см. Обсуждение выше).= 15 000 БТЕ / час ___________

   б. Часов в день: 24. = 24 часа в сутки ___________

   c. Желаемый резерв хранения: в среднем 3-5 дней (см. Обсуждение выше). = 3 дня ___________

   d. Общее необходимое тепло: Шаг 1.a (15000 БТЕ / час) x Шаг 1.b (24 часа / день) x Шаг 1.c
      (3 дня). = 1 080 000 БТЕ ___________

   е.Объемная плотность материала для хранения: Из Таблицы 1. = 100 фунтов / куб.фут ___________

   f. Удельная теплоемкость аккумулирующего материала: Из таблицы 1. = 0,2 БТЕ / фунт ° F ___________

   грамм. Температурный диапазон, в котором сохраняется тепло: в среднем 50-75 ° F (см.
      обсуждение выше). = 50 ° F -----------

   час Нагрев на кубический фут материала для хранения: Шаг 1.e (100 фунтов / куб.фут) x Шаг 1.f.
      (0,2 БТЕ / фунт ° F) x Шаг 1.g (50 ° F). = 1000 БТЕ / куб. Фут ___________

   я. Требуемый объем хранилища с использованием камня: Шаг 1.d (1 080 000 БТЕ) ÷ Шаг 1.h
      (1000 БТЕ / куб. Фут). = 1080 куб. Футов ____________

2. Требуемый объем при использовании ВОДЫ в качестве носителя информации.

   а. Общее необходимое количество тепла: то же, что и в шагах с 1.a по 1.d. = 1 080 000 куб. Футов ___________

   б. Объемная плотность материала для хранения: Из Таблицы 1.= 62,4 фунта / куб. Фут ___________

   c. Удельная теплоемкость аккумулирующего материала: Из Таблицы 1. = 1 БТЕ / фунт ° F ___________

   d. Температурный диапазон, в котором сохраняется тепло: То же, что и в шаге 1.g. = 50 ° F ___________

   е. Тепло на куб. футов материала для хранения: Шаг 2.b (62,4 фунта / куб. фут) x Шаг 2.c
(1 БТЕ / фунт ° F) x Шаг 2.d (50 ° F). = 3120 БТЕ / куб. Фут __________

   f. Требуемый объем хранения с использованием воды: Шаг 2.a (1 080 000 БТЕ) ÷ Шаг 2. e
      (3120 БТЕ / куб. Фут.). = 346 куб. Футов ___________

3. Требуемый объем при использовании СОЛИ ГЛАУБЕРА в качестве носителя информации.

   а. Общее необходимое количество тепла: то же, что и в шагах с 1.a по 1.d. = 1 080 000 БТЕ ___________

   б. Объемная плотность материала для хранения: Из Таблицы 1. = 56 фунтов / куб.фут ___________

   c Скрытая теплота аккумулирующего материала: из таблицы 1.= 108 БТЕ / фунт ___________

   d. Удельная теплоемкость аккумулирующего материала: Из таблицы 1.

                            * Температура выше фазового перехода = 0,8 БТЕ / фунт ° F ___________
                            ** Температура ниже фазового перехода = 0,5 БТЕ / фунт ° F ___________

   е. Разница температур между фазовым переходом (90 ° F) и хранением
      максимум (130 ° F) и минимум (80 ° F): см. обсуждение температурного диапазона
      выше.* Разница температур выше фазового перехода = 40 ° F ___________
                                    ** Разница температур ниже фазового перехода = 10 ° F ___________

  f. Нагрев на фунт материала для хранения: Шаг 3.c + (Шаг 3.d * x Шаг 3.e *) + (Шаг 3.d **
     x Шаг 3.e **). Пример: 108 БТЕ / фунт. + (0,8 БТЕ / фунт ° F x 40 ° F) + (0,5 БТЕ / фунт ° F x
     10F) = 108 БТЕ / фунт.+ 32 БТЕ / фунт. + 5 БТЕ / фунт. = 145 БТЕ / фунт ___________

  грамм. Нагрев на куб. футов материала для хранения: Шаг 3.b (56 фунтов / куб. фут) x
     Шаг 3.f (145 БТЕ / фунт). = 8120 БТЕ / куб. Фут ___________

  час Требуемый объем хранилища с использованием глауберовской соли: Шаг 3.a (1 080 000 БТЕ) ÷
     Шаг 3.g (8120 БТЕ / куб. Фут). = 133 куб. Футов ___________

 

Где должен быть мой солнечный накопитель тепла?

Как правило, для отопления жилых помещений содержится в самом доме.Так как это тяжело. самый лучший расположение в подвале или на нижнем уровне - и на бетоне. нет деревянные опорные элементы. Внутреннее хранилище должно иметь некоторая изоляция, особенно если накопитель заряжается летом. Тем не менее, это не обязательно должно быть так сильно изолировано, как на открытом воздухе. хранение, так как тепловые потери идут непосредственно на отопление дома.

