- Как определить фазу | Практическая электроника
- Как определить фазу и ноль мультиметром – RozetkaOnline.COM
- Как мультиметром найти фазу без ошибок
- Что такое фаза, ноль и земля: краткое объяснение простыми словами
- Почему мультиметр необходимо переводить в режим вольтметра при проверке фазы
- Технические приемы в картинках: как мультиметром искать потенциалы напряжения в электропроводке
- 3 заключительных совета из личного опыта
- Как определить фазу и ноль мультиметром: инструкции, фото, видео
- Как понять где фаза а где ноль в проводах: 5 способов узнать
- Как определить фазу, ноль и заземление
- Как определить фазу и ноль мультиметром, индикаторной отверткой и без приборов
- Как проверить чередование фаз с помощью мультиметра
- Для специалистов по обслуживанию систем отопления, вентиляции и кондиционирования воздуха: принципы измерения трехфазного напряжения
- Как проверить трехфазное напряжение
- Трехэтапная процедура тестирования — Global Electronic Services
- Как получить более быстрые трехфазные измерения мощности с помощью клещей
- Базовое испытание двигателя с помощью мультиметров и амперметров
- Метод перекрестного вольтметра — базовое управление двигателем
Как определить фазу | Практическая электроника
Как определить фазу? Чаще всего таким вопросом задаются тогда, когда надо определить фазу в домашней розетке либо в проводке. Сетевое напряжение, которое заходит в ваш дом, поступает по двум проводам, одним из которых является фаза, а другой – ноль. В этой статье вы найдете два способа, чтобы определить фазу в вашей домашней проводке либо в розетке.
С помощью индикаторной отвертки
На рынке либо в радиомагазине часто можно увидеть фазоиндикаторные отвертки. Чаще всего их называют пробниками. На вид пробник – это плоская отвертка, которая состоит из железного щупа, высокоомного резистора и неоновой лампочки. Все они подключаются последовательно.
Давайте же на практике попробуем определить фазу с помощью нашей фазоиндикаторной отвертки. Для того, чтобы это сделать, нам надо коснутся пальцем вершины отвертки, тем самым мы замкнем цепь фаза-пробник-мы-земля, если тыкнем на фазу. Через потечет ток, но он будет настолько слабым, что вы даже ничего не почувствуете. Тем временем на отвертке загорится неоновая лампочка.
Втыкаем пробник и попадаем на “ноль”. Неоновая лампочка не горит. Значит, другой контакт розетки точно фаза.
Проверяем и убеждаемся. Неоновая лампочка горит, значит это у нас фаза.
С помощью мультиметра
А что, если у нас нет индикаторной отвертки? Как быть в этом случае? Для этих целей можно использовать обыкновенный мультиметр. Ставим крутилку на измерение переменного напряжения и берем любой щуп мультиметра в руки.
Второй щуп втыкаем в розетку и смотрим, что у нас мультиметр покажет на дисплее. Если мы касаемся нуля, то на дисплее мультиметра высветятся нули или несколько вольт. Если касаемся фазы, то на дисплее мультиметра появится приличное напряжение – это и есть фаза. Внизу на фото мы определили фазу.
Если также показывает нули, то одной рукой возьмитесь за батарею, а другой – за щуп мультиметра. Возможно, что ваш пол очень хорошо изолирован от земли. Когда будете измерять таким способом, главное не перепутайте режим измерения напряжения и силы тока. Если вы случайно поставите крутилку мультиметра в режим измерения силы тока и коснетесь батареи, то это может привести даже к летальному исходу! Будьте очень внимательны, если будете использовать этот способ.
Все те же самые операции касаются и трехфазной сети, где у нас три фазных провода и один ноль.
Как определить фазу и ноль мультиметром – RozetkaOnline.COM
Продолжаем изучать возможности цифрового мультиметра и способы его применения в быту. В данной статье я расскажу, как с его помощью можно определить фазу и ноль.
Довольно часто, в процессе монтажа электрооборудования, например, при подключении светильников, установке розеток и выключателей или при диагностике неисправностей электросети, нужно найти какой из проводов заземление, фаза и ноль. Как это можно сделать самому, без специального оборудования, я писал ЗДЕСЬ, сейчас же мы сделаем это мультиметром.
Главное, что вы должны знать: у обычного цифрового мультиметра, нет отдельного режима для определения фазы или нуля, узнать это можно лишь увидев на экране величину напряжения или не увидев его.
По большому счету, принцип определения фазы тестером, схож с работой обычной индикаторной отвертки, где фаза определяется по свечению встроенной лампы, которая загорается только при наличии цепи фаза – сопротивление – лампа – ёмкость (человек).
Ток, с фазы, протекающий через такую индикаторную отвертку, проходит через высокое сопротивление, встроенное в индикатор, затем также через лампу в ней, а потом попадает в ёмкость – в качестве которой выступает человек (для этого мы и касаемся задней стороны индикаторной отвертки при определении) и только при наличии всех участников такой цепи, лампа будет гореть.
Как найти фазу мультиметром
Чтобы определить фазу с помощью мультиметра, выставляем на нём режим определения напряжения переменного тока, который на корпусе тестера чаще всего обозначен как V~
, при этом, всегда выбирайте предел измерения – уставку, выше предполагаемого напряжения сети, обычно это от 500 до 800 Вольт. Щупы подключаются стандартно: черный в разъем “COM”, красный в разъем «VΩmA».В первую очередь, перед тем как искать фазу мультиметром, необходимо проверить его работоспособность, а именно работу режима вольтметра – определения напряжения переменного тока. Для этого проще всего попробовать определить напряжение в стандартной, бытовой розетке 220в.
Как проверить мультиметром напряжение в розетке 220в
Для измерения напряжения в розетке цифровым тестером, необходимо вставить щупы в гнезда розеток, полярность при этом неважна, главное при этом – не касаться руками токопроводящих частей щупов.
Еще раз напомню, что на мультиметре должен быть выставлен режим определения напряжения переменного тока, предел измерения выше 220в, в нашем случае 500В, щупы подключены в разъемы «COM» и «VΩmA».
Если мультиметр рабочий и нет проблем с подключением розетки или перебоев с электроснабжением, то прибор покажет вам напряжение близкое к 220-230В.
Такого простого теста достаточно чтобы продолжить поиск фазы тестером. Сейчас, в качестве примера, мы определим какой из двух проводов, например, выходящих из потолка для люстры, фазный.
Если бы провода было три – фаза, ноль и заземление, то достаточно было бы измерить напряжение на каждой из пар, точно так же, как мы определяли его в розетке. При этом между двумя проводами напряжения практически бы не было – между нолем и заземлением, соответственно оставшийся третий провод фазный. Ниже представлена наглядная схема определения.
Если же провода, для подключения светильника, только два и вы не знаете какой из них каакой, то опознать их таким образом не получится. Тогда нам и приходит на помощь метод определения фазы мультиметром, который я сейчас опишу.
Всё достаточно просто, мы просто должны создать условия для протекания через тестер электрического тока, и зафиксировать его. Для этого просто создаём электрическую цепь, по тому же принципу, что и у индикаторной отвертки.
В режиме проверки напряжения переменного тока, с выбранном пределом 500В, красным щупом прикасаемся к проверяемому проводнику, а черный щуп зажимаем пальцами рук либо касаемся им заведомо заземленной конструкции, например, радиатора отопления, стального каркаса стены и т.п. При этом, как вы помните, черный щуп у нас воткнут в разъем COM мультиметра, а красный в VΩmA.
Если на проверяемом проводе будет фаза, мультиметр покажет на экране достаточно близкую к 220 Вольтам величину напряжения, в зависимости от условий тестирования она может быть разной. Если же провод не фазный, значение будет или нулевым, или очень низким, до нескольких десятков вольт.
Еще раз напомню, ОБЯЗАТЕЛЬНО УБЕДИТЕСЬ ПЕРЕД НАЧАЛОМ ПРОВЕРКИ, ЧТО НА МУЛЬТИМЕТРЕ ВЫБРАН РЕЖИМ ОПРЕДЕЛЕНИЯ НАПРЯЖЕНИЯ ПЕРЕМЕННОГО ТОКА, а не какой-нибудь другой.
Вы, должно быть скажете, что метод достаточно рискованный, становится частью электрической цепи и добровольно попасть под напряжение захочет не каждый. И хотя такой риск есть, он минимальный, ведь, как и в случае с индикаторной отверткой, напряжение из сети проходит через большое сопротивление резистора, встроенного в мультиметр и удара током не происходит. А работоспособность этого резистора, мы проверили, предварительно измерив напряжение в розетке, если бы его там не было, сложились бы все условия для короткого замыкания, которое, уверяю вас, вы бы сразу обнаружили.
Конечно, как я уже писал выше, лучше вместо руки использовать заземленные конструкции – радиаторы и трубы отопления, стальной каркас здания и т.д. но, к сожалению, такая возможность есть не всегда и нередко приходится браться за щуп самому. Бывалые электрики советуют в таких случаях всё же принять дополнительные меры безопасности: стоять на резиновом коврике или в диэлектрической обуви, касаться щупа сперва кратковременно, правой рукой и лишь не обнаружив опасных воздействий тока, выполнить измерение.
В любом случае это единственный, самый надежный и простой способ определить фазу бытовым мультиметром самому.
Как найти ноль мультиметром
Ноль, чаще всего, находится мультиметром относительно фазного провода, т.е. сперва, способом, описанным выше, вы находите фазу, а затем установив красный щуп на неё, касаетесь других проводников и когда тестер на экране покажет 220В (+/- 10%), тогда вы поймете, что второй провод нулевой рабочий или нулевой защитный (заземление).
Определить же то, является провод нулем или заземлением одним мультиметром, довольно сложно, ведь по сути, эти проводники одно и то же и нередко просто дублируют другу друга. В определенных системах заземления ноль и зазмление даже связаны между собой в электрощите и очень тяжело точно их выявить.
Проще всего, в таком случае, отключить от шины заземления в электрощите вводной провод, тогда, во всей квартире или доме, при проверке напряжения, между фазой и проводами заземления, вы не получите 220В, как при проверке нуля и фазы.
Так же стоит отметить тот факт, что если в электрощите установлена дифференциальная защита – УЗО или автоматический выключатель дифференциального тока, он обязательно сработает, при проверке проводов заземления относительно любого другого проводника, даже нулевого.
Если же вы знаете более надежные и универсальные методы определения фазы и нуля цифровым мультиметром – обязательно пишите об этом в комментариях к статье, кроме того приветствуются любые мнения, опыт, здоровая критика или вопрос.
Так же вступайте в нашу группу ВКонтакте, следите за появлением новых материалов.
Как мультиметром найти фазу без ошибок
Ремонт и монтаж бытовой проводки своими руками требуют умения грамотно определять потенциалы напряжения, отличать фазу ноль и землю внутри домашней электрической схемы.
За многолетнюю практику электрика встретил много ошибок, которые допускают новички. Написал эту статью, чтобы вы их не повторяли. Делюсь опытом, как мультиметром найти фазу безопасно и быстро.
Информацию разбил на несколько частей, сосредоточив первоначальное внимание на особенностях и устройстве измерительного прибора. Бывалым электрикам можно сразу перейти к третьему разделу.
Содержание статьи
Что такое фаза, ноль и земля: краткое объяснение простыми словами
Прежде чем начать разбираться с проводами в квартире следует хорошо представлять, откуда и какими способами появляются в ней потенциалы напряжения, чем отличаются способы заземления.
Современные промышленные генераторы вырабатывают трехфазную систему токов.
Напряжение по проводам или кабелям поступает к потребителю от трансформаторных подстанций.
При этом в квартиру многоэтажного дома обычно заводится 220 вольт, определяемые между потенциалами одной из фаз и общего нуля. На ввод частного дома может поступать и полноценное трехфазное питание.
Более подробно об этом можно прочитать в статье про электрическое напряжение.
Во времена СССР внутри жилых помещений для экономии материалов использовалась двухпроводная схема питания, когда на электрическую розетку квартиры подавалось два потенциала:
- одной из трех фаз;
- общего нуля, который является заземлением одного вывода обмотки трансформаторной подстанции и обозначается латинскими буквами PEN.
Эта самая простая система заземлений больше не имеет никаких дополнительных контуров.
Современная схема подключения жилых помещений более сложная. В ней отдельно смонтированы потенциалы заземления выходной обмотки трансформаторной подстанции двумя магистралями, разделяющими PEN:
- рабочего ноля N, который используется только для протекания токов, обеспечивающих полезную работу бытовых механизмов;
- защитного проводника PE, предназначенного для отвода опасных токов утечек при аварийных ситуациях на электрическом оборудовании.