Хранилище также может быть расположено снаружи дома либо в на земле или в неотапливаемом здании.при условии, что он хорошо изолирован. Сухой, хорошо дренированная почва действует как подходящая изоляция в хранилище похоронен снаружи; подземное хранилище также обеспечивает более удобную жизнь место в доме.

Важна ли форма теплонакопителя?

Важность конфигурации хранилища зависит от используемый материал для хранения. Хранилища жидкостей обычно хранятся в одиночный большой танк. Использование нескольких резервуаров меньшего размера позволит максимизация температуры в меньшем объеме, вместо того, чтобы нагрейте весь объем одного резервуара.Однако из-за стоимости нескольких резервуаров и связанных с ними проблем с клапанами, а также потому, что значительная вертикальная температурная стратификация в воде бак, рекомендуемая процедура - использовать один бак и взлетать вода вверху, где она наиболее теплая.

Эффективность склада очень зависит от конфигурация. Основная проблема при проектировании хранилища горных пород заключается в минимизации падения давления в воздушном потоке через хранилище.В как правило, чем короче расстояние, которое должен пройти воздух, и тем ниже расход воздуха, тем меньше будет перепад давления.

Минимальная длина, необходимая для адекватной теплопередачи внутри накопление зависит от расхода воздуха, коэффициента теплопередачи воздуха к рок, и площадь поперечного сечения. В нормальных условиях эксплуатации эта минимальная длина довольно мала. Следовательно, чем короче хранилище может быть (в пределах разумного), чем ниже эксплуатационные Стоимость.Как правило, скорость воздушного потока 20-30 футов в минуту невысока. желательно. Площадь хранения можно приблизительно определить, разделив общий расход воздуха из коллектора (в кубических расходах в минуту) от скорость (в футах в минуту).

Хотя воздух можно продувать через пласт в горизонтальном направлении, эффективная система предназначена для вертикального воздушного потока. Горячий воздух из коллектора выдувается сверху, а холодный воздух возвращается обратно к коллектору снизу.Когда требуется тепло для нагрева в комнате воздушный поток меняется на противоположный.

Может ли дополнительная изоляция уменьшить требуемый объем хранения (и стоимость)?

Поскольку потребность здания в отоплении определяет количество солнечной энергии. тепло, которое необходимо собирать и хранить, снижение этого требования приведет к также уменьшите площадь коллектора и емкость хранилища нужный. Обычно самый дешевый способ уменьшить теплопотери - это правильная изоляция. Фактически, деньги, сэкономленные за счет меньшего объема хранилища площадь, складские материалы и площадь коллектора часто больше, чем окупается дополнительная изоляция.

Насколько добавление изоляции может снизить стоимость система солнечного отопления зависит от ряда факторов, таких как структурная прочность здания, существующий уровень теплоизоляции, тепло материал для хранения и т. д. Но можно сэкономить важно, как показывает пример на Рабочем листе II. Используйте рабочий лист для определения требований к отоплению и последующему сбору-хранению объем системы и стоимость при вашем нынешнем уровне изоляции, а затем на «должных» уровнях.Как правило, хранилище следует изолировать от значение R-11, если в отапливаемой зоне, и R-30, если в неотапливаемой зоне. область.

На что следует обратить внимание или о чем спросить при покупке коммерческого отопления устройство хранения?

Если прогнозируемый строительный «бум», связанный с солнечной энергией, действительно становится реальностью, наверняка возникнут какие-то однодневки компании, которые попытаются воспользоваться "незнанием потребителей" относительно систем хранения солнечного тепла и материалов.Защищать себя из этих фирм, а также иметь основу для мудрых вариантов, следуйте этой предложенной процедуре:

    1. Остерегайтесь систем «черного ящика». Знайте, что в системе и как он действует.
    2. Если вы не знакомы с компанией, проверьте ее через Better Бизнес-бюро или аналогичная организация.
    3. Свяжитесь с кем-нибудь, у кого уже есть один из устройства хранения данных; они могут многое рассказать о типе выступления ожидать.Будьте очень осторожны, если продавец не может или не даст вам клиенты, чтобы связаться.
    4. Получите письменные претензии компании перед покупкой система. Также получите их, чтобы гарантировать заданный уровень производительности и замените все неисправные детали.
    5. Попросите показать проектные расчеты системы и ознакомьтесь с ними. использование имеющихся справочных материалов или получение помощи от вашего округа Дополнительный офис.
    6. Если система требует использования теплоаккумулирующего материала, например рок, рассчитайте его стоимость, если бы вы купили его сами.Это будет дать вам представление об объеме затрат на рабочую силу и рекламные расходы в сделке.
    7. Если система требует предварительно упакованных PCM. попросить посмотреть данные компании, подтверждающие заявления относительно тепловой мощности, скрытой теплоты и ожидаемый срок полезного использования. Помните, что заявления о том, сколько раз Материал для хранения ПКМ не так важен, как количество тепло поглощается и выделяется в каждом цикле. Если безводная соль держится оседая, эффективность хранилища со временем снижается, но PCM по-прежнему будет циклически повторяться (на уровне 60 БТЕ на фунт вместо 108 БТЕ).

Публикации по теме

Единичные копии следующих публикаций Purdue Extension доступны вопросы солнечного отопления и энергосбережения жителям Индианы из их окружного офиса или написав в Центр распространения СМИ, 301 South Second Street, Лафайет, Индиана, 47901–1232.

Солнечное отопление для дома, фермы и малого бизнеса (AE-88)


Рабочий лист II. Определение эффекта дополнительной изоляции


по объему и стоимости теплоаккумулятора и коллектора

Пример: типичный квадратный двухэтажный дом.с площадью поверхности крыши 1267 квадратных футов и площадь стены 2400 квадратных футов должны быть солнечное отопление. В настоящее время он имеет только 6 дюймов изоляции. стекловолокно (значение проводимости 0,053 БТЕ / час - ° F-кв. фут. в крыше и 1 дюйм древесноволокнистой плиты (значение проводимости 0,33 БТЕ / час- ° F-кв. фут) в стены. Внутренняя температура будет поддерживаться на уровне 70 ° F: ожидается внешняя низкая температура составляет 10 ° F. Должен ли владелец оформить воздух коллектор и глауберова система хранения соли для дома потребность в отоплении.или стоит добавить еще 6 дюймов изоляция в крыше и 3 1/2 дюйма в стенах?

                                                                                Наш Ваш
           Позиции и примеры расчетов ситуация

1.Требования к отоплению здания с существующей изоляцией.

   а. Разница между внутренней и внешней температурой: из примера выше
        (70 ° F - 10 ° F).= 60 ° F _____________

   б. Площади кровли и стен; Из примера выше.
* Корневая площадь = 1267 кв.футов _____________
** площадь стен = 2400 кв. футов _____________

   c. Значение проводимости для данного типа и толщины изоляции:
      Обратитесь к дилеру строительных материалов. (Пример: крыша, 6 дюймов.
      стекловолокно; стена, ДВП толщиной 1 дюйм).
                                                        * Утеплитель крыши =.053 БТЕ / ч
° F-кв.фут _____________
                                                        ** Изоляция стен = 0,33 БТЕ / ч.
° F-кв.фут _____________

   d. Потери тепла через крышу: Шаг 1.a (60 ° F) x Шаг 1.b * (1267 кв. Футов)
      x Шаг 1.c * (0,053 - БТЕ / ч- ° F-кв.фут). = 4029 БТЕ / час ______________

   е. Потери тепла от стен: Шаг 1.a (60 ° F) x Шаг 1.b * (2400 квадратных футов) x
      Шаг 1.c ** (0,33 БТЕ / ч.- ° F-кв.фут). = 47 520 БТЕ / час ______________

  е. Общая текущая потребность в тепле: Шаг 1.d (4029 БТЕ / час) + Шаг 1.e
    (47 520 БТЕ / час). = 51 549 БТЕ / час ______________

2. количество и стоимость складских материалов для удовлетворения текущих потребностей в отоплении.

  а. Часы в день: 24. = 24 часа в день _____________

  б. Желаемый запас аккумулирования тепла: Сред. 3-5 дней. = 3 дня _____________

  c.Теплоемкость накопительного материала: для глауберовской соли,
     см. Рабочий лист I, Шаг 3.f

  d. Стоимость единицы складского материала: уточняйте у поставщика. = 0,25 доллара США / фунт _____________
 
  е. Общий необходимый для хранения материал: (Шаг 1.f x Шаг 2.a x Шаг 2.b) ÷ Шаг 2.c.
     Пример: (51549 БТЕ / час x 24 часа в день x 3 дня) ÷ 145 БТЕ / фунт.
     = 3,711,526 БТЕ ÷ 145 БТЕ / фунт. = 25 597 фунтов _____________

  е. Общая стоимость необходимых складских материалов: Шаг 2.е. (25 597 фунтов) x Шаг 2.d
    (0,25 доллара США за фунт). = 6399 долларов США ______________

3. Размер и стоимость коллектора для удовлетворения текущих потребностей в отоплении.

   а. Желаемая способность к накоплению потребности в отоплении: в среднем 2 дня. = 2 дня ______________

   б. Уровень радиации для коллектора: уточните у поставщика. = 1000 БТЕ / кв.фут ______________

   c. Стоимость коллектора за квадратный фут: уточняйте у поставщика.= $ 1,00 / кв.фут ______________

   d. Общая необходимая площадь коллектора: (Шаг 1.f x Шаг 2.a x Шаг 3.a) ÷ Шаг 3.b.
      Пример: (51549 БТЕ / час x 24 часа в день x 2 дня) ÷ 1000 БТЕ / кв.фут
      = 2,474,352 БТЕ ÷ 1000 БТЕ / кв. Фут. = 2474 кв. Фута ______________

   е. Общая стоимость коллектора: Шаг 3.d (2474 кв. Фута) x
       Шаг 3.c (1,00 долл. США за кв. Фут). = 2474 доллара США ______________