Разновидностями современной системы заземлений, обладающих дополнительным защитным контуром, являются ее модификации: TN-C-S, TT.
Сейчас у жителей частных домов есть возможность сделать защитное заземление своими руками и спастись от случайных аварийных ситуаций.
Тем же людям, кто проживает в старых многоквартирных домах, приходится ждать очереди, когда государство переведет их на более безопасную систему. А новые здания строятся с учетом существующих нормативов ПУЭ.
Таким образом, в современной квартире можно встретить две системы подключения бытовых приборов, выполненных по двухпроводной или трехпроводной схеме.
Для них выпускаются свои два вида электрических розеток, к которым монтируются 2 либо 3 провода.
Для их подключения разработаны определенные правила монтажа.
Таким образом: потенциалы рабочего ноля N и земли РЕ объединены на заземленной части выходной обмотки трансформаторной подстанции. В старой схеме они подводятся одним проводником PEN, а в новой — двумя раздельными.
Требования ПУЭ к монтажу РЕ проводника очень жесткие, в нем должно обеспечиваться минимально допустимое сопротивление протеканию аварийного тока. Он монтируется без использования коммутационных аппаратов на проводах повышенной надежности.
В рабочий ноль могут включаться контакты автоматических и дифференциальных выключателей, УЗО, коммутационных аппаратов, а рабочие провода подбираются для передачи только обычных нагрузок.
За счет этих двух требований и благодаря удалению бытовой проводки от трансформаторной подстанции на стороне потребителя между РЕ и N создается небольшая разность потенциалов, которую можно замерить обыкновенным вольтметром.
Почему мультиметр необходимо переводить в режим вольтметра при проверке фазы
До массового появления в продаже цифровых приборов нам в электролабораторию друзья и знакомые частенько приносили для ремонта сгоревшие аналоговые тестеры.
Причина их повреждения практически всегда была одна: неправильный выбор режима измерения при подключении прибора к цепям напряжения.
При этом в лучшем случае выгорали цепочки подключения резисторов с кнопками и переключателями, а в худшем — высочувствительная измерительная головка с токопроводящими пружинками. Последние неисправности чаще всего ремонту не поддавались.
Люди просто не понимали, что тестер, как и цифровой мультиметр, производит измерения на основе закона Ома.
Разница только в том, что тестер работает с аналоговыми величинами, а мультиметр — оцифрованными. Но принципы подключения обоих типов приборов одинаковы, сводятся к двум простым правилам:
- при измерении напряжения переключатели ставят в то положение, которое вводит калиброванное сопротивление, ограничивающее ток через токоизмерительную головку или датчик;
- замер неизвестной величины напряжения всегда необходимо выполнять на режиме максимального значения шкалы прибора.
Неправильное положение переключателей, переводящих прибор в режим омметра или амперметра, чаще всего встречается у новичков по невнимательности и из-за низких навыков.
На моей памяти есть случай, когда два опытных электрика, понадеявшись в спешке друг на друга, спалили дорогой образцовый вольтметр — эталон класса точности 0,2.
Прибором пришлось срочно воспользоваться для выставления уставок зарядного устройства аккумуляторной батареи оперативного тока 220 вольт на подстанции 330 кВ.
Один работник держал прибор в руках горизонтально и подал концы с щупами второму для выполнения замера. Никто из них не обратил внимания, что переключатель стоял на низшем пределе измерения. В результате протекания повышенного тока измерительная головка выгорела полностью.
Этот случай не типичный, но наглядно показывает, что электричество никому и никаких ошибок не прощает. Ток течет туда, где ему оказывается меньшее сопротивление.
Неправильное подключение мультиметра или тестера к цепям напряжения кроме повреждения самого измерительного прибора создает режим короткого замыкания, вредного для бытовых потребителей и проводки.
Поэтому перед установкой измерительных щупов на цепи напряжения необходимо проверять исходное положение переключателей прибора в режим вольтметра.
Вообще-то стоит заметить, что элитные цифровые мультиметры оборудованы встроенной электронной схемой, защищающей прибор от неправильного подключения к цепям напряжения, а у бюджетных моделей она отсутствует.
Ее в народе часто называют «защитой от дурака». Во многих случаях она может спасти прибор и бытовую сеть, но постоянно использовать эти ее возможности все же я не рекомендую: подключайте вольтметр правильно всегда.
Технические приемы в картинках: как мультиметром искать потенциалы напряжения в электропроводке
Сейчас производители выпускают очень большой ассортимент цифровых измерительных приборов. Они имеют различные органы управления, внешний вид, конфигурацию. Поэтому точно показать положение кнопок и переключателей для всех моделей невозможно.
Однако при их выпуске соблюдается определенные стандарты маркировки переключающих устройств и органов индикации. По этому вопросу у меня на сайте есть статья, объясняющая, как пользоваться любым мультиметром новичку.
В ней я нарисовал и показываю обобщенную модель с максимальным расположением кнопок управления и переключателей, где подробно в табличной форме объясняю положение каждого органа. Читайте и пользуйтесь.
Для постоянного использования себе выбрал бюджетный карманный мультиметр Mestek MT102 с большим количеством функций и сделал подробный обзор его возможностей отдельной статьей.
Это прибор буду использовать при демонстрации приемов работы по определению разности потенциалов между проводами и контактами.
Вначале показываю, как им пользоваться для измерения напряжения в розетке. На этом примере мы сразу решаем две задачи:
- Определяем техническую исправность самого мультиметра и его концов для подключения.
- Контролируем наличие питания 220 вольт в квартире.
Концы для мультиметра — специальные провода с наконечниками для соединения прибора с измеряемой схемой выполнены красным и черным цветом.
По этой расцветке они всегда должны вставляться в соответствующие гнезда нижнего блока. Причем красный конец обычно подключается справа.
Если на приборе есть дополнительные красные гнезда, то они используются только для измерения больших токов или на пределе милли-, микроампер.
Центральным переключателем я свой Mestek MT102 перевел в режим измерения вольтметра, выбрав положение «V», а кнопкой «SEL» указав режим измерения параметров переменного тока «АС».
Только после этого подключенные к прибору концы установил в розетку для измерения напряжения.
На дисплее появилось значение 242,8 вольта, что укладывается в норму.
После этого можно сделать вывод, что в розетке имеется напряжение, а Mestek MT102 и его концы исправны и им можно пользоваться дальше. Подготовительные процедуры закончены, но дальнейшую работу начинающему электрику может облегчить знание расцветки жил кабелей.
Правила цветовой маркировки проводов: как их следует учитывать
Расцветка жил значительно упрощает монтаж электрической проводки и поиск в ней неисправностей. Поэтому производители ее наносят на изоляцию, а профессиональные электрики стараются придерживаться правил монтажа.
Правила цветовой маркировки предполагают обозначение:
- защитного РЕ проводника желто-зеленым цветом;
- рабочего ноля синим или голубым;
- фазы — остальными: белым, оранжевым, коричневым, черным, серым, красным, фиолетовым.
Обратите внимание, что не всегда кабель и провод имеет подобное разнообразие расцветок. Изоляция жил часто может иметь какой-то один оттенок. Да и не все монтажники, а особенно домашние мастера придерживаются этого правила.
Цветовая маркировка призвана облегчить поиск неисправностей и монтажные работы, она является дополнительным способом определения фазы и рабочего ноля. Но полностью полагаться на этот метод нельзя.
Кстати, во время работы не раз приходилось наблюдать, как в спешке устранения неисправностей даже на ответственных вторичных цепях оборудования 330 кВ на подстанции опытным электрикам приходилось заменять и прокладывать провода из тех, какие есть под рукой, не обращая внимание на их расцветку.
Какие безобразия творятся в бытовой домашней сети, допускаемые необученным персоналом, можете представить сами.
Последовательность поиска фазы вольтметром: пошаговая инструкция из 3 типовых случаев
Работа состоит из подготовительной и основной части.
На первоначальном этапе проверяем исправность измерительного прибора и его концов, как я показал выше. Во многих случаях эта короткая процедура экономит дальнейшее рабочее время. Делайте ее привычкой, ибо плохой контакт в гнезде, оборванная жила, севшие батарейки питания, любые другие дефекты доставят много неприятностей.
Вариант №1. Трехпроводная бытовая схема питания
Определение наличия фазного потенциала на проводе буду показывать на примере проводки с жилами однотонной изоляции. На них предполагаем наличие фазы, земли и ноля. Будем их определять.
Далее все делаем за 2 шага.
Шаг №1. Попарный замер напряжения между проводами
Произвольно помечаем все три провода. Например, присваиваем им номера, буквы или располагаем сверху вниз либо слева направо.
При этом помним, что они находятся под напряжением и прикасаться к ним можно только с соблюдением правил безопасности, не создавая контакт тела с токоведущими жилами.
Для наглядности я расположил их вертикально и присвоил номера №1÷3. Затем щупами вольтметра последовательно замеряем разность потенциалов между токоведущими жилами.
Допустим, мы увидели 220 вольт между проводами 1 и 2, а также 2 и 3.
А между жилами №1 и 3 вольтметр показывает доли вольта, близкие к нулю.
Шаг №2. Анализ результатов измерения
На основе этих замеров можно сделать вывод, что общий провод №2 для двух случаев измерения 220 вольт является фазным.
Вариант №2. Двухпроводная бытовая сеть
Имеем два провода с фазой и нулем, но не знаем где находится какой потенциал.
Шаг №1. Замер напряжения между проводами
Вначале проверяем разность потенциалов между токоведущими жилами. При исправной цепи мы должны увидеть 220 вольт, как я показал на фотографии розетки выше при проверке исправности прибора.
Шаг №2. Замер напряжения между каждым проводом и контуром земли
Один конец от вольтметра крокодилом подключаем на водопроводный кран, батарею отопления или любую другую заземленную металлическую конструкцию. Вторым щупом поочередно касаемся токоведущих жил.
В одном положении вольтметр покажет что-то близкое к нолю, а в другом — 220 вольт. На этом проводе и будет присутствовать потенциал фазы.
Оба случая проверки напряжения для двух- и трехпроводной схемы хорошо подходят для оценки наличия фазы в соответствующих типах розеток.
Вариант №3. Принцип определения фазы на емкостном токе
Здесь используется та же технология, что и при проверке напряжения обычной индикаторной-отверткой.
Внутри индикатора стоит высокоомный резистор, ограничивающий ток через тело оператора на землю до безопасной величины: нескольких милли- или микроампер, достаточных для свечения неоновой либо светодиодной лампочки.
Когда человек касается пальцами контакта на торце отвертки, то, если имеется потенциал фазы на противоположном конце лезвия, создается емкостной ток и лампочка горит. В противном случае ее свечения не будет.
Схема протекания емкостного тока выглядит следующим образом.
Заменив индикатор мультиметром в этом методе вполне можно найти фазу, что я и показываю на очередной фотографии.
Один щуп вольтметра установлен в гнездо розетки, а второго касаюсь пальцами. На табло вы видите показание 73 вольта. При этом я сижу в кресле, находящемся на сухом деревянном полу.
За счет хорошей изоляции тела от контура земли мой Mestek MT102 сильно занижает величину фазного потенциала. Поэтому я делаю второй эксперимент.
Снял с ноги носок и притронулся голой стопой к окрашенному радиатору батареи отопления. Вот что получилось.
Mestek MT102 показал уже 175 вольт, что ближе к истине.
Этим методом пользоваться можно, но цифрам дисплея верить нельзя: они приблизительные и зависят от качества заземления тела.
На другом контакте розетки вы вольты таким способом замера не увидите.
Как отличить провод нуля от земли в трехпроводной схеме
Когда мы нашли фазу, то на двух оставшихся исправных проводах будут потенциалы рабочего нуля и РЕ проводника. Их нам необходимо различить.
Для этого первоначально используем цветовую маркировку, если она применена правильно. Но обязательно рекомендую выполнить для достоверности электрические замеры.
Надо просто еще раз внимательно измерить величину разности потенциалов между фазой и этими двумя проводами. Землей будет тот провод, где показание мультиметра чуть больше. На нем меньшие потери напряжения из-за высоких требований к монтажу и отсутствию коммутационных аппаратов внутри цепи.
Третий оставшийся провод — рабочий ноль. Для практики можно измерить разность потенциалов между землей и нулем, сравнить ее с отличием замеров между этими проводами с фазой.
Небольшие отклонения будут вызваны:
- классом точности прибора;
- качеством подключения концов;
- отличием арифметических действий от методов векторной алгебры.