4.Потребность в отоплении здания с дополнительной изоляцией

  а. Текущее значение проводимости + добавленная изоляция: Шаг 1.c + добавлено
     изоляция. (Пример: крыша 6 из стекловолокна + пенополистирол 6 дюймов; стена 1 дюйм.
     ДВП + 3-1 / 2 дюйма, пенополистирол
                                               * Изоляция корня = 0,026 БТЕ / ч- ______________
° F-кв.фут
** Изоляция стен = 0,071 БТЕ / ч- ______________
° F-кв.футов
                           
  б. Потери тепла через крышу: Шаг 1.a (60 ° F. X Шаг 1.b * (1267 кв. Футов)
     x Шаг 4.a * (0,026 БТЕ / ч- ° F-кв.фут) = 1977 БТЕ / ч ______________

  c. Потери тепла от стен: Шаг 1.a (60 ° F) x Шаг 1.b ** (2400 кв. Футов)
     x Шаг 4.a ** (0,071 БТЕ / ч) - ° F-кв.фут). = 10224 БТЕ / час ______________

  d. Общая потребность в отоплении с дополнительной изоляцией: Шаг 4.b (1977 БТЕ / час) +
      Шаг 4.c (10224 БТЕ / час) = 12 201 БТЕ / час _____________

5. Количество и стоимость складского материала для обеспечения «дополнительной изоляции».
  потребность в отоплении

  а. Общий необходимый для хранения материал: (Шаг 4.d x Шаг 2.a x Шаг 2.b) ÷ Шаг 2.c
     Пример: (12 201 БТЕ / час x 24 часа в день x 3 дня ÷ 145 БТЕ / кв.фут =
     878 472 БТЕ ÷ 145 БТЕ / фунт = 6058 фунтов _____________

  б. Общая стоимость необходимых складских материалов:
     Шаг 5.a (6058 фунтов) x Шаг 2.d (0,25 доллара США / фунт) = 1515 долларов США _____________

6. Размер и стоимость коллектора с учетом «дополнительной теплоизоляции» отопления.
  требование

  а. Общая необходимая площадь коллектора: (Шаг 4.d x Шаг 2.a x Шаг 3.a) ÷ Шаг 3.b.
     Пример: (12 201 БТЕ / час x 24 часа / день x 2 дня) - 1000 БТЕ / кв. Фут. знак равно
     585648 БТЕ ÷ 1000 БТЕ / кв. Фут. = 586 кв. Футов ______________

  б. Общая стоимость коллектора:
       Шаг 6.а. (586 кв. Футов) x Шаг 3.c (1,00 долл. США / кв. Фут). = 586 долларов США ______________

7. Экономия затрат на тепловую систему за счет добавления теплоизоляции.

  а. Удельная стоимость изоляции: уточняйте у поставщика. Пример: 6 дюймов и 3-1 / 2 дюйма.
    коврики.
* 6 дюймов коврики = $ 0,20 / кв.фут ______________
** 3-1 / 2 дюйма = 0,12 доллара США за квадратный фут ______________
                                            
  б. Стоимость дополнительной изоляции: (Шаг 1.b * x Шаг 7.a *) + (Шаг 1.b ** x Шаг 7.а **).
     Пример: (1267 кв. Футов x 0,20 $ / кв. Фут) + (2400 кв. Футов x 0,12 $ / кв. Фут)
     = 253 + 288 долларов. = 541 доллар США ______________

  c. Общая стоимость тепловой системы с существующей изоляцией: Шаг 2.f (6399 долларов США) + Шаг 3.e
    (2474 доллара США). = 8823 долл. США ______________

  d. Общая стоимость тепловой системы с дополнительной изоляцией: Шаг 5.b (1515 долларов США) + Шаг 6.b
      (586 долларов США) + Шаг 7.b (541 доллар США). = 2642 доллара США ______________

  е.«Экономия» за счет изоляции: Шаг 7.c (8873 $) -
       Шаг 7.d (2642 доллара США). = 6231 долл. США ______________

 

Новое 9/78

Кооперативная консультативная работа в сельском хозяйстве и домохозяйстве, состояние Индиана, Университет Пердью и Министерство сельского хозяйства США. Сотрудничество; Х.А. Уодсворт, директор, West Lafayette, IN. Выдается в исполнение актов 8 мая и 30 июня 1914 г.Кооператив Служба распространения знаний Университета Пердью - это позитивное действие / равное возможность учреждения.

Паровые аккумуляторы | Спиракс Сарко

Расчет пароаккумулятора

Паровой аккумулятор в паровой системе увеличивает емкость накопителя. Правильная конструкция парового аккумулятора обеспечивает любой расход. Нет никаких теоретических ограничений на размер парового аккумулятора, но, конечно, практические соображения будут накладывать ограничения.

На практике объем пароаккумулятора основан на накоплении, необходимом для удовлетворения пикового спроса, с допустимым перепадом давления, при одновременной подаче чистого сухого пара с подходящей скоростью выпуска пара с поверхности воды. Пример 3.22.2, приведенный ниже, используется для расчета потенциальной паропроизводительности горизонтального парового аккумулятора.

Пример 3.22.2

Котел:

Максимальная продолжительная мощность = 5000 кг / ч

Нормальное рабочее давление = 10 бар изб. (Hf = 781 кДж / кг, из паровых таблиц)

Дифференциал переключения горелки = 1 бар (0.5 бар с каждой стороны от 10 бар изб.)

Заводские требования:

Максимальная мгновенная перегрузка = 12000 кг / ч

Давление распределения = 5 бар изб.

Хотя максимальная мгновенная перегрузка составляет 12 000 кг / ч, для определения размера аккумулятора следует использовать среднее значение перегрузки.

Это предотвращает ненужный завышение размера гидроаккумулятора. Точно так же необходимо определить и использовать среднюю «непиковую» нагрузку при расчете размеров. Непиковая нагрузка - это любая нагрузка ниже MCR котла.

Определение среднего значения перегрузки и непиковой нагрузки

Есть три возможных метода определения средних нагрузок для существующей котельной:

  1. Предположительно, исходя из опыта.
  2. Для исследования существующих диаграмм паропроизводительности котла, чтобы установить средние нагрузки и периоды времени, в течение которых они возникают.
  3. Чтобы запрограммировать компьютер паромера для интегрирования паровой нагрузки в периоды перегрузки и непиковой нагрузки.

Способ 1 может оказаться довольно безрассудным, если дорогой аккумулятор окажется слишком маленьким.

Однако, если котельная все еще находится на стадии проектирования, обоснованное предположение будет единственным вариантом. Знание проектировщика установки должно позволить дать разумную оценку максимальной нагрузки установки, разнообразия нагрузок и времени, в течение которого они возникают.

Метод 2 довольно прост в использовании и должен давать достаточно точный результат.

Метод 3 обеспечит наиболее точные результаты, а стоимость счетчика пара невелика по сравнению с общей стоимостью проекта гидроаккумулятора.

Следующая процедура показывает, как определить среднюю паровую нагрузку на основе существующей диаграммы, записывающей характер нагрузки. Процедура построена на рисунке 3.22.4, на котором показана схема потока для примера 3.22.2.

Из рисунка 3.22.4 видно, что непиковые нагрузки разделены на следующие средние нагрузки и периоды времени.Из этих данных можно определить среднюю избыточную нагрузку для каждого периода непиковой нагрузки.

Средний избыточный поток рассчитывается следующим образом:

1-я непиковая нагрузка

2-я непиковая нагрузка

Аналогичное упражнение выполняется для периодов перегрузки, показанных на Рисунке 3.22.4.

1-я перегрузка

2-я перегрузка

Необходимо выбрать расчетное давление гидроаккумулятора, и обычно выбирают давление на 1 бар выше, чем давление распределения.Это дает разумную паропроизводительность мгновенного испарения без чрезмерного увеличения номинального давления ниже по потоку.

В этом примере давление распределения составляет 5 бар изб., Поэтому расчетное давление в гидроаккумуляторе изначально можно принять равным 6 бар изб. (Примечание: масса воды берется при рабочем давлении котла).

На основании этой информации теперь можно определить размер аккумулятора.

Паровой аккумулятор:

Обратите внимание, что эти 2 797 кг пара мгновенного испарения будут выпущены за время, необходимое для падения давления.Если это был час, скорость пропаривания составляет 2 797 кг / ч; если бы это было более 30 минут, то скорость пропаривания была бы:

Если паровой аккумулятор подключен к котлу мощностью 5000 кг / ч и обеспечивает средний спрос в пределах своей мощности, комбинированные выходы котла и аккумулятора могут соответствовать средним условиям перегрузки 5 594 + 5 000 = 10 594 кг / ч. в течение 30 минут. Альтернативой является дополнительная комбинация котлов, способных производить 10 594 кг / ч в течение 30 минут с указанными ранее ограничениями.

Теперь можно проверить размер аккумулятора.

Цифры, использованные в примере 3.22.2, используются ниже для облегчения проверки.

Котел

Максимальная продолжительная мощность = 5000 кг / ч

Нормальное рабочее давление = 10 бар изб.

Заводские требования

Наибольшая средняя перегрузка = 10300 кг / ч в течение 30 минут каждые 95 минут

Давление = 5 бар изб.

Требуемый запас пара = 10 300 кг / ч - 5 000 кг / ч пара, подаваемого котлом

Требуемый запас пара = 5300 кг / ч

Однако пар требуется только в течение 30 минут каждый час, поэтому необходимое накопление пара должно составлять:

Количество воды, необходимое для выпуска 2 650 кг пара, зависит от доли пара мгновенного испарения, выделяемого из-за падения давления.

Это соответствует критерию наличия достаточного количества воды для производства необходимого количества пара мгновенного испарения. Видно, что емкость хранения 2 797 кг больше, чем требуется для хранения 2 650 кг пара.