3 заключительных совета из личного опыта
Здесь я поделюсь тремя случаями, которые должны помочь вам облегчить жизнь при общении с электричеством, исключить типичные ошибки.
Удлинитель для мультиметра
Работая тестером на различных объектах мне пришлось изготовить простой удлинитель его концов.
На самодельное пластиковое мотовильце намотал длинный гибкий провод и припаял к нему два штеккера. На фото показаны крокодил и самодельный щуп из спицы велосипеда, закрытый корпусом шариковой ручки. Они легко надеваются и снимаются в зависимости от необходимых задач.
Этот удлинитель занимает мало места, не путается, очень выручает меня при прозвонке удаленных объектов. Он же будет полезен при проверке фазы методом емкостного тока.
«Неисправный телевизор»
Этот случай произошел, когда у нас еще работали черно-белые кинескопные телевизоры.
Соседка с пятого этажа пришла с просьбой: “Помоги, у меня телевизор перестал включаться”. Пришлось брать тестер и инструменты. Первым делом измерил напряжение в розетке: 220 вольт, норма.
Дальше вскрыл заднюю крышку и стал проверять цепи питания подачи напряжения на трансформатор. Все вызвонил, а неисправности не нашел, предохранители и провода целые, кнопки рабочие.
Еще раз проверил розетку: опять 220. Пришлось сильно задуматься. В итоге взял удлинитель, подключил его в другой комнате и запитал телевизор. Он заработал.
Стал разбирать розетку. Алюминиевая лапша 2,5 квадрата. Оба конца исправны, тестер показывает напряжение 220. Включил настольную лампа, а она не горит. Опять возвращаюсь к вольтметру и вижу всего 40 вольт.
Делаю вывод: под нагрузкой где-то пропадает контакт. Лезу в распределительную коробку, осматриваю соединения. Прощупываю провода и замечаю внутри изоляции обломанную жилу: концы подвижны, но соприкасаются.
Когда через них проходит маленький ток от тестера, то контакт надежный, а при увеличении нагрузки от настенной лампы или телевизора он ухудшается и цепь не работает.
Раньше такие неисправности хорошо выявлялись контрольной лампой. Сейчас она запрещена правилами по ряду причин. Однако проверять наличие фазы на проводе под нагрузкой более правильно, чем без нее.
«Электрик по совместительству»
Десяток лет назад встал вопрос о ремонте ванной и туалета. Жене порекомендовали хорошего плиточника по имени Сергей. Он профессионально занимается отделочными работами, имеет опыт, показывает фотографий в своем портфолио.
Цена устроила, договорились. Сергей приступил к работе. По ходу дела он взял на себя весь ремонт, как сейчас говорят, «помещения под ключ», включая сантехнику, электрику, замену дверей.
Во время не удачного демонтажа старой дверной рамы рухнула небольшая часть стены с замурованной проводкой. Одни провода оборвались, а на других повис кусок бетона. (В этом месте был установлен трёхклавишный выключатель и розеточный блок.)
Сергей попытался разобрать образовавшийся клубок и получил сильный удар током. Автоматы отключили короткое замыкание, а неудачный электрик впал в шоковое состояние.
К его счастью в этот момент я пришел с работы и увидел всю эту картину. Сергей сразу заявил, что дальше он с этой неисправностью сам не справится, а от электричества теперь будет держаться подальше.
Пришлось мне браться за прозвонку и монтаж всей проводки. Вам же хочу напомнить, что работы под напряжением относятся к опасным. Их допускается выполнять только обученному персоналу, обладающему:
- специальными знаниями;
- практическими навыками;
- крепким физическим здоровьем.
Если хоть одно из этих требований отсутствует, то беда неминуема. Дабы ее не было — привлекайте профессиональных электриков. Вот и вся информация о том, как мультиметром найти фазу. Можете ее дополнить в комментариях или задать дополнительные вопросы. Я отвечу.
Как определить фазу и ноль мультиметром: инструкции, фото, видео
Чтобы правильно подключить приборы освещения, розетки и другие электроустройства нужно знать, где фаза и ноль. Для этого можно воспользоваться очень полезным и функциональным измерителем — мультиметром. Несмотря на кажущуюся простоту этого прибора, нужно научиться им пользоваться, в некоторых случаях одно неверное действие может привести к неприятным и даже плачевным результатам. Мы расскажем вам, как определить фазу и ноль мультиметром, и вы сможете безопасно организовать электричество в своём доме.
Для неискушённых пользователей: что такое фаза и ноль
Чтобы понять, как определить фазу и ноль мультиметром, нужно сначала узнать, что такое «фаза и ноль». Здесь нам пригодится элементарная физика. Вспомним определение электротока, знакомое многим из нас со школы, — это упорядоченное движение заряженных частиц, то есть электронов. Все электросети сгруппированы так:
- С постоянным током, когда частицы движутся в едином направлении.
- С переменным, когда направление носит переменчивый характер.
Нам нужен второй вид. Переменная сеть включает в себя две части:
- Фаза (официальное название — рабочая фаза), по которой идёт рабочее напряжение.
- Ноль или пустая фаза, необходимая для образования замкнутой сети, чтобы подключались и работали электроприборы. Кроме того, она используется для сетевого заземления.
Когда электроприборы включаются в однофазку, расположение этих двух фаз не имеет значения. Но для монтажа электропроводки и её присоединения к общедомовой сети без этих знаний не обойтись.
О том, как проверить мультиметром фазу и ноль, мы и поговорим далее, но сначала вспомним простейшие меры безопасности.
Самое важное: правила безопасности
- Не используйте нерабочие щупы.
- Не используйте измеритель там, где царит высокая влажность.
- При выборе диапазона измерений переключатель важно сразу ставить к наибольшему значению во избежание поломки мультиметра.
- Не изменяйте измерительные границы или режим тестера прямо в ходе замеров. Проще говоря, не вертите переключатель мультиметра, когда делаете измерение.
- Перед эксплуатацией мультиметра прочитайте руководство по его применению. Есть разные модели и обозначения. Чтобы правильно расставить щупы, выбрать точный режим и диапазон значений, изучите руководство к своей модели тестера. Полезно прочитать и наш материал о том, как пользоваться мультиметром.
Как определить фазу мультиметром
Для начала включите тестер и выберете функцию тестирования напряжения переменного тока. Чаще всего она отмечена знаком V~. Сразу ставим максимальный предел измерения, например, 750В. Не забудьте правильно установить щупы в гнезда. Обычно черный подключается к отверстию с надписью COM, а красный к VΩmA.
Кстати, если вы хотите убедиться в работоспособности определённого тестера (а это очень важно!), проверьте свою розетку. Сделать это очень просто: вставить щупы в розеточные гнёзда. О полярности не беспокойтесь, здесь она значения не имеет. Главное правило — не касайтесь руками частей щупов, которые проводят ток. Если с вашим тестером всё в порядке, нет затруднений с электроснабжением и подключением розетки, на дисплее вы увидите значение около 220-230В.
Теперь можно продолжить рассказывать о том, как найти мультиметром фазу в розетке 220В.
Проще всего обстоят дела, если перед нами три проводка: земля, ноль и фаза. Всё, что нужно сделать в такой ситуации — проверить напряжение всех пар. Между землей и нулём напряжения почти нет, значит, другой проводок — фаза.
Если же перед вами два проводка, всё немного иначе. Теперь нам нужно организовать подходящие условия для движения электричества по прибору. Итак, дальнейшие действия для проверки фазы мультиметром:
- Наконечником алого провода тестера дотрагиваемся до исследуемого проводка.
- Наконечник темного провода мультиметра прижимаем пальцами или касаемся им заземленного предмета (второй вариант предпочтительнее!). Им может быть стальной каркас рядом стоящей стены, отопительная батарея и т.п. Главное — выбрать заземленный предмет.
- Смотрим на показания мультиметра. Если вы видите показания, приближенные к 220В, значит, вы нашли фазу. Цифра может чуть отличаться в зависимости от условий, но будет находиться в пределах указанного значения. Если проверяемый вами кабель не является фазой, значит, вы увидите на дисплее 0 или немного вольт.
Есть ли риск в этом методе? Да, но он очень маленький. Дело в том, что сетевое напряжение движется через значительное сопротивление резистора, который встроен в наш измерительный прибор. Поэтому удара током нет. А рабочий этот резистор или нет, мы предварительно проверяем с помощью розетки способом, который описали выше. Без рабочего резистора, конечно, складываются отличные предпосылки для короткого замыкания, а его не заметить невозможно.
И лучше всего не зажимать наконечник пальцами, а использовать для этого заземлённые устройства. Но это возможно не всегда. Если вы будете использовать свою руку, советуем не пренебрегать такими принципами безопасности, как резиновый коврик под ногами или диэлектрические ботинки. Кроме того, прикоснитесь к щупу правой рукой сначала быстро: если нет никаких неприятных ощущений, то выполняйте измерения.
Рекомендуем посмотреть видео о том, как узнать мультиметром фазу и ноль:
Конечно, не забудьте перед описанными манипуляциями выбрать режим измерения именно напряжения переменного тока.
Если же вы не уверены, что всё пройдет благополучно, не беритесь за это дело, а доверьте опытным электрикам. Кроме того, можно использовать вместо мультиметра индикаторную отвертку (её индикатор загорается/не загорается при проверке).
А вот ещё одно интересное видео в тему, как мультиметром узнать, где фаза:
Как найти ноль мультиметром
Логично предположить, что ноль располагается по отношению к фазе, поэтому искать его легко: если вы нашли фазу, второй проводок из пары — ноль. Но не всё так просто, потому что другой провод может также быть землей. Ноль и заземление почти одинаковы. Иногда эти два провода связываются в щите и выявить их весьма нелегко. Как определить ноль мультиметром?
Советуется выключить кабель ввода от заземлительной шины в щитке. В таком варианте, когда будет проверяться напряжение между землёй и фазой, 220В не будет, как при тестировании ноля и фазы. Если в щитке имеется дифференциальная защитная система, она проявит себя, когда будут проверяться заземлительные проводки относительно иного проводника, даже если он нулевой.
Как проверить ноль мультиметром в розетке:
- Красный провод мультиметра подвести к дырке, где фаза.
- Черный провод соединить сначала с одним контактом, потом с другим.
- Зафиксировать оба напряжения. Где оно меньше — там земля, где чуть больше — ноль.
Теперь вы знаете, как определить фазу и ноль мультиметром. Делитесь в комментариях своим опытом.
Желаем безопасных и точных измерений!
Вопрос — ответ
Вопрос: Как определить фазу цифровым мультиметром?
Ответ: Включите тестер и выберете функцию тестирования напряжения переменного тока. Чаще всего она отмечена знаком V~. Поставьте максимальный предел измерения, например, 750В. Не забудьте правильно установить щупы в гнезда. Обычно черный подключается к отверстию с надписью COM, а красный к VΩmA.
Вопрос: Как безопасно найти фазу мультиметром?
Ответ: Для этого нужно убедиться в работоспособности мультиметра с помощью проверки розетки. Вставьте щупы в розеточные гнёзда, не касайтесь руками частей щупов, которые проводят ток. Если с вашим тестером всё в порядке, нет затруднений с электроснабжением и подключением розетки, на дисплее вы увидите значение около 220-230В.
Вопрос: Как правильно проверить фазу и ноль мультиметром?
Ответ: Сначала можно найти фазу. Как это сделать, зависит от количества проводов: два или три. В первом случае наконечником алого провода тестера дотрагиваемся до исследуемого проводка. Наконечник темного провода мультиметра прижимаем пальцами или касаемся им заземленного предмета (второй вариант предпочтительнее!). После определения фазы можно найти ноль и заземление.
Вопрос: Как можно найти фазу в розетке 220В мультиметром?
Ответ: Проще всего это сделать, если три проводка: земля, ноль и фаза. Нужно только проверить напряжение всех пар. Между землей и нолём напряжения почти нет, значит, другой проводок — фаза. Если провода два, нужно организовать подходящие условия для движения электричества по прибору.
Вопрос: Как лучше всего найти ноль мультиметром?
Ответ: Нужно выключить кабель ввода от заземлительной шины в электрощитке. Когда будет проверяться напряжение между землёй и фазой, 220В не будет, как при проверке ноля и фазы. Если в щитке имеется дифференциальная защитная система, она проявит себя, когда будут проверяться заземлительные проводки относительно иного проводника, даже если он нулевой.