Если паровой аккумулятор будет заряжаться котлом под давлением 10 бар изб. И выпускаться под давлением 6 бар изб. В установку, то долю пара мгновенного испарения можно рассчитать следующим образом:

Емкость судна больше - 87,9 м³, поэтому судно удовлетворяет этому критерию.

С учетом размеров судна, приведенных ранее, площадь водной поверхности составляет приблизительно 20,53 м² при полной загрузке, что составляет 90% вместимости судна.

Максимальная скорость пропаривания из гидроаккумулятора составляет 5300 кг / ч, следовательно:

Эмпирические испытания показывают, что скорость, с которой сухой пар может выделяться с поверхности воды, является функцией давления. Рабочее приближение предполагает:

Максимальная скорость выпуска без уноса пара (кг / м² ч) = 220 x давление (бар абс.)

Паровой аккумулятор в Примере 3.22.2 работает при 6 бар изб. (7 бар абс.). Максимальная скорость выпуска без уноса пара составит:

.

220 x 7 бар a = 1 540 кг / м² ч

Это показано графически на Рисунке 3.22.5.

Пример при 258 кг / м² ч значительно ниже максимального значения, и можно ожидать сухого пара. Если бы скорость выброса пара была слишком высокой, необходимо было бы рассмотреть разные диаметры и длины, дающие одинаковый объем емкости.

Следует подчеркнуть, что это всего лишь указание, и детали конструкции всегда должны быть переданы специализированным производителям.

Цеолит: теплоаккумулятор неопределенно долго сохраняет тепло, поглощает в четыре раза больше тепла, чем вода.

Этот сайт может получать партнерские комиссии по ссылкам на этой странице. Условия эксплуатации.

Держитесь за шляпу / спутника жизни / гонады: ученые из Германии создали маленькие цеолитовые гранулы, которые могут хранить в четыре раза больше тепла, чем вода, без потерь в течение «продолжительных периодов времени».Теоретически вы можете хранить тепло в этих гранулах, а затем извлекать точно такое же количество тепла через неопределенное время.

Цеолиты (буквально «кипящие камни») не совсем новы: этот термин был придуман в 1756 году шведским минералогом Акселем Кронштедтом, который заметил, что некоторые минералы при нагревании выделяют большое количество пара из воды, которая ранее была адсорбируется. В течение последних 250 лет ученые пытались реализовать этот процесс в системе аккумулирования тепла - и теперь Институт Фраунгофера в сотрудничестве с промышленными партнерами разработал, как это сделать.

Я попытаюсь объяснить, как это работает, но наука довольно сложна: когда цеолит Фраунгофера вступает в контакт с водой, химическая реакция адсорбирует воду и выделяет тепло. Когда к цеолиту прикладывают тепло, происходит обратный процесс и выделяется вода. Поскольку тепло удерживается в химической структуре цеолита, материал никогда не ощущается теплым - вот почему это метод хранения «без потерь».

Эти два процесса можно разделить - сначала вы заряжаете шары теплом, а затем вы можете просто добавить воду (!), Чтобы высвободить тепло.Эта реакция происходит по всей поверхности цеолита - и поскольку цеолиты пористые, один грамм материала имеет площадь поверхности 1000 квадратных метров (10700 квадратных футов). По этой причине цеолит Фраунгофера может сохранять в четыре раза больше тепла, чем вода.

Хотя процесс гидратации / обезвоживания хорошо изучен, основной технической проблемой было создание реальной системы аккумулирования тепла. «Сначала мы разработали технологический процесс, затем мы посмотрели вокруг, чтобы увидеть, как мы можем физически реализовать принцип аккумулирования тепла - т.е.е. как должно быть сконструировано накопительное устройство и в каких местах необходимы теплообменники, насосы и клапаны », - говорит Майк Бликер, менеджер группы. Как вы можете видеть на картинке справа, настройка довольно сложна. Команда успешно построила переносной резервуар для хранения емкостью 750 литров, который в настоящее время колесит по Германии для тестирования системы хранения в реальных условиях.

В будущем это может стать важной новостью практически для каждой технологической и промышленной сферы.В настоящее время существует очень мало вариантов хранения тепла, кроме воды, которая не может хранить много тепла для данного объема и относительно быстро теряет тепло. Электростанции, биогазовые установки, сталелитейные заводы, фабрики - все они производят огромное количество тепла, которое можно (и нужно) использовать повторно. Их даже не нужно было бы использовать на месте: заряженные цеолитовые шары можно было разослать по близлежащим домам и офисам. В будущем Бликер предполагает, что мы могли бы со временем заменить домашние водяные баки цеолитными системами.«Было бы идеально, если бы мы смогли разработать модульную систему, которая позволила бы нам сконструировать каждое устройство хранения данных в соответствии с индивидуальными требованиями», - говорит Бликер.