Как понять где фаза а где ноль в проводах: 5 способов узнать
Согласно нормам ПУЭ к выключателю должен подсоединяться фазный провод. При ремонте или реконструкции электропроводки могут возникнуть и другие ситуации, при которых имеет значение, какой из проводов нейтраль, а какой фаза.
При наличии бирок на концах проводников это несложно, но как понять где фаза, а где ноль в проводах, если маркировка на проводах отсутствует? В этом случае необходимо иметь минимальные знания электротехники или внимательно изучить следующую статью.
Зачем нужно определять, где фаза, а где ноль
Для работы электроприборов не имеет значения, к какой клемме присоединяется фазный, а к какой нулевой проводник, но для повышения безопасности людей, живущих в доме, эти провода в некоторых ситуациях должны подключаться определённым образом:
- К выключателю освещения необходимо подводить фазный провод, а к лампе нулевой. Это обеспечивает отсутствие напряжения в светильнике при выключенном освещении и позволяет производить замену лампы и ремонт осветительной аппаратуры без отключения автоматического выключателя. Это требование так же указано в «библии» электромонтёров — ПУЭ п.6.6.28.
- Наличие в схеме электропроводки УЗО. Использование вместо нулевого проводника заземляющего при подключении электроприборов, освещения и розеток приводит к появлению тока утечки, нарушению равенства токов в нейтрали и фазном проводе и срабатыванию дифзащиты
Простые способы, как найти фазу
Для поиска фазного провода в электропроводке используются различные методы.
По цветовой маркировке
Это самый простой метод, позволяющий выполнить эту работу без каких-либо приборов, однако он применим только к электропроводке, выполненной согласно стандарту IEC 60446, принятому в 2004 году.
В этом случае согласно правилам цветовой маркировки изоляции проводов фазный провод в однофазной электропроводке и двух- или трёхжильных кабелях чаще всего окрашен в коричневый цвет, а в трёхфазной проводке и четырёх- или пятижильных кабелях оболочка может быть любого цвета, кроме синего и жёлто-зелёного.
С помощью индикаторной отвертки
Этот инструмент позволяет определить фазный контакт даже в закрытой розетке. Принцип работы индикаторной отвёртки основан на протекании через него активного тока, причём жало индикатора должно касаться проверяемого проводника, а вторым проводником является тело человека.
Принципиальная схема индикатора состоит из следующих узлов:
- Жало отвёртки. Является одним из контактов электросхемы инструмента.
- Индикатор. В старых моделях это неоновая лампочка, в более новых светодиод или ЖК дисплей.
- Токоограничивающий элемент. В аппаратах с неонкой это резистор номиналом 1 МОм, в индикаторах со светодиодом или дисплеем ток ограничивается электронной схемой с питанием от батареек.
- Контактное кольцо или площадка. Находится в рукоятке и служит для замыкания цепи через тело и перед тем, как найти фазу и ноль индикаторной отверткой, следует дотронуться к нему пальцами.
При прикосновении жала к фазному проводу, а человека к контактному кольцу в рукоятке ток начинает идти по цепи «жало-неонка-резистор-контакт-тело-пол» и лампа загорается.
Важно! При помощи индикаторной отвёртки с гарантией можно найти только фазный провод. Отсутствие сигнала не указывает на нулевой проводник, он может быть отключённым или оборванным, а при подаче питания на нём так же может появиться напряжение. |
Как найти фазу указателем напряжения
Более надёжными являются индикаторы напряжения, как старые, которые использовались ещё в советское время, ПИН-90, так и более современные, имеющие встроенную функцию указания фазы.
Принцип действия этих устройств аналогичен индикаторной отвёртке, но конструкция прибора позволяет кроме фазного найти так же заземляющий и нейтральный проводники.
Для определения фазы один из щупов должен касаться проверяемого провода, а рукой при этом необходимо, в зависимости от конструкции, касаться второго щупа или специального вывода. При контакте с фазой на приборе загорится лампочка, светодиод или прозвучит звуковой сигнал.
С помощью мультиметра
Этот прибор можно применять для поиска фазы аналогично индикаторной отвёртке, однако необходимо использовать цифровой мультиметр. Он имеет встроенный усилитель сигнала и является более чувствительным, чем стрелочный прибор, требующий больший ток для работы показания которого составят менее 1 В. Есть два варианта, как найти фазу с помощью мультиметра.
Более надёжным способом является поиск фазного проводника при контакте тела с прибором:
- 1. перед тем, как найти фазу мультиметром, следует подключить щупы к прибору;
- 2. переключить мультиметр для измерения переменного напряжения ACV на предел 750В;
- 3. один из щупов взять за металлический наконечник незащищённой рукой;
- 4. вторым щупом поочерёдно дотронуться до всех проверяемых проводов.
При прикосновении к фазному контакту дисплей прибора покажет наличие напряжения. Его величина зависит от многих факторов и находится в диапазоне 20-100 Вольт. Так же, как и индикатор напряжения, после определения фазного проводника мультиметром можно найти нулевой провод и заземляющий.
Такой метод поиска фазы не указан в инструкции к прибору, поэтому для большей безопасности можно использовать «бесконтактный» метод, при котором нет необходимости дотрагиваться рукой до второго щупа. Показания мультиметра при этом составят 3-15 Вольт, что достаточно для поиска фазы.
При помощи контрольной лампы
Кроме методов, требующих специальных инструментов, существует достаточно опасный способ, как понять, где фаза, а где ноль в проводах при помощи контрольной лампы или контрольки. Для этого достаточно иметь обычную лампу, патрон и два куска провода. Для сборки этого приспособления провода с зачищенными концами подключают к патрону и закручивают в него лампу.
Для определения фазного провода один из проводов присоединяют к заведомо заземлённому элементу — нейтральному или заземляющему проводнику, шине заземления в электрощитке или контуру заземления здания, а вторым проводом поочерёдно прикасаются к проверяемым проводам. В случае контакта с фазным проводом лампа загорится.
В трёхпроводной электропроводке с заземляющим контактом контрольную лампу последовательно подключают попарно ко всем трём проводам. Тот проводник, при присоединении к которому лампа будет светиться с обоими другими проводами является фазным, оставшиеся являются нейтралью и заземлением.
Этот метод проверки наличия напряжения запрещён ПТБЭЭП и другими нормативными документами. Из-за высокого тока потребления контрольная лампа загорится только при низком сопротивлении электропроводки. Включённая последовательно с проверяемым контактом лампа или плохой контакт в скрутке или клеммнике не позволят лампочке включиться, однако прикосновение к этим проводам опасно для жизни.
Кроме того, возможна ситуация, при которой в кабеле будет обрыв в нулевом и заземляющем проводниках. При этом во всех вариантах подключения контролька светиться не будет, что позволит сделать ошибочный вывод об отсутствии напряжения в сети.
Как определить фазу и ноль
Далеко не всегда достаточно определить, какой из проводников является фазным. Очень часто, особенно в трёхпроводной однофазной системе электроснабжения, нужно найти нулевой контакт. Это необходимо при подключении розеток или освещения и не всегда, если один из проводов фазный, то второй обязате
Как определить фазу, ноль и заземление
Многие электроприборы требуют соблюдения полярности. Это не только мощные потребители электроэнергии, такие как посудомоечная машина или электрическая печь, но и привычные для нас переключатели для включения/выключения света. Даже подключение переключателя с размыкаемым нулем вместо фазы может стать причиной удара током.
Стабильная и безопасная работа электроприборов возможна только при правильном подключении. Для этого нужно определить, какой из проводников является фазным, нулевым и заземляющим. В этой статье мы подробно рассмотрим способы, как это сделать безопасно с использованием доступных инструментов, а также разберем, можно ли определить фазность без приборов.
Безопасность прежде всего!
Жизнь и здоровье человека являются наибольшей ценностью. Поэтому, прежде чем приступить к работе с электрооборудованием, следует убедиться, что все инструменты исправны: корпуса без повреждений, изоляция без переломов провода и повреждений, щупы не разболтаны и их корпуса не нарушены.
Не прикасайтесь к участкам без изоляции на инструментах и проводах при работе под напряжением!
При возникновении малейших сомнений в правильности действий, прекратите работу и обратитесь к профессионалу — это убережет вас, а также окружающих людей, от возможного поражения током.
Как определить ноль и фазу индикаторной отверткой
Одним из простейших способов выявления фазы и нуля является работа с отверткой-индикатором. Такой инструмент доступен по цене и несложный в использовании. Подробно рассмотрим его устройство для понимания принципа работы.
Этот прибор состоит из рукоятки и металлического жала, большая часть которого покрыта изоляцией. Внутри прозрачной рукоятки размещен резистор и неоновая лампа, а на торцевой части имеется второй контакт.
Работая с индикаторной отверткой, её жало должно касаться исследуемого элемента, а человек — второго контакта. Емкость и сопротивление человеческого тела здесь выступают частями цепи: если в цепи присутствует напряжение, то лампочка начинает светиться.
Для определения фазы и нуля отверткой-индикатором достаточно дотронуться сначала к одному, а затем к другому не изолированному концу провода или отверстию розетки. Если в исследуемом элементе есть напряжение, то лампочка загорится. Это явление соответствует фазному проводнику. Если свечения нет, то перед нами нулевой или заземляющий кабель.
Как определить фазу и ноль мультиметром
Индикаторной отверткой мы могли определить только наличие напряжения. При помощи тестера мы можем увидеть определенные показатели, отображающиеся на мониторе. Определение рабочего, заземляющего и нулевого рабочего элемента при помощи мультиметра происходит по схожему с сценариею (как с отверткой). Но это более сложный прибор, поэтому нужно быть предельно внимательным при выставлении его режимов. Если вместо режима вольтметра будет выставлен режим амперметра, вы можете получить значительный удар током.
Итак, устанавливаем переключатель устройства в режим вольтметра переменного тока «~», а предел измерения устанавливаем выше предполагаемого напряжения в сети. Перед началом работы необходимо убедиться, что мультиметр исправен. Для этого нужно измерить напряжение переменного тока в рабочей розетке и проконтролировать полученные значения. После этого можно приступать к определению фазы в исследуемом объекте. Одним из электрощупов касаемся до исследуемого элемента, а контактную часть второго электрощупа зажимаем между двух пальцев. Если на экране отображается какое-либо значение, значительно отличающееся от нуля (близкое к номинальному напряжению в сети), то перед нами рабочий проводник, если же оно равно нулю или очень низкое (до нескольких десятков вольт), то это нулевой или заземляющий проводник.
Как определить фазу и ноль без приборов
Единственный возможный способ различить проводники без использования приборов — при помощи маркировки проводников по цветам. Желто-зеленая окраска изоляции соответствует кабелю заземления, синяя или голубая — нулевому, а рабочий кабель может быть любого цвета. К сожалению, не все придерживаются ГОСТов, а также необходимых требований. Нередко случается, что электричество подключено либо немаркированными кабелями, либо маркировка не соблюдена. Поэтому доверять такому способу нельзя.
В интернете можно найти множество способов определения фазы при помощи подручных средств — картофеля, стакана с водопроводной водой, контрольной лампочки и пр. Эти способы использовать ни в коем случае нельзя — такие опыты могут закончиться фатально не только для вас, но также для окружающих!
Отдельно отметим рекомендуемую даже некоторыми электриками контрольную лампочку, т.е. патрон с лампой, к которому подсоединены два провода. Использование такого самодельного прибора запрещено Правилами Безопасной Эксплуатации Электроустановок, т.к. может причинить серьезный ущерб и нанести травмы.
Также опасно использовать способы, в которых рекомендуется соединение электросети с заземленными предметами — трубами центрального отопления, водоснабжения, газовыми трубами и пр. — если напряжение окажется на таких предметах, то прикосновение к ним может стать смертельным.
Если вы не имеете достаточно инструментов или опыта работы с электричеством, то не рискуйте жизнью и здоровьем, а доверьте подключение электроприборов профессионалу.
Как определить заземление
Часто в новых домах можно встретить проводку из трехжильного кабеля, т.е. в нем присутствует отдельно выведенное заземление. При неправильном подключении есть риск короткого замыкания, а также поражения током. Поэтому для подключения электрооборудования важно знать не только где находится фаза, но также выявить ноль и заземление.
Определить провод заземления сложно из-за того, что по своим параметрам он схож с нулевым.
В электросистемах типа ТТ, имеющих индивидуальный заземляющий контур, можно найти кабель заземления при помощи измерений мультиметром. Для этого нужно поочередно измерить напряжение между рабочим проводником и двумя другими. Большее значение соответствует нулю, меньшее — земле.
В других конфигурациях сети этот прием не работает, поэтому мы рекомендуем предпринять следующие шаги:
- Отключить всех потребителей электроэнергии на исследуемом участке цепи.
- В щитке определить, где находится сдвоенный УЗО на ввод.
- Внимательно осмотрев защитное устройство, определить нахождение нулевого, а также фазного проводника.
- Отключить это УЗО.
- Аккуратно отсоединить нуль от УЗО на время исследования.
- Включить защитное устройство.
- Тестером произвести измерения исследуемых элементов поочередно подключая каждый к фазному. Нулевой проводник отключен, поэтому показания измерений будут нулевыми, сочетание фаза-земля покажет около 220 В.
- Промаркировать проводники по установленным данным.
- Произвести повторное подключение нуля к УЗО.
Помните: неосторожное или неумелое обращение с электричеством может привести к непоправимым последствиям. Не рискуйте жизнью и здоровьем — доверьте дело профессиональным электрикам со стажем и необходимыми допусками.
Оцените новость:Как определить фазу и ноль мультиметром, индикаторной отверткой и без приборов
Проведение ремонтных работ в любом помещении, важным моментом является оснащение этого помещения электричеством. Помимо электропроводки, не стоит забывать о необходимости установки розеток и выключателей, при помощи которых будет происходить регулирование освещения. Тут достаточно важным моментом будет найти фазу, ноль и заземляющего проводника системы.
Для профессиональных монтажников данная задача является очень простой, чего не скажешь о простых обывателях, которые далеко не всегда могут справиться с подобной задачей. Тем не менее, поиск фазы и нуля является процессом не настолько сложным, как может показаться изначально, при этом включает в себя несколько способов определения.
Следует понимать, что проводка в квартире обычно имеет напряжение в 220В, поскольку она предусматривает подключение к нулевому проводнику и к одной из фаз. При этом обязательным является заземление, что делает электрификацию помещения безопасной для обитателей.
Что такое фаза и ноль в электричестве для новичка
Чтобы уловить принцип нахождения фазы и нуля в сети, следует для начала определить для себя, что означают данные термины, которые для простого обывателя могут звучать как совершенно непонятные понятия. Любая система, независимо от ее протяженности, состоит из трех фаз, причем касается также и низковольтных линей, задачей которых является питание жилых домов.
Между двумя любыми фазами возникает линейное напряжение, составляющее 380В. Однако напряжение бытовой сети составляет 220В, главной задачей является появление требуемого для сети напряжения. Для этой цели в любой сети присутствует нулевой провод, которой в сочетании с любой фазой образует разность потенциалов в 200В, которая и будет представлять собой фазное напряжение.
Нулем в электрической цепи называется проводник, который соединяется с контуром земли и используется для создания нагрузки от фазы. Фаза эта подключена к противоположному концу обмотки на ТП. Таким образом, в стандартной розетке, для наглядности, один вход принимается за фазу, а второй за ноль.
Если говорить более простым языком, то фаза представляет собой провод, по которому поступает ток. По нулевому проводу ток возвращается обратно к источнику. В зависимости от количества фаз, система имеет несколько проводов. Допустим, в трехфазовой цепи имеются три фазовых провода и один обратный, нулевой.
Цветовое обозначение. Не редко многих интересует вопрос, какого цвета провода фаза ноль земля, как определить, где какой провод, часто предоставляется возможным при помощи используемых в электрике цветовых разграничений. Однако сработает данный метод только в случае, если проводка действительно выполнена по всем правилам. Изоляция нулевого провода обычно обозначается синим или голубым цветом, земля сочетает в себе сразу две окраски – зеленую и желтую. Провод фазы по правилам обозначается в коричневый, белый или черный цвет.
Обозначение фазы и нуля буквы. Помимо цветовых обозначений, возможной является также буквенная маркировка проводов. Фаза обычно обозначается латинской буквой “L” а нулевой провод принято маркировать буквой “N”. Кроме того, свое обозначение имеет и заземление, обозначать которое принято буквой “G”.
Как определить фазу и ноль индикаторной отверткой
Для нахождение фазы и нуля в сети можно использовать различные инструменты. Наиболее удачным изобретением в помощь начинающим электрикам считается индикаторная отвертка, имеющая специальные чувствительные элементы и индикатор-отражатель.
Осуществлять проверку фазу и нуля в сети при помощи отвертки проще простого. Отвертку следует зажать между большим и средним пальцем. Касаться неизолированной части жала отвертки не разрешается. Палец указательный следует поставить на металлический круглый выступ в конце рукоятки.
Далее жало прикладывают к оголенным концам проводов. В том случае, если произошло касание с фазным проводником, в отвертке загорается соответствующий светодиод.
Определить принцип действия индикаторной отвертки нетрудно, внутри нее расположена специальная лампа, а также резистор, представляющий собой сопротивление. Лампа загорается, если замыкается цепь. Благодаря сопротивлению, можно не бояться поражения током во время проверки, поскольку оно снимает его значение до минимального показателя.
Как узнать где фаза а где ноль в розетке индикаторным пробником видео
Найти ноль такой отверткой, соответственно, не получится. Кроме того, подобный способ нередко дает сбой из-за не слишком хорошей чувствительности. В итоге индикаторная отвертка, реагируя на наводки, может выдать напряжение там, где его совершенно нет.
Как определить фазу и ноль мультиметром
Помимо применения индикаторной отвертки, возможным является использование мультиметра, который также позволит узнать где фаза а где ноль в сети. Обязательным условием для его использования является предварительная зачистка проводов.
На приборе перед использованием требуется установить значение предела измерения переменного тока, величина которого должна превышать 220В. Ориентироваться также следует по маркировке гнезд, куда включены щупы прибора. Для данного типа проверки потребуется щуп, включенный в гнездо с маркировкой «V».
Сама проверка заключается в прикосновении щупа к одному из проводов, следя при этом за показаниями прибора. Если мультиметр идентифицирует какое либо напряжение, то данный провод является фазным. Если другой провод покажет нулевое значение, то это, соответственно, нулевой провод.
Прибор для работы может использоваться любого типа – стрелочный или с цифровым индикатором. В любом случае, важным моментом будет соблюдение мер безопасности, а также правильная индикация прибором показаний с проводов. Точность этого прибора обычно выше индикаторной отвертки.
Главным правилом при использовании мультиметра является запрет на одновременное касание фазы и заземляющего контура. Такая халатность может привести к короткому замыканию и, как следствие, к травматическим ожогам.
Как определить фазу и ноль без приборов
Несмотря на столь широкое распространение приборных способов определения фазы и нуля в сети, далеко не всегда под рукой может оказаться нужное устройство, которое позволит сделать верное заключение. При этом неправильное выявление проводов в сети «на глаз» может привести к достаточно опасным последствиям.
Первый метод, позволяющий справиться с данной задачей, был описан в одном из разделов выше. Заключается он в нахождении проводов, в зависимости от цвета их изоляции, а также от маркировки. Однако это окажется верным только в том случае, если проводка была выполнена по всем правилам.
Второй способ определить их – это сделать так называемую контрольную лампочку, применяя при этом подручные средства. Для этого потребуется простая лампа накаливания и два отрезка провода, длиной примерно 50 сантиметров. Жилы проводов следует присоединить к лампочке, при этом вторым концом одного из проводов следует прикоснуться к трубам отопления (зачищенным), а вторым прикоснуться к «прозваниваемым» проводам. Тот провод, при прикосновении к которому загорается лампочка, является фазным.
Определение фазы без индикатора и прибора видео
Стоит обратить внимание, что описанный способ является очень опасным и может привести к поражению током во время его использования. Ни в коем случае не рекомендуется применять его в случае наличия предельного напряжения в сети, а также нельзя касаться оголенных проводов.
Альтернативной лампочки накаливания может стать лампочка неоновая, которая позволит найти полярность системы.
В заключении следует отметить, что ответ на вопрос: как определить фазу и ноль имеет несколько решений. А именно: индикаторной отверткой, мультиметром, а также можно без приборов. Все зависит от возможностей и наличия приборов под рукой. Обязательным является соблюдение всех мер безопасности при работе с электричеством.
Как проверить чередование фаз с помощью мультиметра
К сожалению, проверить чередование фаз стандартным мультиметром невозможно. Чередование фаз необходимо проверять с помощью специального тестера, такого как fluke 9040 или Amprobe PRM-6. Эти тестеры позволяют техническим специалистам гарантировать, что такое оборудование, как насосы и компрессоры, не будет повреждено из-за неправильного вращения. Если у вас нет доступа к тестеру чередования фаз, вместо этого можно выполнить ударное испытание двигателя.
Как использовать тестер вращения двигателя
Тестер вращения может быть подключен к трехфазному двигателю и проводам питания, чтобы определить, как двигатель будет вращаться после подачи питания.
- Отключите питание двигателя и заблокируйте / заблокируйте его, если необходимо.
- Вставьте три измерительных провода в тестер вращения.
- Прикрепите зажимы типа «крокодил» к соответствующим проводам двигателя. Например, подключите зажим «крокодил» L1 к проводу T1.
- Поверните вал двигателя по часовой стрелке. Тестер покажет вращение по часовой стрелке или против часовой стрелки.
- Если тестер показывает вращение против часовой стрелки при повороте вала по часовой стрелке, поменяйте местами два провода и повторяйте тест, пока тестер не покажет правильное направление вращения.
- Пометьте провода двигателя A, B, C.
Теперь вам нужно проверить направление напряжения питания.
- Отключите питание двигателя и заблокируйте / пометьте при необходимости.
- Подключите зажимы типа «крокодил» к трехфазному источнику питания.
- Подайте питание на цепь и посмотрите, в каком направлении показывает тестер вращения. Если указанное вращение отличается от желаемого вращения, снова заблокируйте его и поменяйте местами любые два провода, затем повторите тест.
- Обозначьте провода как A, B, C.
- Снова заблокируйте и подсоедините соответствующие питающие провода к выводам двигателя с такой же этикеткой.
При правильном выполнении этот тест гарантирует, что желаемое направление вращения будет достигнуто с первого раза. Использование этого метода может занять немного больше времени, но если неправильное вращение может повредить оборудование, нет лучшего способа, чем использовать тестер чередования фаз.
Как загнать двигатель
Ударное испытание двигателя — отличный способ проверить вращение, если подключенное оборудование, двигающееся назад, не вызовет повреждений.Если возможно, двигатель может также подвергаться ударам без нагрузки на выходной вал.
В зависимости от способа подключения двигателя замена проводов может занять много времени, если вращение неправильное. Если соединения выполняются с помощью разъемных болтов и резиновой ленты для сращивания, рекомендуется приобрести несколько резиновых сапог, которые могут временно закрыть разъемные болты, пока выполняется ударное испытание.
Всегда проверяйте безопасность проводки и отсутствие короткого замыкания при выполнении ударного испытания.
Некоторые рабочие закрывают пускатели двигателей изолированной отверткой, чтобы выполнить ударное испытание. Это небезопасная практика, и ее не следует выполнять. Поскольку может возникнуть дуговая вспышка, безопаснее использовать альтернативные средства для ударных испытаний двигателя, например:
- Толчок с клавиатуры, если двигатель управляется плавным пуском или VFD
- Использование кнопок толчкового режима / тестирования
- Активация органов управления на пульте оператора
- Внесение изменений в логику ПЛК, позволяющих выполнить ударное испытание Вы готовы к функциональному испытанию, попросите кого-нибудь наблюдать за двигателем, чтобы проверить направление вращения.Быстро толкните двигатель и проверьте направление вращения. Если вращение неправильное, заблокируйте и поменяйте местами любые два провода.
Зачем нужна проверка вращения?
Разве не достаточно просто поменять местами Т-отведения утром, если вращение неправильное?
Меня научили проверять все, что я делаю. Я искренне верю, что проверка вашей работы выделит вас среди других торговцев. Меньше всего я хочу, чтобы оператор запускал машину утром, а цепь двигалась в обратном направлении, создавая для них беспорядок и заставляя меня плохо выглядеть!
И хотя вращение нельзя проверить с помощью мультиметра, нам доступны несколько других вариантов.
Для специалистов по обслуживанию систем отопления, вентиляции и кондиционирования воздуха: принципы измерения трехфазного напряжения
Измерение статического давления в коммерческих системах отопления, вентиляции и кондиционирования воздуха может значительно отличаться от одного типа оборудования к другому. Промышленные испытания под давлением также требуют, чтобы балансировщик интерпретировал и сообщал о внутренних перепадах давления в оборудовании. Чтобы оставаться в курсе последних коммерческих испытаний под давлением, давайте взглянем на это последнее обновление для коммерческих испытаний под давлением.