Лично я надеюсь на модуль, достаточно маленький, чтобы его можно было разместить внутри каждого из моих семи компьютеров. Интересно, хватит ли этого, чтобы согреть мой душ по утрам…

Узнайте больше на сайте Fraunhofer или ознакомьтесь с решением Microsoft по утилизации тепла: печи для обработки данных

Произошла ошибка при настройке пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности.Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались.Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie.Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Накопительные электрические обогреватели - исключение резервной системы обогрева на ископаемом топливе

Электрический накопительный нагреватель тепла представляет собой автономную систему отопления в непиковое время, которая устраняет необходимость в резервной системе отопления на ископаемом топливе, которая устанавливается на стене и немного похожа на радиатор, содержащий «банк» специально разработанных, керамический кирпич высокой плотности.Эти кирпичи могут сохранять огромное количество тепла в течение длительных периодов времени.

Электрический накопительный нагреватель тепла представляет собой автономную систему отопления в непиковое время, которая устраняет необходимость в резервной системе отопления на ископаемом топливе, которая устанавливается на стене и немного похожа на радиатор, содержащий «банк» специально разработанных, керамический кирпич высокой плотности. Эти кирпичи могут сохранять огромное количество тепла в течение длительных периодов времени. Кирпичи окружены высокоэффективной изоляцией, поскольку электрические нагреватели-аккумуляторы потребляют электроэнергию в непиковые часы, когда это дешевле, обычно с полуночи до 7 часов утра.м. зимой и с 01:00 до 8:00 летом. Хотя это может отличаться. Накопленное тепло автоматически регулируется в зависимости от температуры наружного воздуха и потребностей пользователя в обогреве.

Основным преимуществом накопительных нагревателей является то, что они дешевле в эксплуатации по сравнению с другими типами электрического отопления, которые должны работать в часы пик. Накопительные электрические обогреватели, произведенные с 2018 года, должны иметь встроенные программируемые таймеры, вентиляторы и термостаты. Это позволяет им выделять тепло по мере необходимости, в зависимости от внешней температуры.Обогреватели исключительно тихие, даже те, в которых используется вентилятор, и просты в установке, поскольку их можно установить на стене в любом месте, где можно провести электричество. Если у вас есть солнечные батареи, то экономия, которую вы получаете от использования электроэнергии, которую вы производите для зарядки аккумуляторов в течение дня, всегда будет перевешивать деньги, которые вы заработаете, экспортируя ее обратно в сеть. Многие электроэнергетические компании имеют программы кредитов на энергоэффективность, которые делают электрообогреватели еще более экономичными, предлагая вам кредиты в зависимости от количества и размера нагревателей, которые вы устанавливаете в своем доме.


Режимы использования накопительных электрических нагревателей

Дополнительное тепло

Накопительное электрическое отопление - лучшее решение для отопления, чувствительное к цене. Сама по себе это полная система отопления, обеспечивающая тепло круглосуточно, но использующая энергию по низким ценам. Однако эти агрегаты также могут быть установлены вместе с другими системами отопления или в качестве дополнения к существующему источнику тепла в доме.

Тепловые насосы

Если вы ищете способы снизить счета за электроэнергию или топливо, очень важно рассмотреть преимущества накопительных электрических нагревателей вместе с тепловыми насосами для вашего комфорта. Тепловые насосы являются отличным дополнением к электронагревателям, поскольку они фактически не производят тепло. Скорее, они извлекают имеющееся тепло снаружи и перераспределяют его в доме, поскольку они могут снизить расходы на тепло в часы пик.

ECOMBI - это меньший по размеру, более тонкий и изящный блок, который обеспечивает комфорт в небольших помещениях дома, где есть холодные места, такие как коридоры, ванные комнаты или спальни. Они могут легко заменить существующие электрические обогреватели плинтуса, поддерживая постоянную или запрограммированную заданную температуру с меньшими затратами на электроэнергию, поскольку вся идея использования этой комбинации продуктов состоит в том, чтобы обеспечить круглосуточное тепло во всем доме, устраняя все расходы на тепловую энергию. в непиковые часы, чтобы сократить расходы.

Газовые или дровяные печи и камины

Печи и камины - это системы отопления, используемые в основном в больших открытых помещениях, таких как гостиная, столовая или комнаты отдыха, поскольку они обычно ограничены определенными часами в день и только той комнатой, где они установлены. Накопительные электрические обогреватели могут помочь обеспечить теплом остальную часть дома, а также эту комнату, когда камин выключен, компенсируя снижение температуры и уравновешивая тепло в комнате.

Режим защиты от замораживания

Этот режим идеально подходит для тех домов выходного дня или офисных помещений, расположенных в холодных зонах, где оборудование не будет работать несколько дней в неделю или даже в течение длительного времени. В этом случае, если вы активируете режим защиты от замерзания, ECOMBI не позволит температуре в помещении опускаться ниже 7 градусов Цельсия, что позволит избежать таких проблем, как замерзание труб или слишком холодное или влажное помещение в доме перед его следующим использованием.Используя режим защиты от замерзания вместе с недельным программированием, вы можете решить, в какие дни недели вы хотите, чтобы оборудование работало, и какие из них находятся в режиме защиты от замерзания.