Фасованное оборудование
Крышное коммерческое оборудование сегодня часто используется в коммерческих целях в большинстве регионов страны.Упакованное оборудование 7,5 т и более создает ряд уникальных проблем, о которых следует знать, чтобы избежать неточной интерпретации показаний давления.
Общее внешнее статическое давление
Обычно при измерении общего внешнего статического давления измеряют давление в точке, где поток воздуха входит в оборудование и где поток воздуха выходит из оборудования. Давление на входе в оборудование является всасывающим или отрицательным давлением. Давление на выходе из оборудования — это давление нагнетания или положительное давление.Сложите эти два давления вместе, чтобы найти общее внешнее статическое давление, измеренное оборудованием.
Не забудьте просверлить контрольные отверстия над бордюром, поскольку бордюр считается внешним по отношению к оборудованию.
Пример: 10-тонный упакованный агрегат для установки на крыше, установленный на бордюре.Пример: 10-тонный упакованный агрегат для установки на крыше, установленный на бордюре.
- Давление на входе оборудования — 0,46 дюйма. Туалет.
- Оборудование выходное давление +.51-дюйм. Туалет.
- Общее внешнее статическое давление 0,97 дюйма Туалет.
Сравните измеренное статическое давление с номинальным максимальным общим внешним статическим давлением оборудования, чтобы убедиться, что система работает при меньшем, чем максимальное номинальное общее внешнее статическое давление, указанное производителем. Не обращайте внимания на знаки + и -, поскольку они представляют тип измеряемого давления и не являются числовыми значениями.
Вы также можете использовать измеренное общее внешнее статическое давление и измеренное число оборотов вентилятора, чтобы нанести воздушный поток вентилятора на таблицу характеристик вентилятора производителя или кривую вентилятора.
Построение графика воздушного потока вентилятора и падений внутреннего давления в оборудовании
Измеренное общее внешнее статическое давление используется для построения графика воздушного потока вентилятора… но здесь все становится сложнее. Приготовьтесь, вот и технические штучки.
Помните, что перепады давления на фильтре и змеевике не «видны» для показаний общего внешнего статического давления, так что, если фильтр и змеевик загрязнены и нагружены при нормальном использовании оборудования к моменту балансировки системы?
При первом запуске оборудование новое, фильтр и змеевик чистые.В идеале падение давления на фильтре и змеевике следует снимать и записывать на оборудовании для использования в будущем. К этим базовым испытаниям можно обращаться всякий раз, когда измеряется давление в системе.
Если давление в фильтре и змеевике изменяется со временем, увеличенное давление этих компонентов должно быть добавлено к измеренному общему внешнему статическому давлению перед построением графика воздушного потока вентилятора.
Это наиболее точный способ интерпретации статического давления при построении графика воздушного потока вентилятора для упакованного блока.
«В состоянии поставки» — это термин, который в последнее время широко используется в промышленности, что придает ясность измерениям статического давления. При рассмотрении того, как измерить общее внешнее статическое давление и определении того, должен ли компонент системы быть включен или исключен из показаний общего внешнего статического давления, определите, был ли компонент включен в оборудование «в том виде, в каком он был поставлен» или когда он был испытан в лаборатория.
Что делать, если при запуске не было никакого давления?
Если при запуске не были сняты показания статического давления фильтра и змеевика, в идеале вы можете найти данные производителя, чтобы определить, на какие характеристики были рассчитаны эти компоненты при лабораторных испытаниях оборудования.Плохая новость в том, что многие производители не публикуют эти данные.
Если данные производителя по перепадам давления на фильтре и змеевике отсутствуют, лучше всего использовать бюджеты давления NCI по умолчанию. Исследования выявили типичные падения давления для фильтров и змеевиков в хорошо работающем коммерческом оборудовании.
Падение давления на фильтре — Чтобы оценить падение давления на чистом фильтре, умножьте номинальное статическое давление вентилятора на 20%. Если падение давления на фильтре превышает 20% от номинального общего внешнего статического давления, добавьте избыточное падение давления на фильтре к измеренному общему внешнему статическому давлению системы, прежде чем строить график воздушного потока вентилятора.
Падение давления в змеевике — Чтобы оценить падение давления в чистом охлаждающем змеевике, умножьте номинальное статическое давление вентилятора на 30%. Если падение давления в змеевике превышает 30% от номинального общего внешнего статического давления, также добавьте избыточное падение давления в змеевике к измеренному общему внешнему статическому давлению системы, прежде чем строить график расхода воздуха вентилятора.
Падение внутреннего давления
Пример использования примера на иллюстрации выше, предположим, что эта упакованная единица имеет рейтинг 1.00-дюйм. ТЕСП. Согласно бюджетам NCI, падение давления на фильтре не должно превышать 0,20 дюйма, а падение давления в змеевике не должно превышать 0,30 дюйма.
Скажите, что падение давления на фильтре, измеренное на 0,35 дюйма, превышает бюджет на 0,15 дюйма. Падение давления в змеевике, измеренное на 0,50 дюйма, превышает бюджет падения давления в змеевике на 0,20 дюйма. Сложите избыточное падение давления на фильтре и змеевик, который превысил бюджет (0,15 дюйма и 0,20 дюйма), чтобы обнаружить, что падение внутреннего давления превысило бюджет на 0,35 дюйма.Добавьте 0,35 дюйма к измеренному общему внешнему статическому давлению в 0,97 дюйма (35 дюймов + 0,97 дюйма = 1,32 дюйма). Затем постройте график воздушного потока вентилятора, используя общее внешнее статическое давление 1,32 дюйма с измеренными оборотами вентилятора, чтобы определить воздушный поток вентилятора.
Ваша способность измерять и интерпретировать статическое давление имеет важное значение для повышения производительности систем отопления, вентиляции и кондиционирования воздуха, которые вы продаете, устанавливаете и обслуживаете.
Как вы можете видеть из сложного характера этой статьи, надеюсь, вы никогда не перестанете изучать лучшие способы измерения и интерпретации статического давления.
Роб «Док» Фалке служит в отрасли в качестве президента Национального института комфорта, обучающей компании и членской организации, работающей в сфере отопления, вентиляции и кондиционирования воздуха. Если вы подрядчик или технический специалист по ОВКВ, заинтересованный в бесплатной коммерческой процедуре испытания статическим давлением, свяжитесь с Доком по адресу [email protected] или позвоните ему по телефону 800-633-7058. Посетите веб-сайт NCI по адресу nationalcomfortinstitute.com для получения бесплатной информации, статей и загрузок.
Как проверить трехфазное напряжение
Электроэнергетические компании вырабатывают трехфазный электрический ток для передачи по электросети для снабжения электроэнергией домов, предприятий и промышленности.Большинство жилых домов и малых предприятий используют только однофазное питание, но фабрики часто используют трехфазное питание для больших двигателей и других целей. Трансформаторы, питающие трехфазное питание, имеют два разных способа подключения: треугольник и звезда. Существуют небольшие различия в напряжении в зависимости от способа подключения. Проверка трехфазного напряжения довольно проста и понятна.
- Электроэнергетические компании вырабатывают трехфазный электрический ток для передачи по электросети для снабжения электроэнергией домов, предприятий и промышленности.
- Трансформаторы, питающие трехфазное питание, имеют два разных способа подключения: треугольник и звезда.
Переведите выключатель двигателя в положение «Выкл.». Выкрутите винты, удерживающие крышку на выключателе, и снимите крышку.
Установите цифровой мультиметр в положение «AC Volts». Подключите выводы зонда к клеммам «Общий» и «Вольт». Если мультиметр не является мультиметром с автоматическим выбором диапазона, выберите диапазон напряжения выше, чем напряжение, которое вы планируете проверить.
Загляните внутрь коробки выключателя двигателя. Вы увидите, что один набор из трех проводов входит и один набор из трех проводов выходит. Клеммы, к которым присоединяются входящие провода, будут обозначены L1, L2 и L3 или Line 1, Line 2 и Line 3. Клеммы отходящих проводов имеют разные обозначения: T1, T2 и T3 или Load 1, Load 2 и Load. 3. Каждый провод передает одну фазу трехфазного тока, а числа обозначают текущую фазу. Например, L1 и T1 несут первую фазу.
- Установите цифровой мультиметр в положение «AC Volts».
- Клеммы, к которым подключаются входящие провода, будут обозначены L1, L2 и L3 или Line 1, Line 2 и Line 3.
Поместите один щуп мультиметра на L1, а другой на L2. Подождите, пока мультиметр покажет напряжение. Проведите такой же тест между L1 и L3 и между L2 и L3. Показания напряжения должны быть одинаковыми для каждого теста.
Поместите провода мультиметра на T1 и T2.Напряжение должно быть 0. Проведите аналогичные испытания между T1 и T3 и между T2 и T3. Все должно показывать ноль вольт.
- Поместите один щуп мультиметра на L1, а другой — на L2.
- Поместите провода мультиметра на T1 и T2.
Переведите рычаг разъединителя в положение «Вкл.». Проверьте между выводами T1 и T2. Напряжение должно быть таким же, как и при проверке L1 и L2. Повторите тесты между T1 и T3 и между T2 и T3. Напряжение не должно изменяться более чем на несколько вольт при любом испытании.
- Переведите рычаг разъединителя в положение «Вкл.».
- Напряжение должно быть таким же, как при проверке для L1 и L2.
Проверить однофазное напряжение между L1 и нейтралью, если клемма нейтрали присутствует. Однофазный ток может быть взят из L1, L2 или L3, поэтому, если вы читаете 0 вольт, проверьте между L2 и нейтралью или L3 и нейтралью. Однофазное напряжение составляет половину испытанного напряжения между парами линий.
Трехфазный ток от вращающегося фазового преобразователя может иметь одну фазу с напряжением, отличным от двух других.Это напряжение также будет изменяться в условиях нагрузки, например, когда двигатель работает. Это нормально и ожидаемо.
Всегда будьте в курсе того, что вы делаете. Проверка электрического тока подвергает вас воздействию потенциально опасных для жизни напряжений и токов. Обращайте внимание на то, что вы делаете, и не позволяйте другим отвлекать вас. Выключатель двигателя на некоторых двигателях также является выключателем пуска и остановки. Имейте в виду, что перевод выключателя двигателя в положение «Вкл.» В этом случае запустит двигатель.
Трехэтапная процедура тестирования — Global Electronic Services
Электродвигатели, как известно, сложно диагностировать. Когда двигатель не запускается, перегревается, постоянно отключается или издает шум, существует множество возможных причин. Некоторые компании могут решить проблему, просто заменив двигатель полностью. Однако это не рентабельное решение — большинство проблем с электродвигателями можно полностью устранить с помощью решений, которые стоят значительно дешевле, чем новый двигатель.Но как определить, как рентабельно отремонтировать двигатель?
Хотя электродвигатели могут быть сложными, их не нужно диагностировать. Понимание основ электродвигателей может помочь вам понять, в чем может быть проблема, а надлежащие диагностические инструменты могут помочь вам выявить и прояснить проблему. В этой статье мы специально обсудим трехфазные системы и способы их диагностики при возникновении проблем.
Содержание
О трехфазных системах
Типы испытаний для трехфазных двигателей
Что делать дальше
Обратитесь в службу технической поддержки Global Electronic Services по ремонту для проверки трехфазных двигателейО трехфазных системах
Фазные системы — это блоки питания переменного тока, которые определяются количеством фаз в блоке питания.Однофазное питание обеспечивает одну фазу на 120 вольт, а двухфазное или двухфазное питание состоит из двух переменных токов, подаваемых по двум проводам. Трехфазное питание — это тип силовой цепи, который характеризуется тремя источниками однофазного переменного тока. Система разделяет обратный путь, разделяя каждую фазу на 120 градусов, что приводит к постоянной мощности в течение каждого цикла и большей мощности в целом. По сравнению с однофазным питанием, трехфазные схемы питания обеспечивают в 1,732 раза больше мощности при том же токе, что приводит к более экономичной системе в целом.
Трехфазные системы разработаны по-разному, чтобы соответствовать различным потребностям. Например, звездообразная конфигурация может использоваться в случаях, когда источник питания должен питать как однофазные, так и трехфазные нагрузки, такие как лампы и нагреватели, соответственно. Количество мощности также может отличаться. В большинстве коммерческих зданий используются схемы 208 Y / 120 В для повышения гибкости питания как мощных, так и маломощных нагрузок, в то время как промышленные предприятия используют схему 480 Y / 277 В для максимального увеличения мощности, доступной для мощного оборудования.
Типы испытаний трехфазных двигателей
Если трехфазный двигатель обнаруживает проблемы, такие как сбой при запуске, перегрев или нестабильное питание, в вашем распоряжении есть несколько диагностических инструментов и методов. Эти инструменты и методы обсуждаются ниже. Однако перед тестированием обязательно примите соответствующие меры безопасности. К ним относятся:
- Использование защитного снаряжения: Это защитное снаряжение может включать в себя заземляющие ремни, перчатки и любое другое подходящее защитное снаряжение для окружающей среды.
- Наличие всех инструментов под рукой: Некоторые распространенные диагностические инструменты включают в себя универсальные мультиметры, клещи-клещи, датчики температуры и осциллографы. Эти инструменты помогут вам не оставлять двигатель без присмотра.
- Отключение двигателя от питания: Когда вы будете готовы, переведите выключатель двигателя трансформатора, чтобы отключить его от питания. Будьте осторожны, чтобы убедиться, что питание действительно отключено — на некоторых двигателях размыкающий выключатель такой же, как и выключатель, поэтому переключение размыкающего выключателя в положение включения приводит в действие двигатель.Кроме того, обязательно отключите все оборудование и проводку, которые не будут включены в процесс тестирования.
- Разряд до и после испытания: Перед началом испытания и после каждого электрического испытания обязательно разрядите двигатель, так как он обладает определенной емкостью. Это можно сделать, зашунтировав проводники на землю и друг на друга перед повторным подключением.
- Проверьте заводскую табличку: Паспортная табличка или характеристики двигателя содержат ценную информацию о двигателе, например, предполагаемую силу тока двигателя.Эта информация может использоваться для оценки исправности двигателя по сравнению с его предполагаемой конструкцией.
На этом этапе подготовьте мультиметр к тестированию. Это включает в себя настройку мультиметра на определение напряжения переменного тока и установку диапазона напряжения на разумный уровень, основанный на технических характеристиках коробки. В следующих нескольких тестах в основном используется этот инструмент, поэтому мы объясним, как проверить трехфазный двигатель с помощью мультиметра.
1. Общие проверки
Самый простой осмотр — это визуальный осмотр.Как только двигатель будет отключен и вы будете готовы начать осмотр, снимите крышку двигателя. Как только он будет удален, вы можете начать проверять двигатель на наличие визуальных признаков повреждения. Вот некоторые вещи, на которые следует обратить внимание во время этого процесса:
- Общие повреждения: Общие повреждения обычно легко обнаружить. Это может проявляться в виде следов ожогов или вмятин. По всему двигателю проверьте, нет ли признаков перегрева или повреждения окружающей среды.
- Состояние вала: Вручную проверните вал двигателя, чтобы оценить его состояние.Это должно быть легко, если только двигатель не очень большой. Вал должен вращаться плавно, без заеданий и незакрепленных деталей. Более новые двигатели могут испытывать трудности с вращением из-за жестких допусков, неиспользования или влажности окружающей среды, которые необходимо будет устранить путем смазки и дальнейшего осмотра. Однако старые двигатели могут иметь более серьезные препятствия, которые требуют ремонта или замены.
- Качество соединения: Осмотрите все соединения внутри двигателя на предмет признаков износа или повреждения и оцените любые провода за пределами двигателя на предмет возможных обрывов.С любыми оборванными проводами следует обращаться и заменять осторожно.
После того, как двигатель прошел общий осмотр, перепроверьте свои инструменты для осмотра и приступайте к поиску и устранению неисправностей электрических свойств двигателя.
2. Проверка целостности цепи
Проверка целостности цепи — проверка сопротивления между двумя точками. Если сопротивление низкое, две точки электрически соединены. Если сопротивление выше, цепь разомкнута. Проверка целостности заземления определяет, подключен ли двигатель к земле.
Чтобы завершить проверку целостности заземления, установите мультиметр в режим непрерывности. Как только это будет сделано, поместите одну точку на раму двигателя, а другую точку на известное соединение с землей, предпочтительно в области, близкой к установке двигателя. Хороший двигатель должен давать показания менее 0,5 Ом. Однако, если значение превышает 0,5 Ом, это указывает на то, что изоляция двигателя нарушена и может вызвать поражение электрическим током. Для определения причин этого отказа может потребоваться дальнейшее тестирование.
3. Тест источника питания
Следующим тестом, который необходимо завершить, является тест источника питания. Это проверяет, соответствует ли входящий источник питания ожидаемому и соответствует проектным характеристикам двигателя. Тест источника питания можно выполнить, проверив напряжение, подаваемое на двигатель, с помощью мультиметра. Сравните это со спецификациями, указанными на паспортной табличке. Если подаваемое напряжение значительно ниже или выше указанного, это может быть одним из источников ваших проблем.
В дополнение к этому тесту проверьте, что клемма источника питания находится в хорошем состоянии. Повреждение и плохое соединение также могут быть причиной каких-либо отклонений или проблем с производительностью.
Услуги по ремонту источников питания
4. Проверка целостности обмотки двигателя переменного тока
Затем осмотрите двигатель изнутри и провода, участвующие в трехфазном токе. Настройте и откалибруйте мультиметр на напряжение и найдите шесть проводов трехфазного двигателя.
Если вы посмотрите на коробку, вы увидите шесть проводов, по три с каждой стороны.На каждой стороне коробки должны быть клеммы, к которым подключаются эти провода. На одной стороне будут клеммы с маркировкой L1, L2 и L3 или линия 1, линия 2 и линия 3. На другой стороне будут клеммы с маркировкой T1, T2 и T3 или нагрузка 1, нагрузка 2 и нагрузка 3. Клеммы L обозначают линейные провода с входом. ток, а клеммы T обозначают отходящие провода. Исключением являются европейские двигатели, которые будут иметь обозначения U, V и W. Эти провода следует проверить, чтобы определить исправность источника питания двигателя.Это можно проверить с помощью следующих методов:
- Тест без питания: Чтобы проверить входящее напряжение, поместите щупы мультиметра в разные положения клемм L, когда питание блока выключено. Снимите показания для соединения L1-L2, соединения L1-L3 и соединения L2-L3. Эти показания должны быть такими же, если мотор работает нормально. Для системы 230/400 В ожидаемое напряжение должно быть 400 В между каждой из трехфазных линий питания.
- Проверка линии на нейтраль: Если имеется доступная клемма нейтрали, поместите один щуп мультиметра на нее, а другой — на каждую клемму линии. Значение напряжения должно составлять половину от значения напряжения, полученного во время предыдущего теста.
- Тест без питания на выходе: Этот тест аналогичен тесту, описанному выше, но проверяет выходное напряжение. Пока коробка выключена, снимите показания между выводами T1 и T2, выводами T1 и T3 и выводами T2 и T3.В этом случае показание напряжения должно быть нулевым для каждого теста.
- Проверка исходящего питания: Осторожно включите блок и повторите те же тесты, что и выше, проверяя каждую перестановку Т-выводов. Между каждой комбинацией отведений не должно быть никаких различий.
Если показания отличаются от ожидаемых результатов и проверка блока питания не выявила проблем, это может указывать на проблемы с исправностью трехфазного двигателя переменного тока. Чаще всего это говорит о том, что мотор перегорел.
Ремонтные услуги AC / DC
5. Испытание сопротивления изоляции
Проверка сопротивления изоляции — это следующий тест, который необходимо провести для определения общего состояния двигателя. Это делается путем сравнения сопротивления между каждой парой фаз двигателя и между каждой фазой двигателя и корпусом. Это можно сделать с помощью тестера изоляции или мегомметра. Тесты должны быть заполнены следующим образом:
- Фазовое сопротивление: Возьмите тестер изоляции и установите его на 500 В.Возьмите каждый конец и поместите его в разные перестановки L1, L2 и L3 и запишите каждое показание.
- Сопротивление между фазой и землей: Возьмите тестер изоляции, используя ту же настройку, и проверьте каждый провод от фазы к корпусу двигателя. Минимальное значение сопротивления изоляции должно составлять 1 МОм. Если значение меньше 0,2 МОм, замените двигатель.
Любые ошибки во время этого цикла тестирования могут указывать на проблемы с изоляцией, что является проблемой, когда речь идет о безопасности и функциональности двигателя.
6. Тест рабочего тока
Этот последний тест определяет, сколько энергии потребляется для привода двигателя. Более мощные двигатели потребляют больше тока, измеряемого в амперах. Перед тестированием важно проверить, какую силу тока требуется вашему двигателю — обычно это указано на паспортной табличке.
Когда вы будете готовы, выполните следующие действия, которые помогут вам измерить трехфазный ток:
- Подготовка к тесту: Настройте мультиметр на измерение ампер и установите его на правильный диапазон ампер для вашего двигателя в соответствии со спецификациями, указанными на паспортной табличке.Во время теста обязательно надевайте резиновые перчатки, чтобы защитить себя от поражения электрическим током.
- Включите двигатель: Включите двигатель и найдите клеммы. Положительная клемма будет помечена знаком плюс, и к ней будет подключен красный провод. Отрицательная клемма будет помечена знаком минус, и к ней будет подключен черный провод.
- Размещение датчиков: Поместите отрицательный датчик мультиметра на отрицательную клемму двигателя, затем поместите положительный датчик на положительную клемму.Во избежание травм всегда держите руки подальше от движущихся частей.
Когда датчики подключены, снимите показания в амперах и выключите двигатель. Показание в амперах должно быть в пределах допустимого диапазона, если он работает правильно. Показание в амперах не должно превышать спецификацию производителя, но должно быть на уровне или немного ниже указанного значения силы тока. Если показание в амперах значительно ниже спецификации или вне допустимого диапазона, это может указывать на проблемы с двигателем.
Что делать дальше
Если вы завершите тесты и обнаружите одну или несколько проблем с двигателем, вы можете сделать несколько вещей в зависимости от решаемой проблемы.Некоторые проблемы, такие как неисправная проводка или поврежденный вал, могут потребовать замены проблемных деталей. Однако более серьезные проблемы, такие как проблемы с изоляцией, могут потребовать полностью нового двигателя. Однако, если вы не совсем уверены, что делать или откуда возникла проблема, возможно, стоит позвонить в службу ремонта электроники, чтобы оценить двигатель. Global Electronic Services может помочь.
Компания Global Electronic Services специализируется на ремонте промышленной электроники. Мы работали с более чем 60 000 крупнейших и наиболее передовых производителей и дистрибьюторов в мире, охватывающих широкий спектр отраслей.Независимо от того, связана ли ваша проблема с электродвигателем, серводвигателем, гидравлической системой или пневматической системой, мы можем помочь вам найти решение.
Выбирая Global, вы выбираете высококачественное обслуживание клиентов и круглосуточную поддержку. Наши обученные на заводе и сертифицированные технические специалисты обеспечивают отличные сроки выполнения работ — от одного до пяти дней, и мы даже предлагаем двухдневное срочное обслуживание. Также мы предоставляем 10-процентную гарантию стоимости ремонта.
Если вы заинтересованы в том, чтобы Global работала с вашим трехфазным двигателем, свяжитесь с нами сегодня по телефону или воспользуйтесь нашей простой онлайн-формой, чтобы запросить ценовое предложение.
Запросить цену
Как получить более быстрые трехфазные измерения мощности с помощью клещей
Полные трехфазные измерения напряжения и тока на 50% быстрее *
Токоизмерительные клещи Fluke 377 FC и 378 FC — первые портативные клещи с технологией Fieldsense ™, в которых напряжение и ток можно измерять одновременно с зажимной губкой. Это означает, что эти токоизмерительные клещи могут использоваться для выполнения последовательных измерений между фазой и землей и измерения тока, в результате чего получаются расчетные измерения линейного напряжения и информация о чередовании фаз.Эти измерения указывают на то, что трехфазная система работает должным образом.
Упрощенные измерения между фазами
L1, L2 и L3 (или линия 1, линия 2 и линия 3) — это обычно используемые соглашения об именах проводов в системах трехфазного переменного тока. На трехфазных нагрузках напряжение и ток необходимо измерять последовательно с помощью проводов.
Текущий рабочий процесс «Выбор-Измерение-Запись, Выбор-Измерение-Запись» требует много времени. Вам необходимо повторить эти шаги для всех трех фаз.Это также создает потребность в третьем лице или дополнительном человеке, который поможет соединить два вывода и зажать провод при записи значений.
Fluke 377 FC и 378 FC революционизируют процесс измерения напряжения и тока в трехфазных энергосистемах. Вместо того, чтобы выполнять каждое измерение индивидуально с помощью измерительных проводов и вычислять вручную, вам нужно выполнить всего три измерения с помощью зажима. Затем измеритель автоматически вычисляет полный набор межфазных напряжений на основе измерений между фазой и землей.Эти клещи оснащены экраном с двумя дисплеями, позволяющим одновременно измерять и отображать напряжение и силу тока.
Как провести трехфазное измерение
Для настройки
- Поверните ручку управления в положение (Fieldsense ™)
- Подключите зажим к заземлению с заземляющим проводом
- Нажмите MIN MAX на 2 секунды. Теперь зажим находится в линейном режиме, и на дисплее отображается L1-L2-L3 .
Для проверки
- Расположите зажимную губку вокруг первого проводника.Дождитесь стабилизации измерения на экране. Экран станет зеленым, раздастся звуковой сигнал, и отобразится L1 .
- Переместите зажимную губку ко второму проводнику в течение 10 секунд. Дождитесь стабилизации измерения на экране. Вы услышите звуковой сигнал, и отобразится L2 .
- Переместите зажимную губку к последнему проводнику в течение 10 секунд. Дождитесь стабилизации измерения на экране. Вы услышите звуковой сигнал, и отобразится L3 .
Для расчета
Когда измерения L1-L2-L3 будут завершены, используйте зажим для расчета общего напряжения между каждой парой проводов:
- Нажмите MIN MAX один раз: на экране отображается общее напряжение между L1 и L2.
- Снова нажмите MIN MAX: на экране отображается общее напряжение между L2 и L3.
- Нажмите MIN MAX третий раз: на экране отображается общее напряжение между L3 и L1.
Находясь в линейном режиме, вы можете просмотреть каждое измерение между фазой и землей. :
- Нажмите MIN MAX еще раз, чтобы отобразить измерение L1.
- Нажмите MIN MAX еще раз, чтобы отобразить измерение L2.
- Нажмите MIN MAX еще раз, чтобы отобразить измерение L3.
Чтобы просмотреть измерения L1-L2-L3, продолжайте нажимать кнопку «MIN MAX» и прокручивайте измерения.
Для выхода из линейного режима удерживайте кнопку «MIN MAX» около 2 секунд.
Индикатор чередования фаз
Одна из самых больших потребностей при работе с трехфазным оборудованием — это знать правильный порядок фаз и затем обеспечивать выполнение работ в правильном порядке во время установки, обслуживания и устранения неисправностей. Помимо упрощения процесса измерения, Fluke 377 FC и 378 FC также автоматически вычисляют чередование фаз. Все, что вам нужно сделать, это выполнить все три трехфазных измерения при подключении к приложению Fluke Connect (FC), после чего чередование фаз рассчитывается автоматически и отображается в приложении FC.
Приложения
Установка двигателя и компрессора HVAC
Определите, сбалансирована ли нагрузка на каждую фазу и правильное ли чередование фаз во время установки. Несбалансированная трехфазная система приведет к снижению производительности или преждевременному отказу двигателя, что приведет к дорогостоящим простоям. Дисбаланс может возникнуть в любой точке распределительной системы. Нагрузки следует распределять поровну по каждой фазе входных фидерных цепей. Двигатели или компрессоры, питаемые от несбалансированной системы, будут работать сильнее и в конечном итоге преждевременно откажутся.
Поиск и устранение неисправностей трехфазных двигателей
Определите, когда в фазе перегорает предохранитель, что приводит к обрыву фазы. При потере фазы две другие фазы будут потреблять больше тока, что приведет к перегреву обмоток насоса, двигателя или компрессора. Измеряя фазу входящего линейного напряжения, пользователи могут определить, какая фаза отключена, и помочь предотвратить повреждение оборудования. Если потеря фазы происходит во время работы оборудования, начнется перегрев, поскольку нагрузка снимается с других фаз.Если оборудование остановилось, оно не будет перезапущено до тех пор, пока не будет заменен предохранитель и все три фазы не восстановятся.
* Бета-тесты, проведенные на объектах заказчика, показывают, что время, затрачиваемое на трехфазные измерения, сокращается на 50%.Базовое испытание двигателя с помощью мультиметров и амперметров
Когда электродвигатель не запускается, работает с перебоями, перегревается или постоянно отключает устройство максимального тока, может быть множество причин. Иногда проблема заключается в источнике питания, в том числе в проводниках параллельной цепи или контроллере мотора.Другая возможность заключается в том, что приводимый груз заклинивает, заедает или не соответствует требованиям. Если неисправен сам двигатель, неисправность может быть связана с обгоревшим проводом или соединением, неисправностью обмотки, включая повреждение изоляции, или неисправным подшипником.
Переносной мультиметрРяд диагностических инструментов — токоизмерительные клещи, датчик температуры, мегомметр или осциллограф — могут помочь выявить проблему. Предварительные (часто окончательные) тесты обычно проводятся с использованием универсального мультиметра.Этот тестер может предоставить диагностическую информацию для всех типов двигателей.
Если двигатель полностью не отвечает, нет гудения переменного тока или ложных запусков, снимите показания на клеммах двигателя. Если нет напряжения или пониженное напряжение, вернитесь к восходящему потоку. Снимите показания в доступных точках, включая разъединители, контроллер мотора, любые предохранители или распределительные коробки и т. Д., Обратно на выход устройства защиты от перегрузки по току на входной панели. То, что вы ищете, — это, по сути, тот же уровень напряжения, который измеряется на главном выключателе входной панели.
При отсутствии электрической нагрузки на обоих концах проводников ответвленной цепи должно быть одинаковое напряжение. Когда электрическая нагрузка цепи близка к мощности цепи, падение напряжения не должно превышать 3% для оптимального КПД двигателя. При трехфазном подключении все ветви должны иметь практически одинаковые показания напряжения без выпадения фазы. Если эти показания различаются на несколько вольт, их можно выровнять, прокручивая соединения, стараясь не реверсировать вращение.Идея состоит в том, чтобы согласовать напряжения питания и импедансы нагрузки, чтобы сбалансировать три ноги.
Если электроснабжение удовлетворительное, проверьте сам двигатель. Если возможно, отключите груз. Это может восстановить работу двигателя. При отключенном и заблокированном питании попробуйте провернуть двигатель вручную. Во всех двигателях, кроме самых больших, вал должен вращаться свободно. В противном случае имеется препятствие внутри или заедание подшипника. Довольно новые подшипники подвержены заклиниванию из-за более жестких допусков.Это особенно актуально, если окружающая влажность или двигатель какое-то время не использовался. Часто хорошую работу можно восстановить, смазав передние и задние подшипники без разборки двигателя.
Если вал вращается свободно, установите мультиметр на функцию измерения сопротивления. Обмотки (все три в трехфазном двигателе) должны иметь низкое сопротивление, но не ноль. Чем меньше двигатель, тем выше будет это показание, но он не должен открываться. Обычно он будет достаточно низким (менее 30 Ом) для включения звукового индикатора целостности цепи.
Для правильной работы двигателя все обмотки должны иметь МОм относительно земли, то есть корпуса двигателя. Если обмотка заземлена, изоляция обмотки нарушена или якорь касается статора, за исключением случаев, когда внутри имеется возможность ослабить или натереть провод.
Малые универсальные двигатели, как и переносные электродрели, могут содержать обширную схему, включая переключатель и щетки. В режиме омметра подключите измеритель к вилке и следите за сопротивлением, когда вы поворачиваете шнур в том месте, где он входит в корпус.Перемещайте переключатель из стороны в сторону и, закрепив курковый переключатель, чтобы он оставался включенным, нажмите на щетки и поверните коммутатор рукой. Любые колебания цифровых показаний могут указывать на неисправность. Часто для восстановления работы требуется новый набор щеток.
Показания силы токаполезны при всех видах электронных и электрических работ. По показаниям напряжения вы знаете электрическую энергию, доступную на клеммах, но не знаете, сколько тока течет. У мультиметров всегда есть текущая функция, но с этим есть две проблемы.Во-первых, исследуемая цепь должна быть отключена (а затем восстановлена), чтобы подключить прибор последовательно с нагрузкой. Другая трудность заключается в том, что мультиметр не способен обрабатывать ток, присутствующий даже в небольшом двигателе. Весь ток должен протекать через измеритель, мгновенно сжигая провода зонда, если не разрушая весь инструмент.
Цифровые и аналоговые клещи амперметры.Отличным инструментом для измерения тока двигателя являются клещи-клещи (торговое название Amprobe).Он позволяет обойти такие трудности, измеряя магнитное поле, связанное с этим током, и отображая результат в цифровом или аналоговом отсчете, калиброванном в амперах.
Токоизмерительные клещи абсолютно удобны в использовании. Просто откройте подпружиненные зажимы, вставьте провод под напряжением или нейтраль, затем отпустите зажимы. Проволоку не нужно центрировать в отверстии, и это нормально, если она проходит под углом. Однако таким способом нельзя измерить весь кабель, содержащий горячий и нейтральный проводники.Это потому, что электрический ток, протекающий по двум проводам, движется в противоположных направлениях, поэтому два магнитных поля компенсируются. Следовательно, невозможно измерить ток в шнуре питания, как это часто требуется. Чтобы разобраться в этой ситуации, сделайте разветвитель. Это короткий удлинитель подходящего номинала с удаленным примерно шестидюймовым кожухом, чтобы можно было отсоединить один из проводов и измерить его.
Цифровые и аналоговые клещиработают хорошо и способны измерять ток до 200 А, что достаточно для большинства моторных работ.
Основная процедура заключается в измерении пускового и рабочего тока для любого двигателя, когда он подключен к нагрузке. Сравните показания с задокументированными или паспортными данными. По мере старения двигателей потребляемый ток обычно возрастает из-за падения сопротивления изоляции обмотки. Избыточный ток вызывает тепло, которое должно рассеиваться. Деградация изоляции ускоряется до схода лавины, вызывающей перегорание двигателя.
Показания амперметра подскажут вам, где вы находитесь в этом континууме.На промышленном объекте в рамках планового технического обслуживания электродвигателя можно снимать периодические показания тока и заносить их в журнал, размещенный поблизости, чтобы можно было заранее определить тенденции к разрушению и избежать дорогостоящих простоев.
Метод перекрестного вольтметра — базовое управление двигателем
При проверке предохранителей в цепи питания , питающей трехфазный двигатель, мы используем метод перекрестного вольтметра .
Контакты двигателя с номинальной мощностью л.с. должны быть разомкнуты, а трехфазный разъединитель должен быть замкнут, чтобы получить правильные показания.
Есть три набора измерений, которые необходимо выполнить на линии предохранителей, чтобы убедиться в наличии напряжения . Измерьте каждую пару линейных клемм (L1 – L2; L2 – L3; L3 – L1). На схеме ниже это означает использование вольтметра для проверки между точками 1-3; 3-5; 5-1. Если какой-либо из этих тестов дает показание, отличное от межфазного напряжения, проверьте входящее напряжение на входе. Если все три показания дают межфазное напряжение, то мы знаем, что напряжение присутствует в силовой цепи вплоть до предохранителей.Следующая проверка подтвердит исправность предохранителей.
Трехфазные предохранители, предохранитель C перегорелНа приведенной выше диаграмме все три показания дают нам линейное напряжение. Чтобы проверить состояние предохранителей, мы измеряем расстояние от линии питания одного предохранителя до стороны нагрузки другого предохранителя.
Если использовать диаграмму выше, это будет означать использование вольтметра для проверки между точками 1-4; 3-6; 5-2. Мы получаем следующие значения:
.- 1-4 = линейное напряжение, поэтому предохранитель B исправен
- 3-6 = ноль вольт, поэтому предохранитель C перегорел
- 5-2 = линейное напряжение, поэтому предохранитель А исправен
Поскольку предохранители A и B в хорошем состоянии, по существу нет разницы потенциалов между точками 1 и 2 и между точками 3 и 4 соответственно, и именно поэтому вольтметр считывает линейное напряжение с обеих сторон предохранителя.
При разомкнутых силовых контактах и перегорании предохранителя C провод вольтметра, подключенный к точке 6, полностью изолирован от любой другой части цепи и, таким образом, испытывает нулевую разность потенциалов.
Этот метод называется методом перекрестного вольтметра, потому что никогда не требуется проверять напряжение через предохранитель. Если предохранитель находится в хорошем состоянии, как и предохранители A и B, тогда мы проводим измерения в точках с одинаковым потенциалом, и если предохранитель перегорел, то наш второй вывод вольтметра изолирован от цепи, что опять же не дает нам разности потенциалов.