ECOMBI Plus - цифровой статический аккумулятор с управлением накопленной нагрузкой, полностью программируемый и с возможностью управления и удаленного управления через Wi-Fi. Его уникальное преимущество перед традиционными аккумуляторами заключается в том, что ECOMBI Plus оценивает ежедневное потребление энергии и теплопотери в помещении, чтобы определить будущие потребности в тепле, автоматически регулируя энергетическую нагрузку, регулируя ее в соответствии с установленными потребностями комфорта.

См. Ниже четыре общие модели, которые мы предлагаем, и свяжитесь с нами здесь, чтобы мы могли помочь вам определить, какая модель лучше всего подходит для вашего приложения.

Ecombi SSh308 Контролируемый обогреватель хранилища с WiFi - 1,3 кВт

Ecombi SSh408 Контролируемый обогреватель хранилища WiFi - 1,9 кВт

Ecombi SSh508 Контролируемый обогреватель хранилища с WiFi - 2,6 кВт

Накопительный нагреватель с вентилятором Ecombi HHR20 - 1.7кВт

Оценка стоимости и эффективности водонагревателей для хранения, потребления и тепловых насосов

Прежде чем вы сможете выбрать и сравнить стоимость различных моделей, вам необходимо определить правильный размер водонагревателя для вашего дома. Если вы еще этого не сделали, см. Определение размера нового водонагревателя. Чтобы оценить годовые эксплуатационные расходы на водонагреватель для хранения, потребления (без резервуара или мгновенный) или с тепловым насосом (не с геотермальным тепловым насосом), вам необходимо знать следующее о модели:

  • Коэффициент энергии (EF) (см. Выше )
  • Тип и стоимость топлива (текущие расценки могут предоставить местные коммунальные предприятия)

Затем используйте следующие расчеты:

Для газовых и масляных водонагревателей

Вам необходимо знать удельную стоимость топлива в британских тепловых единицах (британских тепловых единицах). единица) или терм.(1 терм = 100000 БТЕ)

365 X 41045 ÷ EF X Стоимость топлива (БТЕ) ​​= оценочная годовая стоимость эксплуатации

OR

365 X 0,4105 ÷ EF X Стоимость топлива (терм) = оценочная годовая стоимость эксплуатации

Пример: водонагреватель, работающий на природном газе с EF 0,57 и стоимостью топлива 0,00000619 долл. США / британская тепловая единица

365 X 41045 / 0,57 X 0,00000619 долл. США = 163 долл. США

Для электрических водонагревателей, включая тепловые насосы

Вам необходимо знать или преобразовать удельную стоимость электроэнергии в киловатт-час (кВтч).

365 дней в году x 12,03 кВтч / день ÷ EF x Стоимость топлива ($ / кВтч) = годовая стоимость эксплуатации

Пример: водонагреватель с тепловым насосом с EF 2,0 и стоимостью электроэнергии 0,0842 доллара США / кВтч

365 X 12,03 ÷ 2,0 X 0,0842 доллара США = 185

долларов США. Потребление энергии в день в приведенных выше уравнениях основано на процедуре испытания DOE для водонагревателей, которая предполагает температуру входящей воды 58 ° F, температуру горячей воды 135 ° F. и общее производство горячей воды 64,3 галлона в день, что является средним потреблением для семьи из трех человек.

Сравнение затрат и определение окупаемости

После того, как вы узнаете стоимость покупки и годовые эксплуатационные расходы моделей водонагревателей, которые хотите сравнить, вы можете использовать приведенную ниже таблицу, чтобы определить экономию затрат и окупаемость более энергоэффективной модели (моделей). ).

905 905 Модель 905 905 905 905 EF 905 905 905
Модели Цена водонагревателя EF Расчетная годовая стоимость эксплуатации
Модель A
Дополнительная стоимость более эффективной модели (Модель B) Цена модели B - Цена модели A = $ Дополнительная стоимость модели B

Расчетная годовая экономия эксплуатационных расходов (Модель B )

Годовые эксплуатационные расходы модели B - Годовые эксплуатационные расходы модели A = $ Экономия затрат модели B в год

Срок окупаемости для модели B

$ Дополнительные расходы Экономия затрат модели B / $ Модель B в год = Срок окупаемости / лет

9 0281 Пример:

Сравнение двух газовых водонагревателей с местной стоимостью топлива.60 за терм.

905 905 905 905 905 905 905 905 905 905 .58
Модели Цена водонагревателя EF Расчетные годовые эксплуатационные расходы
Модель A $ 165 $ .54 $ 166 155 долларов
Дополнительная стоимость более эффективной модели (модель B) 210–165 долларов = 45
Расчетная годовая экономия на эксплуатационных расходах (модель B) - 155 долларов = 11 долларов в год
Срок окупаемости для модели B 45 долларов / 11 долларов в год = 4.1 год

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *