Как подобрать конденсатор электролитический: нужна ли большая емкость конденсаторов

Содержание

Как подобрать конденсатор электролитический — Морской флот

К каждому объекту изначально подается трехфазный ток. Основная причина заключается в использовании на электростанциях генераторов с трехфазными обмотками, сдвинутыми по фазе между собой на 120 градусов и вырабатывающими три синусоидальных напряжения. Однако при дальнейшем распределении тока потребителю подводится только одна фаза, к которой и подключается все имеющееся электрооборудование.

Иногда возникает необходимость в использовании нестандартных устройств, поэтому приходится решать задачу, как подобрать конденсатор для трехфазного двигателя. Как правило, требуется рассчитать емкость данного элемента, обеспечивающего устойчивую работу агрегата.

Принцип подключения трехфазного устройства к одной фазе

Во всех квартирах и большинстве частных домов все внутреннее энергоснабжение осуществляется по однофазным сетям. В этих условиях иногда необходимо выполнить подключение трехфазного двигателя к однофазной сети. Эта операция вполне возможна с физической точки зрения, поскольку отдельно взятые фазы различаются между собой лишь сдвигом по времени. Подобный сдвиг легко организовать путем включения в цепь любых реактивных элементов – емкостных или индуктивных. Именно они выполняют функцию фазосдвигающих устройств когда используются рабочего и пускового элементов.

Следует учитывать то обстоятельство, что обмотка статора сама по себе обладает индуктивностью. В связи с этим, вполне достаточно снаружи двигателя подключить конденсатор с определенной емкостью. Одновременно, обмотки статора соединяются таким образом, чтобы первая из них сдвигала фазу другой обмотки в одну сторону, а в третьей обмотке конденсатор выполняет эту же процедуру, только в другом направлении. В итоге образуются требуемые фазы в количестве трех, добытые из однофазного питающего провода.

Таким образом, трехфазный двигатель выступает в качестве нагрузки лишь для одной фазы подключенного питания. В результате, в потребляемой энергии образуется дисбаланс, отрицательно влияющий на общую работу сети. Поэтому такой режим рекомендуется использовать в течение непродолжительного времени для электродвигателей небольшой мощности. Подключение обмоток в однофазную сеть может быть выполнено двумя способами – звездой или треугольником.

Схемы подключения трехфазного двигателя к однофазной сети

Когда трехфазный электродвигатель планируется включать в однофазную сеть, рекомендуется отдавать предпочтение соединению треугольником. Об этом предупреждает информационная табличка, закрепленная на корпусе. В некоторых случаях здесь стоит обозначение «Y», что означает соединение звездой. Рекомендуется переподключить обмотки по схеме треугольника, чтобы избежать больших потерь мощности.

Электродвигатель включается в одну из фаз однофазной сети, а две другие фазы создаются искусственным путем. Для этого используется рабочий (Ср) и пусковой конденсатор (Сп). В самом начале запуска двигателя необходим высокий уровень стартового тока, который не может быть обеспечен одним лишь рабочим конденсатором. На помощь приходит стартовый или пусковой конденсатор, подключаемый параллельно с рабочим конденсатором. При незначительной мощности двигателя их показатели равны между собой. Специально выпускаемые стартовые конденсаторы имеют маркировку «Starting».

Эти устройства работают только в периоды пуска, для того чтобы разогнать двигатель до нужной мощности. В дальнейшем он выключается с помощью кнопочного или двойного выключателя.

Виды пусковых конденсаторов

Небольшие электродвигатели, мощность которых не превышает 200-400 ватт, могут работать без пускового устройства. Для них вполне достаточно одного рабочего конденсатора. Однако при наличии значительных нагрузок на старте, обязательно используются дополнительные пусковые конденсаторы. Он подключается параллельно с рабочим конденсатором и в период разгона удерживается во включенном положении с помощью специальной кнопки или реле.

Для расчета емкости пускового элемента необходимо умножить емкость рабочего конденсатора на коэффициент, равный 2 или 2,5. В процессе разгона двигатель требует емкость все меньше и меньше. В связи с этим, не стоит держать пусковой конденсатор постоянно включенным. Высокая емкость при больших оборотах приведет к перегреву и выходу из строя агрегата.

В стандартную конструкцию конденсатора входят две пластины, расположенные напротив друг друга и разделенные слоем диэлектрика. При выборе того или иного элемента, необходимо учитывать его параметры и технические характеристики.

Все конденсаторы представлены тремя основными видами:

  • Полярные. Не могут работать с электродвигателями, подключенными к переменному току. Разрушающийся слой диэлектрика может привести к нагреву агрегата и последующему короткому замыканию.
  • Неполярные. Получили наибольшее распространение. Могут работать в любых вариантах включения за счет одинакового взаимодействия обкладок с диэлектриком и источником тока.
  • Электролитические. В этом случае электроды представляют собой тонкую оксидную пленку. Они могут достигать максимально возможной емкости до 100 тыс. мкФ, идеально подходят к двигателям с низкой частотой.

Выбор конденсатора для трехфазного двигателя

Конденсаторы, предназначенные для трехфазного мотора, должны иметь достаточно высокую емкость – от десятков до сотен микрофарад. Электролитические конденсаторы не годятся для этих целей, поскольку для них требуется однополярное подключение. То есть, специально для этих устройств потребуется создание выпрямителя с диодами и сопротивлениями.

Постепенно в таких конденсаторах происходит высыхание электролита, что приводит к потере емкости. Кроме того, в процессе эксплуатации данные элементы иногда взрываются. Если все же решено использовать электролитические устройства, нужно обязательно учитывать эти особенности.

Классическим примеров служат элементы, представленные на рисунке. Слева изображен рабочий конденсатор, а справа – пусковой.

Подбор конденсатора для трехфазного двигателя выполняется опытным путем. Емкость рабочего устройства выбирается из расчета 7 мкФ на 100 Вт мощности. Следовательно, 600 Вт будет соответствовать 42 мкФ. Пусковой конденсатор как минимум в 2 раза превышает емкость рабочего. Таким образом 2 х 45 = 90 мкФ будет наиболее подходящим показателем.

Выбор осуществляется постепенно, исходя из работы двигателя, поскольку его реальная мощность напрямую зависит от емкости используемых конденсаторов. Кроме того, это можно сделать по специальной таблице. При недостатке емкости двигатель будет терять свою мощность, а при ее избытке наступит перегрев от чрезмерного тока. Если конденсатор выбран правильно, то двигатель будет работать нормально, без рывков и посторонних шумов. Более точно подбираем устройство путем расчетов, выполняемых по специальным формулам.

Расчет емкости

Емкость конденсатора для электродвигателя рассчитывается исходя из схемы соединения обмоток – звездой или треугольником.

В обоих случаях применяется общая расчетная формула: Сраб = к х Iф/Uсети, к которой все параметры имеют следующие обозначения:

  • к – является специальным коэффициентом. Его значение составляет 2800 для схемы «звезда» и 4800 для схемы «треугольник».
  • Iф – номинальный ток статора, указанный на информационной табличке. При невозможности прочтения, выполняются измерения с помощью специальных измерительных клещей.
  • Uсети – напряжение питающей сети, величиной в 220 вольт.

Подставив все необходимые значения, можно легко рассчитать, какая емкость будет у рабочего конденсатора (мкФ). Во время расчетов необходимо учитывать ток, поступающий к фазной обмотке статора. Он не должен превышать номинальное значение, точно так же, как нагрузка двигателя с конденсатором должна быть не выше 60-80% номинальной мощности, обозначенной на информационной табличке.

Как подключить пусковой и рабочий конденсаторы

На рисунке указана простейшая схема подключения пускового и рабочего элементов. Первый из них устанавливается сверху, а второй – снизу. Одновременно к двигателю подключается кнопка включения и выключения. Самое главное – внимательно разобраться с проводами, чтобы не перепутать концы.

Данная схема позволяет выполнить предварительную проверку с неточной прикидкой. Она же используется и после окончательного выбора наиболее оптимального значения.

Такой подбор осуществляется экспериментальным путем с использованием нескольких конденсаторов разной емкости. При параллельном подключении их суммарная мощность будет увеличиваться. В это время нужно контролировать работу двигателя. Если работа устойчивая и ровная, в этом случае можно покупать конденсатор с емкостью, равной сумме емкостей проверочных элементов.

При подключении асинхронного трехфазного электродвигателя на 380 В в однофазную сеть на 220 В необходимо рассчитать емкость фазосдвигающего конденсатора, точнее двух конденсаторов – рабочего и пускового конденсатора. Онлайн калькулятор для расчета емкости конденсатора для трехфазного двигателя в конце статьи.

Как подключить асинхронный двигатель?

Подключение асинхронного двигателя осуществляется по двум схемам: треугольник (эффективнее для 220 В) и звезда (эффективнее для 380 В).

На картинке внизу статьи вы увидите обе эти схемы подключения. Здесь, я думаю, описывать подключение не стоит, т.к. это описано уже тысячу раз в Интернете.

Во основном, у многих возникает вопрос, какие нужны емкости рабочего и пускового конденсаторов.

Пусковой конденсатор

Стоит отметить, что на небольших электродвигателях, используемых для бытовых нужд, например, для электроточила на 200-400 Вт, можно не использовать пусковой конденсатор, а обойтись одним рабочим конденсатором, я так делал уже не раз – рабочего конденсатора вполне хватает. Другое дело, если электродвигатель стартует со значительной нагрузкой, то тогда лучше использовать и пусковой конденсатор, который подключается параллельно рабочему конденсатору нажатием и удержанием кнопки на время разгона электродвигателя, либо с помощью специального реле. Расчет емкости пускового конденсатора осуществляется путем умножения емкостей рабочего конденсатора на 2-2.5, в данном калькуляторе используется 2. 5.

При этом стоит помнить, что по мере разгона асинхронному двигателю требуется меньшая емкость конденсатора, т.е. не стоит оставлять подключенным пусковой конденсатор на все время работы, т.к. большая емкость на высоких оборотах вызовет перегрев и выход из строя электродвигателя.

Как подобрать конденсатор для трехфазного двигателя?

Конденсатор используется неполярный, на напряжение не менее 400 В. Либо современный, специально на это рассчитанный (3-й рисунок), либо советский типа МБГЧ, МБГО и т.п. (рис.4).

Итак, для расчета емкостей пускового и рабочего конденсаторов для асинхронного электродвигателя введите данные в форму ниже, эти данные вы найдете на шильдике электродвигателя, если данные неизвестны, то для расчета конденсатора можно использовать средние данные, которые подставлены в форму по умолчанию, но мощность электродвигателя нужно указать обязательно.

Электродвигатели используются в каждом доме, так как они являются движущей силой любого бытового прибора. Кроме того, они являются главным составляющим и электроинструментов. Именно по этой причине домашним мастерам хочется узнать побольше о работе прибора и его характеристиках.


В большинстве случаев электродвигатели имеют систему трехфазного подключения к сети. И для домашней сети они получаются слишком мощными и не отдают полностью свою рабочую силу.

Для таких случаев используется конденсатор для электродвигателя, фото такого прибора в большом количестве есть в сети.

Именно вопрос подключения конденсатора наиболее популярен при интересу к электродвигателю и именно о нем мы поговорим подробно.

Краткое содержимое статьи:

Разновидности конденсаторов пуска

Маломощные электродвигатели, работающие от 200-400 В не нуждаются в установке дополнительного конденсатора пуска. Дело в том, что в каждом устройстве конденсатор уже заранее установлен.

Для слабых по мощности двигателей его достаточно, а вот для того, чтобы работали устройства с повышенной мощностью потребуется дополнительный внешний пусковой конденсатор.

Конденсаторы для асинхронных электродвигателей необходимо подбирать опытным путем, проверяя каждый.

Такой прибор устанавливается параллельно к уже имеющемуся. На некоторое время при разгоне двигателя его оставляют включенным.

Включение и дальнейшая работа конденсатора возможна только при зажатой кнопке пуска. После разгона обязательно потребуется выключить конденсатор, так как при его постоянной работе двигатель будет крутиться на полную мощность.

А при обыкновенной домашней сети с одной фазой это приведет к перегреву и выходу из строя оборудования.

Видов конденсаторов для электродвигателя в настоящее время существует три:

Полярные. Данный вид способен работать только при постоянной подаче тока. Переменное питание быстро выведет из строя электродвигатель.

Неполярные. Они более популярны за счет разнообразных условий работы. То есть такие конденсаторы можно устанавливать и при постоянном токе и при переменном.

С электролитом. Данный вариант конденсатора электродвигателя имеет обычно небольшую емкость и наиболее подходящим вариантом они послужат в использовании к низкочастотным электродвигателям.

Как подобрать конденсатор для двигателя

При выборе конденсатора на трехфазный двигатель важно помнить о том, что мощность в нем должна иметь десятки и сотни микрофарад.

Но электролитические конденсаторы с такой целью выбирать не рекомендуется.

Для них понадобится однополярное подключение, а это потребует установки дополнительного оборудования.

Кроме того, данный вариант может привести к быстрому выходу двигателя из строя в связи с перегревом.

Так же необходимо уметь отличать рабочий конденсатор от пускового. Первый вариант работает на протяжении всего цикла действий двигателя, а второй только помогает ему запуститься.

Рабочий не стоит выбирать, так как его мощность вдвое меньше чем у пускового.

При правильно сделанном выборе конденсатора его рабочие показатели повысятся.

Кроме того, конденсатор, подходящий к двигателю позволит значительно продлить жизнь мотора.

Как подключать конденсаторы

Подключение любого вида конденсаторов должно производиться по точной схеме. Рабочий конденсатор подключается снизу, а пусковой выше параллельно ем.

Кроме того, важно не забыть подключить кнопку пуска, при этом следите за последовательностью проводов.

При помощи такой схемы можно подключать и конденсаторы на проверку. При суммировании мощностей рабочего и пускового конденсаторов будет получаться, что мощность меняется.

Здесь уже требуется наблюдать за состоянием работы непосредственно самого электродвигателя. Если он работает хорошо, то выбрана нужная мощность.

Также можно подключать последовательно несколько конденсаторов пускового типа и смотреть за двигателем.

Конденсатор, как правильно его заменить

Конденсатор — двухполюсник с постоянным или переменным значением ёмкости и малой проводимостью; устройство для накопления заряда и энергии электрического поля.

Приняв решение о замене конденсатора на печатной плате, первым делом следует подобрать конденсатор на замену. Как правило, речь идет об электролитическом конденсаторе, который по причине исчерпания своего рабочего ресурса начал создавать нештатный режим вашему электронному устройству, либо конденсатор лопнул из-за перегрева, а может быть вы просто решили поставить конденсатор поновее или получше.

Выбираем подходящий конденсатор на замену

Параметры конденсатора на замену непременно должны подходить: его номинальное напряжение ни в коем случае не должно быть ниже, чем у заменяемого конденсатора, а емкость — никак не ниже, или может быть процентов на 5-10 выше (если это допустимо в соответствии с известной вам схемой данного устройства), чем была изначально.

Наконец, убедитесь, что новый конденсатор подойдет по размеру на то место, которое покинет его предшественник. Если он окажется чуть-чуть поменьше диаметром и высотой — не страшно, но если диаметр или высота больше — могут помешать компоненты, расположенные на этой же плате поблизости или он будет упираться в элементы корпуса. Эти нюансы важно учесть. Итак, конденсатор на замену выбран, он вам подходит, теперь можно приступать к демонтажу старого конденсатора.

Готовимся к процессу

Сейчас необходимо будет устранить с платы неисправный конденсатор, и подготовить место для установки сюда же нового. Для этого вам потребуется, конечно, паяльник, а также удобно к данному действу подготовить кусок медной оплетки для снятия припоя. Как правило, мощности паяльника в пределах 40 Вт будет вполне достаточно даже если на плате был изначально применен тугоплавкий припой.

Что же касается медной оплетки для устранения припоя, то если у вас такой нет, ее весьма несложно изготовить самостоятельно: возьмите кусок не очень толстого медного провода, состоящего из тонких медных жилок, снимите с него изоляцию, слегка пропитайте флюсом (можно простой сосновой канифолью), — теперь эти пропитанные флюсом жилки легко, словно губка, вберут в себя припой с ножек выпаиваемого конденсатора.

Выпаиваем старый конденсатор

Сначала посмотрите, какова полярность выпаиваемого конденсатора на плате: в какую сторону минусом он стоит, чтобы когда будете впаивать новый — не допустить ошибки с полярностью. Обычно минусовая ножка отмечена полосой. Итак, когда оплетка для удаления припоя приготовлена, а паяльник уже достаточно разогрет, сначала прислоните оплетку к основанию той из ножек конденсатора, которую вы решили освободить от припоя первой.

Аккуратно расплавьте припой на ножке прямо через оплетку, чтобы оплетка тоже разогрелась и быстро втянула в себя припой с платы. Если припоя на ножке многовато, двигайте оплетку по мере того как она будет заполняться припоем, собирая на нее весь припой с ножки, чтобы ножка в итоге осталась свободной от припоя. Проделайте это же самое со второй ножкой конденсатора. Теперь конденсатор можно легко выдернуть рукой или пинцетом.

Впаиваем новый конденсатор

Новый конденсатор необходимо установить с соблюдением полярности, то есть минусовой ножкой туда же, где была минусовая ножка выпаянного. Обычно на корпусе электролитического конденсатора минус обозначен полоской, а плюсовая ножка длиннее минусовой. Обработайте ножки конденсатора флюсом.

Вставьте конденсатор в отверстия. Не нужно заранее укорачивать ножки. Разогните ножки немного в разные стороны, чтобы конденсатор хорошо держался на месте и не выпадал.

Теперь, прогревая ножку возле самой платы кончиком жала паяльника, поднесите тычком припой к ножке, чтобы ножка окуталась, смочилась, окружилась припоем. То же самое проделайте со второй ножкой. Когда припой остынет, вам останется укоротить ножки конденсатора кусачками (до той длины, что и у соседних деталей на вашей плате).

Ранее ЭлектроВести писали, АО «Турбоатом» (Харьков) изготовит конденсатор блочно-модульного исполнения с трубными системами из коррозийно-стойкого материала турбоустановки К-1000-60/1500-2 для энергоблока №2 Запорожской АЭС.

По материалам: electrik.info.

Урок 2.3 — Конденсаторы

Конденсатор

Конденсатор встречается в наборах Мастер Кит (да и вообще в электронных устройствах) почти так же часто, как и резистор. Поэтому важно хотя бы в общих чертах представлять его основные характеристики и принцип работы.

Принцип работы конденсатора

В простейшем варианте конструкция состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок. Чем больше отношение площади пластин к толщине диэлектрика – тем выше ёмкость конденсатора. Чтобы избежать физического увеличения размеров конденсатора до огромных размеров, конденсаторы изготавливают многослойными: например, сворачивают ленты пластин и диэлектриков в рулон.
Так как любой конденсатор имеет диэлектрик, то он не способен проводить постоянный ток, но он может сохранять электрический заряд, приложенный к его обкладкам, и в нужный момент отдавать его. Это важное свойство

Давайте договоримся: радиодеталь мы называем конденсатором, а его физическую величину – ёмкостью. То есть правильно сказать так: «конденсатор имеет ёмкость 1 мкФ», но некорректно сказать: «замени на плате вон ту ёмкость». Вас, конечно, поймут, но лучше соблюдать «правила хорошего тона».

 

Электрическая ёмкость конденсатора – это главный его параметр
Чем больше ёмкость конденсатора, тем больший заряд он может сохранить. Электрическая ёмкость конденсатора измеряется в Фарадах, обозначается F.
1 Фарад — очень большая ёмкость (земной шар имеет ёмкость менее 1Ф), поэтому для обозначения ёмкости в радиолюбительской практике используются следующие основные размерные величины — префиксы: µ (микро), n (нано) и p (пико):
• 1 микроФарад — 10-6 (одна миллионная часть), т.е. 1000000µF = 1F
• 1 наноФарад — 10-9 (одна миллиардная часть), т.е. 1000nF = 1µF
• p (пико) — 10-12 (одна триллионная часть), т.е. 1000pF = 1nF

Как и Ом, Фарад – это фамилия физика. Поэтому, как культурные люди, пишем прописную букву «Ф»: 10 пФ, 33 нФ, 470 мкФ.

 

Номинальное напряжение конденсатора
Расстояние между пластинами конденсатора (особенно конденсатора большой ёмкости) очень мало, и достигает единиц микрометра. Если приложить к обкладкам конденсатора слишком высокое напряжение, слой диэлектрика может быть нарушен. Поэтому каждый конденсатор имеет такой параметр, как номинальное напряжение. При эксплуатации напряжение на конденсаторе не должно превышать номинального. Но лучше, когда номинальное напряжение конденсатора несколько выше напряжения в схеме. То есть, например, в схеме с напряжением 16В могут работать конденсаторы с номинальным напряжением 16В (в крайнем случае), 25В, 50В и выше. Но нельзя ставить в эту схему конденсатор с номинальным напряжением 10В. Конденсатор может выйти из строя, причём часто это происходит с неприятным хлопком и выбросом едкого дыма.
Как правило, в радиолюбительских конструкциях для начинающих не используется напряжение питания выше 12В, а современные конденсаторы чаще всего имеют номинальное напряжение 16В и выше. Но помнить о номинальном напряжении конденсатора очень важно.

 

Типы конденсаторов
О разнообразных конденсаторах можно написать много томов. Впрочем, это уже сделали некоторые другие авторы, поэтому я расскажу только самое необходимое: конденсаторы бывают неполярные и полярные (электролитические).


Неполярные конденсаторы
Неполярные конденсаторы (в зависимости от типа диэлектрика подразделяются на бумажные, керамические, слюдяные…) могут устанавливаться в схему как угодно – в этом они похожи на резисторы.
Как правило, неполярные конденсаторы имеют относительно небольшую ёмкость: до 1 мкФ.

 

Маркировка неполярных конденсаторов
На корпус конденсатора нанесён код из трёх цифр. Первые две цифры определяют значение ёмкости в пикофарадах (пФ), а третья – количество нулей. Так, на изображённом ниже рисунке на конденсатор нанесён код 103. Определим его ёмкость:
10 пФ + (3 нуля) = 10000 пФ = 10 нФ = 0,01 мкФ.


Конденсаторы ёмкостью до 10 пФ маркируются по-особенному: символ «R» в их кодировке обозначает запятую. Теперь Вы можете определить ёмкость любого конденсатора. Приведённая ниже табличка поможет Вам проверить себя.

 

Код

Номинал

Код

Номинал

Код

Номинал

1R0

1 пФ

101

100 пФ

332

3.3 нФ

2R2

2.2 пФ

121

120 пФ

362

3.6 нФ

3R3

3.3 пФ

151

150 пФ

472

4.7 нФ

4R7

4.7 пФ

181

180 пФ

562

5.6 нФ

5R1

5.1 пФ

201

200 пФ

682

6.8 нФ

5R6

5.6 пФ

221

220 пФ

752

7.5 нФ

6R8

6. 8 пФ

241

240 пФ

822

8.2 нФ

7R5

7.5 пФ

271

270 пФ

912

9.1 нФ

8R2

8.2 пФ

301

300 пФ

103

10 нФ

100

10 пФ

331

330 пФ

153

15 нФ

120

12 пФ

361

360 пФ

223

22 нФ

150

15 пФ

391

390 пФ

333

33 нФ

160

16 пФ

431

430 пФ

473

47 нФ

180

18 пФ

471

470 пФ

683

68 нФ

200

20 пФ

511

510 пФ

104

0. 1 мкФ

220

22 пФ

561

560 пФ

154

0.15 мкФ

240

24 пФ

621

620 пФ

224

0.22 мкФ

270

27 пФ

681

680 пФ

334

0.33 мкФ

300

30 пФ

751

750 пФ

474

0.47 мкФ

330

33 пФ

821

820 пФ

684

0.68 мкФ

360

36 пФ

911

910 пФ

105

1 мкФ

390

39 пФ

102

1 нФ

155

1.5 мкФ

430

43 пФ

122

1. 2 нФ

225

2.2 мкФ

470

47 пФ

132

1.3 нФ

475

4.7 мкФ

510

51 пФ

152

1.5 нФ

106

10 мкФ

560

56 пФ

182

1.8 нФ

 

 

680

68 пФ

202

2 нФ

 

 

750

75 пФ

222

2.2 нФ

 

 

820

82 пФ

272

2.7 нФ

 

 

910

91 пФ

302

3 нФ

 

 


Как правило, в радиолюбительских конструкциях допустима замена некоторых конденсаторов на близкие по номиналу. Например, вместо конденсатора 15 нФ набор может комплектоваться конденсатором 10 нФ или 22 нФ, и это не отразится на работе готовой конструкции.
Керамические конденсаторы не имеют полярности и могут устанавливаться в любом положении выводов.
Некоторые мультиметры (кроме самых бюджетных) имеют функцию измерения ёмкости конденсаторов, и Вы можете воспользоваться этим способом.

 

Полярные (электролитические) конденсаторы
Есть два способа увеличения ёмкости конденсатора: либо увеличивать размер его пластин, либо уменьшать толщину диэлектрика.
Чтобы минимизировать толщину диэлектрика, в конденсаторах большой ёмкости (выше нескольких микрофарад) применяется специальный диэлектрик в виде оксидной плёнки. Этот диэлектрик нормально работает только при условии правильно приложенного напряжения на обкладках конденсатора. Если перепутать полярность напряжения, электролитический конденсатор может выйти из строя. Метка полярности всегда маркируется на корпусе конденсатора. Это может быть либо значок «+», но чаще всего в современных конденсаторах полосой на корпусе маркируется вывод «минус». Другой, вспомогательный способ определения полярности: плюсовой вывод конденсатора длиннее, но ориентироваться на этот признак можно только до того, как выводы радиодетали обрезаны.
На печатной плате также присутствует метка полярности (как правило, значок «+»). Поэтому при установке электролитического конденсатора обязательно совмещайте метки полярности и на детали, и на печатной плате.
Как правило, в радиолюбительских конструкциях допустима замена некоторых конденсаторов на близкие по номиналу. Также допустима замена конденсатора на аналогичный с бОльшим значением допустимого рабочего напряжения. Например, вместо конденсатора 330 мкФ 25В набор можно применить конденсатор 470 мкФ 50В, и это не отразится на работе готовой конструкции.

Внешний вид электролитического конденсатора (правильно установленный на плату конденсатор)

 

Скачать урок в формате PDF

Конденсатор | Класс робототехники

Электрический конденсатор (англ.

capacitor) — это устройство, которое может накапливать электрический заряд и хранить его некоторое время. Конденсаторы можно найти практически в любом электронном устройстве. Они бывают разных типов и размеров.

На электрических схемах конденсаторы обозначают двумя параллельными черточками. При этом, у полярных конденсаторов около положительного электрода дополнительно ставится плюсик.

Для чего нужен конденсатор?

У этого прибора есть множество применений. Мы не будем перечислять их все, отметим лишь некоторые.

1) Фильтрация пульсаций в цепях питания. Конденсаторы часто ставят на входе и выходе преобразователей напряжения, на входе питания микросхем. В этом случае конденсаторы служат своего рода амортизаторами, которые могут сгладить неровности напряжения, подобно амортизаторам автомобиля, сглаживающим неровности дороги.

2) Времязадающие электрические цепи. Конденсаторы разной ёмкости заряжаются и разряжаются за разное время.

Эту особенность используют в устройствах, где необходимо отсчитывать определенные промежутки времени. Например, с помощью резистора и конденсатора задается период и скважность импульса в микросхеме таймера 555 (урок про таймер 555).

3) Датчики прикосновения. В роли одной из обкладок конденсатора может выступить человек. Эту особенность нашего тела используют в своей работе сенсорные кнопки, тачскрины и тачпады некоторых видов.

4) Хранение данных. Конденсаторы применяются для хранения данных в оперативной памяти — ОЗУ (SRAM). Каждый модуль такой памяти содержит миллиарды отдельных конденсаторов, которые могут быть заряжены или разряжены, что интерпретируется как единица или ноль.

И это далеко не все варианты применения этого незаменимого прибора. Попробуем разобраться, как устройство конденсатора позволяет ему выполнять столько полезных функций!

Устройство простейшего конденсатора

Конденсатор состоит их двух металлических пластин — электродов, называемых также обкладками, между которыми находится тонкий слой диэлектрика.

Собственно, все конденсаторы устроены именно таким (или почти таким) образом, разве что меняется материал обкладок и диэлектрика.

Чтобы увеличить ёмкость конденсатора, не увеличивая его размеры, применяют разные хитрости. Например, если мы возьмем две обкладки в виде длинных полосок фольги, проложим между ними хотя бы тот же полиэтилен и свернем все это как рулет, то получится очень компактный прибор с большой ёмкостью. Именно так устроены плёночные конденсаторы.

Если вместо полиэтилена взять бумагу и пропитать её электролитом, то на поверхности фольги образуется тонкий слой оксида, который не проводит ток. Такой конденсатор будет называться электролитическим.

Существует много разных видов конденсаторов: бумажные, плёночные, оксидные алюминиевые и танталовые, вакуумные и т.п. В нашем уроке мы будем использовать оксидные электролитические конденсаторы из-за их большой ёмкости и доступности.

Полярные и неполярные конденсаторы

Очень важным является разделение конденсаторов на полярные и неполярные.

Приборы на основе оксидов: электролитические алюминиевые и танталовые обычно являются полярными, а значит если перепутать их полярность — они выйдут из строя. Причём этот выход из строя будет сопровождаться бурной электрохимической реакций вплоть до взрыва конденсатора.

На полярных конденсаторах всегда имеется маркировка. Как правило на электролитических конденсаторах на корпусе контрастной полосой отмечается отрицательный вывод (катод), у танталовых (в желтых прямоугольных корпусах) полоской помечается положительный вывод (анод). Если есть сомнения в маркировке, то лучше найти документацию на этот конденсатор и убедиться.

Неполярные же конденсаторы можно включать в цепь какой угодно стороной. К примеру, многослойные керамические конденсаторы — неполярные.

Ёмкость и напряжение конденсатора

Теперь обратим внимание на две важные характеристики конденсатора: ёмкость и номинальное напряжение.

Ёмкость конденсатора характеризует способность конденсатора накапливать заряд.  Это как ёмкость банки, в которой хранится, к примеру, вода. Кстати, не зря одним из первых электрических конденсаторов была так называемая Лейденская банка. Она представляла собой обыкновенную стеклянную посуду, снаружи обмотанную фольгой. В банку была налита токопроводящая жидкость — электролит. Фольга и электролит играли роль обкладок, а стекло банки служило тем самым диэлектрическим барьером.

Ёмкость электрического конденсатора измеряют в фарадах. В схемах ёмкость обозначают латинской буквой C. Как правило, ёмкость классических конденсаторов варьируется от нескольких пикофарад (пФ) до нескольких тысяч микрофарад (мкФ). Ёмкость указывается на корпусе конденсатора. Если единицы не указаны — то это пикофарады. Микрофарады часто обозначают как uF — так как буква u внешне похожа на греческую букву мю, которую используют вместо приставки микро.

Существует и особый вид конденсаторов, называемых ионисторами (англ. supercapacitor), которые имеют ёмкость в несколько фарад!  Чем больше ёмкость конденсатора, тем больше энергии в нём может храниться и тем дольше он заряжается, при прочих равных условиях.

Номинальное напряжение

— второй важный параметр. Это такое напряжение, при котором конденсатор будет работать весь срок службы без критичного изменения своих параметров. Нельзя применять в 12-вольтовой цепи конденсатор на 6 вольт — он быстро выйдет из строя.

Именно эти два параметра обычно наносят на поверхность корпуса конденсатора. На фотографии ниже изображён электролитический конденсатор ёмкостью 470 мкФ и номинальным напряжением 16 Вольт.

А вот на керамических конденсаторах часто указывают только ёмкость. На картинке ниже конденсатор имеет маркировку 104. Что бы это значило?

Последняя цифра в этом коде — количество нулей после двухзначного числа в начале. 104 = 10 0000 пФ = 100 нФ = 0,1 мкФ

Параллельное и последовательное подключение конденсаторов

Как и в случае резисторов, конденсаторы можно составлять в цепочки. Это бывает нужно, когда в схеме необходима какая-то конкретная ёмкость, а у вас нет такого конденсатора.

Параллельное подключение

В отличие от резисторов, при параллельном подключении конденсаторов их ёмкости складываются. Например, если нам нужно получить ёмкость 3000 мкФ, а у нас есть два конденсатора по 1000 мкФ, и 10 штук по 100 мкФ, смело ставим их параллельно и получаем: 1000*2+100*10 = 2000 + 1000 = 3000 мкФ

Последовательно подключение

При последовательном подключении конденсаторы ведут себя как резисторы, соединённые параллельно. Например, посчитаем суммарную ёмкость двух конденсаторов на 100 мкФ, соединённых последовательно:

Суммарная ёмкость Ctot = 50 мкФ.

Заряд и разряд конденсатора — RC-цепочка

Теперь разберёмся с процессами, происходящими внутри конденсатора во время заряда и разряда. Для этого рассмотрим самую простую электрическую цепь с конденсатором. С левой стороны схемы подключим источник питания. Сверху разместим ключ и резистор, а справа сам конденсатор. Участок цепи, на котором есть конденсатор и резистор называют RC-цепью.

При замыкании ключа, в такой цепи образуется электрический ток, сила которого зависит от сопротивления резистора и внутреннего сопротивления самого конденсатора. Заряженные частицы устремятся к конденсатору, но не смогут преодолеть слой диэлектрика (по крайней мере все разом). Вследствие чего, с одной стороны конденсатора накопятся отрицательно заряженные частицы, а с другой стороны — положительно заряженные. Концентрация заряженных частиц на обкладках создаст мощное электрическое поле между ними.

С течением времени, напряжение на конденсаторе растет, а сила тока падает. После завершения процесса заряда, ток в цепи упадет почти до нуля. Останется только очень маленький ток утечки, который образуется благодаря тому, что некоторым заряженным частицам всё же удается проскочить через слой диэлектрика. Напряжение, напротив, станет практически равным напряжению источника.

Когда мы отключим конденсатор от источника питания, этот самый ток утечки постепенно разрядит конденсатор. Эта особенность электрических конденсаторов не даёт нам сделать из них контейнер для длительного хранения энергии. Хотя частично эту проблему решают ионисторы.

Резистор и время заряда конденсатора

Зачем в цепи нужен резистор? Что на мешает подключить его напрямую к источнику? Тому есть две причины.

Резистор ограничивает ток, протекающий через конденсатор. Чем меньше заряженных частиц за единицу времени прибывает в конденсатор, тем больше времени для заряда ему потребуется.

Конденсатор заряжается и разряжается по экспоненциальному закону. Зная это, мы можем легко рассчитать время заряда/разряда в зависимости от его ёмкости и от сопротивления резистора.

По картинке можно понять, что за время T конденсатор заряжается на 63,2%. А вот за время 3T уже на 95%. Время T здесь равно произведению ёмкости конденсатора C на сопротивление R, последовательно соединенного резистора:

Например, у нас есть конденсатор ёмкостью 100 мкФ, соединенный с резистором 1 кОм. Посчитаем за сколько секунд он зарядится хотя бы до 95%:

Теперь умножаем это на 3 и получаем 3T = 0,3 секунды — за такое время конденсатор почти полностью будет заряжен.

Таким образом, меняя ёмкость конденсатора и резистора мы можем управлять временем его заряда, что нам ещё пригодится в будущем.

Вторая важная причина, по которой в цепи присутствует резистор — защита источника питания. Дело в том, что разряженные конденсаторы имеют очень низкое внутреннее сопротивление, которое составляет доли Ома. По сути, их можно рассматривать как обычные проводники. А что будет, если замкнуть выводы питания проводником? Будет короткое замыкание! Такой режим работы цепи является аварийным для источника питания, и его нужно всячески избегать.

Плавное выключение светодиода при помощи конденсатора

Проведем небольшой опыт. Для этого соберем на макетной плате цепь с кнопкой, конденсатором и светодиодом. В качестве источника питания используем контакты питания Ардуино Уно.

Принципиальная схема

Внешний вид макета

Подключим Ардуино  к питанию. Затем, нажмем кнопку и светодиод практически мгновенно загорится. Отпустим кнопку — светодиод медленно начнет гаснуть. Почему так происходит?

Сразу после подключения нашей схемы к источнику питания, в ней начинают происходит интересные процессы.

Как уже говорилось ранее, пока конденсатор пустой, ток через него максимален. Следовательно, конденсатор начинает стремительно набирать заряд. При этом светодиоду, который подключен параллельно, ничего не достается 🙁 Напряжение на нем близко к нулю.

С течением времени конденсатор насыщается, благодаря чему ток начинает постепенно переходить в параллельную цепь — через светодиод. Напряжение на светодиоде начинает расти. Наступает момент, когда напряжение на светодиоде принимает критическое значение (для красного светодиода около 1,8 В), при котором он стремительно отбирает остатки тока у конденсатора и вспыхивает!

Когда мы отпускаем кнопку, ситуация становится гораздо проще. Конденсатор становится источником питания для светодиода с резистором. Светодиод начинает медленно высасывать заряд из конденсатора, пока тот не разрядится. Тут мы и наблюдаем медленно угасание.

Меняя сопротивление R1, мы можем влиять на скорость вспыхивания светодиода. Однако, следует учитывать, что увеличивая R1 мы будем снижать ток в цепи, тем самым уменьшая максимальный заряд конденсатора и яркость светодиода.

Увеличивая C1, мы получим более длительное время работы светодиода после выключения источника. Это как поставить более ёмкую батарейку.

Наконец, меняя R2 можно регулировать яркость светодиода, и соответственно, время его работы. Ведь чем меньше тока мы забираем из конденсатора, тем на большее время его хватит.

К размышлению

Итак, мы познакомились с конденсатором — интересным и порой опасным жителем любой электронной платы. В следующих уроках уделим внимание резистору и индуктивности, а также более сложному их собрату — транзистору.

Вконтакте

Facebook

Twitter

Замена алюминиевых электролитических конденсаторов на пленочные — AVX TPC

На сегодняшний день тенденция рынка преобразователей энергии для промышленности и транспорта состоит в замене электролитических конденсаторов плёночными.
Одна из главных причин заключается в множестве преимуществ, которые предоставляет плёночная технология, а именно:

  • Высокое значение Iэфф. – до 1Aэфф. / мкФ
  • Допустимость двукратного превышение номинального напряжения
  • Допустимость выбросов обратного напряжения
  • Высокое значение пикового тока
  • Отсутствие кислотного наполнителя и, вследствие этого, экологическая безопасность
  • Большой срок службы
  • Отсутствие проблем хранения

Однако, замена электролитических конденсаторов на плёночные не подразумевает замену < <банки на банку>>, имеется в виду функциональная замена.

Проиллюстрируем основные преимущества такой замены на конкретных примерах.

1. Фильтр постоянного тока
Преимущества: высокий ток и большая ёмкость
Применяются в электромобилях и электрокарах, питание от батарей

В этом случае, конденсатор используется для развязки.
Пленочные конденсаторы являются превосходным решением для цепей развязки, так как главным критерием выбора конденсатора развязки по постоянному току является величина Iэфф.

Рассмотрим замену на примере электромобиля:
Требуемые данные:
Рабочее напряжение: 120Vdc
Допустимая пульсация напряжения: 4Vrms
Irms: 80 Arms. @ 20kHz
Минимальная ёмкость в таком случае:
C =Irms/(Uripple x 2x x f)= 159µF

Очевидно, подобрать ёмкость с близкими значениями будет несложно.
Сравним предлагаемый плёночный конденсатор с электролитическим.
Чтобы получить 80 Arms, при отношении 20mA / µF, минимальное значение ёмкости составит:
C =80/0.02= 4000µF

Ещё одна область применения –
Привод промышленного двигателя, питание от сети

Напряжение для связи по постоянному току показано на графике:

При расчёте ёмкости следует учитывать, что частота источника питания меньше частоты преобразователя.

 

Для вычисления необходимого значения ёмкости воспользуемся формулой:

Зависимость Irms от ёмкости: (здесь не учтен ток частотного преобразователя).

Для иллюстрации рассмотрим конкретный пример:
Напряжение постоянного тока — 1000 В.
Напряжение пульсации — 200 В.

Рассмотрим диапазон НЧ более подробно:


Для сравнения с электролитом рассмотрим пример, когда плотность тока электролита = 20mA/µF.
На мощности 1МВатт Irms= 2468 Arms, а минимальная ёмкость составит 123.4mF.
Если мы посмотрим на кривую, то сможем увидеть, что это значение ёмкости необходимо для выпрямителя, работающего на частотах ниже 100 Гц (приведённый пример для плёночной технологии).
Таким образом, имея 3 фазы и 6 диодных выпрямителей, получаем частоту 300 Гц.
На кривой для 1 МВт видно, что необходимое значение ёмкости равно 18.5 мкФ. Плёночный конденсатор получается почти в четыре раза меньше электролитического и при этом надёжнее.
Меньшая мощность даёт похожий результат, и для мощностей до 10 кВт ёмкость становится настолько маленькой, что плёночная технология даёт наилучшее решение.
Даже на частоте выпрямителя 100Гц необходима ёмкость не более 555 мкФ, напряжение питания и импульсное напряжения остаются такими же.

2. ПЕРЕНАПРЯЖЕНИЕ
Рассмотрим применение конденсаторов на лёгком электротранспорте (в метро, на подвесной дороге).
Напряжение для связи по постоянному току показано на графике:

В процессе передачи энергии с токопровода на поезд, может происходить разъединение контактов между токосъёмником и токопроводом, а при восстановлении контакта возникает перенапряжение.

В худшем случае V равно напряжению токопровода, так как перенапряжение может практически в два раза превысить номинальное напряжение.
И плёночный конденсатор может справиться с таким перенапряжением.

Сравним с электролитическим конденсатором:
Максимальное превышение напряжение для электролита составляет
до 1. 2 x Vdc.
Поэтому минимальное напряжение для электролита составит
Udc электролитической технологии =2 x 1000V/1.2= 1670V
В данном случае потребуется 4 последовательно соединённых электролитических конденсатора на 450 В.
Электролит на 10 мкФ займёт объём 26 литров, максимальное значение Irms. составит 220 Arms.
В случае плёночного конденсатора, занимаемый объём составит 25 литров, а допустимый Irms. может превышать 500 Arms.
Подсчитаем энергию, вызванную таким перенапряжением
I2t = i2(t)dt.

Через несколько периодов получаем нулевой ток.

Этот расчёт можно также использовать для определения тока разряда при коротком замыкании между клеммами. Такой разряд приводит к получению очень высокого пикового тока и последующего затухания, с чем не сможет справиться электролитический конденсатор.

3. НОМИНАЛЬНОЕ НАПРЯЖЕНИЕ
При необходимости получить заданное номинальное напряжение, более интересным представляется использование пленочной технологии.
При необходимости получить большую ёмкость, пленочное решение уже не будет таким конкурентоспособным.
Итак, при отсутствии перенапряжения, малом Irms. и большой ёмкости на напряжениях до 900 В, пленочная технология теряет свои преимущества.

РАСЧЁТ СРОКА СЛУЖБЫ
Плёночная технология обеспечивает большой срок службы, зависящий от условий нагрузки и максимальной рабочей температуры.
Для приложений фильтрации по постоянному току, срок службы соответствует кривым, показанным в каталоге.
Критерий окончания срока службы — уменьшение емкости на 2 %.
Однако, это только теоретическое окончание срока службы, так как при дальнейшем понижении ёмкости конденсатор остаётся работоспособным. И, таким образом, при допустимости снижения ёмкости на 5%, срок службы будет значительно больше.

Выражение для определения максимальной рабочей температуры:

где:
maxhotspot: максимальная рабочая температура
tg0: диэлектрические потери
Rth: Тепловое сопротивление
Rs: Последовательное сопротивление
hot spot – максимальная рабочая температура составит 85°C либо 105°C, в зависимости от применения и технологии.

4. ЗАКЛЮЧЕНИЕ
Здесь приведены некоторые рекомендации по выбору инженерного решения. Конечно, для каждого конкретного случая необходим точный расчёт.

В любом случае, если определяющими величинами являются только ёмкость, низкое напряжение, низкий I rms., и отсутствуют особые требования по перегрузке по напряжению, по обратному напряжению и пиковому току, то плёночная технология не будет лучшим решением.

Как правильно заменить конденсатор — ООО «УК Энерготехсервис»

В элементной базе компьютера (и не только) есть одно узкое место – электролитические конденсаторы. Они содержат электролит, электролит – это жидкость. Поэтому нагрев такого конденсатора приводит к выходу его из строя, так как электролит испаряется. А нагрев в системном блоке – дело регулярное.

Поэтому замена конденсаторов – это вопрос времени. Больше половины отказов материнских плат средней и нижней ценовой категории происходит по вине высохших или вздувшихся конденсаторов. Еще чаще по этой причине ломаются компьютерные блоки питания.

Поскольку печать на современных платах очень плотная, производить замену конденсаторов нужно очень аккуратно. Можно повредить и при этом не заметить мелкий бескорпусой элемент или разорвать (замкнуть) дорожки, толщина и расстояние между которыми чуть больше толщины человеческого волоса. Исправить подобное потом достаточно сложно. Так что будьте внимательны.

  • Итак, для замены конденсаторов понадобится паяльник с тонким жалом мощностью 25-30Вт, кусок толстой гитарной струны или толстая игла, паяльный флюс или канифоль.
  • В том случае, если вы перепутаете полярность при замене электролитического конденсатора или установите конденсатор с низким номиналом по вольтажу, он вполне может взорваться. А вот как это выглядит:

Так что внимательнее подбирайте деталь для замены и правильно устанавливайте. На электролитических конденсаторах всегда отмечен минусовой контакт (обычно вертикальной полосой цвета, отличного от цвета корпуса).

На печатной плате отверстие под минусовой контакт отмечено тоже (обычно черной штриховкой или сплошным белым цветом). Номиналы написаны на корпусе конденсатора. Их несколько: вольтаж, ёмкость, допуски и температура.

Первые два есть всегда, остальные могут и отсутствовать. Вольтаж: 16V (16 вольт). Ёмкость: 220µF (220 микрофарад). Вот эти номиналы очень важны при замене. Вольтаж можно выбирать равный или с большим номиналом. А вот ёмкость влияет на время зарядки/разрядки конденсатора и в ряде случаев может иметь важное значение для участка цепи.

Поэтому ёмкость следует подбирать равную той, что указана на корпусе. Слева на фото ниже зелёный вздувшийся (или потёкший) конденсатор. Вообще с этими зелёными конденсаторами постоянные проблемы. Самые частые кандидаты на замену. Справа исправный конденсатор, который будем впаивать.

Выпаивается конденсатор следующим образом: сначала находите ножки конденсатора с обратной стороны платы (для меня это самый трудный момент). Затем нагреваете одну из ножек и слегка давите на корпус конденсатора со стороны нагреваемой ножки. Когда припой расплавляется, конденсатор наклоняется. Проводите аналогичную процедуру со второй ножкой. Обычно конденсатор вынимается в два приема.

Спешить не нужно, сильно давить тоже. Мат.плата – это не двухсторонний текстолит, а многослойный (представьте вафлю). Из-за чрезмерного усердия можно повредить контакты внутренних слоев печатной платы. Так что без фанатизма.

Кстати, долговременный нагрев тоже может повредить плату, например, привести к отслоению или отрыву контактной площадки. Поэтому сильно давить паяльником тоже не нужно. Паяльник прислоняем, на конденсатор слегка надавливаем.

После извлечения испорченного конденсатора необходимо сделать отверстия, чтобы новый конденсатор вставлялся свободно или с небольшим усилием. Я для этих целей использую гитарную струну той же толщины, что и ножки выпаиваемой детали.

Для этих целей подойдет и швейная игла, однако иглы сейчас делают из обычного железа, а струны из стали. Есть вероятность того, что игла схватится припоем и сломается при попытке ее вытащить.

А струна достаточно гибкая и схватывается сталь с припоем значительно хуже, чем железо.

При демонтаже конденсаторов припой чаще всего забивает отверстия в плате. Попробовав впаять конденсатор тем же способом, которым я советовал его выпаивать, можно повредить контактную площадку и дорожку, ведущую к ней. Не конец света, но очень нежелательное происшествие. Поэтому если отверстия не забил припой, их нужно просто расширить.

А если все же забил, то нужно плотно прижать конец струны или иглы к отверстию, а с другой стороны платы прислонить к этому отверстию паяльник. Если подобный вариант неудобен, то жало паяльника нужно прислонять к струне практически у основания. Когда припой расплавится, струна войдёт в отверстие.

В этот момент надо ее вращать, чтобы она не схватилась припоем.

После получения и расширения отверстия нужно снять с его краев излишки припоя, если таковые имеются, иначе во время припаивания конденсатора может образоваться оловянная шапка, которая может припаять соседние дорожки в тех местах, где печать плотная. Обратите внимание на фото ниже – насколько близко к отверстиям располагаются дорожки. Припаять такую очень легко, а заметить сложно, поскольку обзору мешает установленный конденсатор. Поэтому лишний припой очень желательно убирать.

Если у вас нет под боком радио-рынка, то скорее всего конденсатор для замены найдется только б/у. Перед монтажом следует обработать его ножки, если требуется. Желательно снять весь припой с ножек. Я обычно мажу ножки флюсом и чистым жалом паяльника облуживаю, припой собирается на жало паяльника. Потом скоблю ножки конденсатора канцелярским ножом (на всякий случай).

Вот, собственно, и все. Вставляем конденсатор, смазываем ножки флюсом и припаиваем. Кстати, если используется сосновая канифоль, лучше истолочь ее в порошок и нанести его на место монтажа, чем макать паяльник в кусок канифоли. Тогда получится аккуратно.

Замена конденсатора без выпаивания с платы

Условия ремонта бывают разные и менять конденсатор на многослойной (мат. плата ПК, например) печатной плате — это не то же самое что поменять конденсатор в блоке питания (однослойная односторонняя печатная плата). Надо быть предельно аккуратным и осторожным. К сожалению, не все родились с паяльником в руках, а отремонтировать (или попытаться отремонтировать) что-то бывает очень нужно.

Как я уже писал в первой половине статьи, чаще всего причиной поломок являются конденсаторы. Поэтому замена конденсаторов наиболее частый вид ремонта, по крайней мере в моём случае. В специализированных мастерских есть для этих целей специальное оборудование. Если оного нет, приходится пользоваться оборудованием обычным (флюс, припой и паяльник). В этом случае очень помогает опыт.

А если опыта нет, то попытка ремонта вполне может закончится плачевно. Как раз для таких случаев спешу поделиться способом замены конденсаторов без выпаивания из печатной платы. Способ внешне довольно не аккуратный и в некоторой степени более опасный, чем предыдущий, но для личного пользования сгодится.

Главным преимуществом данного метода является то, что контактные площадки платы придётся в значительно меньшей степени подвергать нагреву. Как минимум в два раза. Печать на дешёвых мат.платах достаточно часто отслаивается от нагрева. Дорожки отрываются, а исправить такое потом достаточно проблематично.

Минус данного способа в том, что на плату всё-таки придётся надавить, что тоже может привести к негативным последствиям. Хотя из моей личной практики давить сильно ни разу не приходилось. При этом есть все шансы припаяться к ножкам, оставшимся после механического удаления конденсатора.

 Итак, замена конденсатора начинается с удаления испорченной детали с мат.платы.

На конденсатор нужно поставить палец и с лёгким нажатием попробовать покачать его вверх-вниз и влево-вправо. Если конденсатор качается влево-вправо, значит ножки расположены по вертикальной оси (как на фото), в обратном случае по горизонтальной. Также можно определить положение ножек по минусовому маркеру (полоса на корпусе конденсатора, обозначающая минусовой контакт).

Дальше следует надавить на конденсатор по оси расположения его ножек, но не резко, а плавно, медленно увеличивая нагрузку. В результате ножка отделяется от корпуса, далее повторяем процедуру для второй ножки (давим с противоположной стороны).

Иногда ножка из-за плохого припоя вытаскивается вместе с конденсатором. В этом случае можно слегка расширить получившееся отверстие (я делаю это куском гитарной струны) и вставить туда кусок медной проволоки, желательно одинаковой с ножкой толщины.

Половина дела сделана, теперь переходим непосредственно к замене конденсатора. Стоит отметить, что припой плохо пристаёт к той части ножки, которая находилась внутри корпуса конденсатора и её лучше откусить кусачками, оставив небольшую часть.

Затем ножки конденсатора, приготовленного для замены и ножки старого конденсатора обрабатываются припоем и припаиваются. Удобнее всего паять конденсатор, приложив его к к плате под углом в 45 градусов.

Потом его легко можно поставить по стойке смирно.

Вид в результате, конечно неэстетичный, но зато работает и данный способ намного проще и безопаснее предыдущего с точки зрения нагрева платы паяльником. Удачного ремонта!

Если материалы сайта оказались для вас полезными, можете поддержать дальнейшее развитие ресурса, оказав ему (и мне ) моральную и материальную поддержку.

Замена конденсаторов на материнской плате: основы пайки — Александр Павлов

Реклама

Ремонт и настройка компьютера Вызов на дом. Решаем любую задачу. Профессиональная настройка. Бесплатная диагностика и консультация.

Всех приветствую! Сегодня я покажу вам основы замены конденсаторов на материнской плате. Будет производиться замена вышедшего из строя конденсатора.

Освоив данный метод пайки, вы легко сможете ремонтировать материнские платы, блоки питания и видеокарты.

Итак, для пайки нам понадобятся следующие инструменты:

  • ремонтируемая деталь (например, материнка),
  • пальник или термофен,
  • припой,
  • флюс,
  • оплётка,
  • плоскогубцы,
  • конденсатор,
  • обезжириватель,
  • кисточка.

Полный набор

Вздутие конденсаторов вызывает повышенное напряжение, высокая температура или заводской брак.

Как подобрать нужный конденсатор

На каждом конденсаторе имеется маркировка. Там указано 4 параметра:

  • напряжение в вольтах,
  • емкость в микрофарадах,
  • рабочая температура,
  • маркировка полярности.

Что касается маркировки полярностей на конденсаторе, то минус отмечается серой или золотой полосой. На ремонтируемой детали (в моем случае это материнская плата) полярность обозначается в виде двухцветного круга, рассеченного пополам.

Закрашенная часть круга — это минус. Конденсатор ставится на плату минус к минусу, плюс к плюсу.

Единственное исключение – это платы фирмы Asus. У них маркировка полярности сделана наоборот, т.е. закрашенный полукруг у них — это плюс.
Именно на материнской плате Asus мы сегодня и будем проводить замену конденсаторов.

Нам нужно определить, какие конденсаторы вздулись или полопались. Мне пришлось ломать «кондер» для демонстрации ???? Истинно вздутые конденсаторы выглядят немного иначе, но, надеюсь, что суть вам ясна.

Также мы должны найти этот конденсатор на обратной стороне платы.

Итак, мы с вами определили конденсатор под замену с обеих сторон материнки. Теперь можно приступать к пайке.

Отпаиваем старый конденсатор

Не забываем о технике безопасности и подкладываем под плату силиконовый коврик.

На ножки целевого конденсатора наносим флюс для того, чтобы пайка получилась качественной.

Для того что бы выпаять старый конденсатор было проще, желательно нагреть место пайки термофеном. Выставляем температуру на 300-320 градусов на паяльной станции.

И прогреваем место пайки на расстоянии 4-5 см.

Далее подготавливаем паяльник – для этого смачиваем жало флюсом и накладываем припой, делая каплю «жидкой пайки» на конце жала.

Должно получиться вот так.

Это нужно для того, чтобы старый (заводской) припой смешался с новым. Это упростит пайку.
Не забываем выставить температуру 300-320 градусов. Это температура плавления припоя.

  • На заготовленные ножки конденсатора прикладываем паяльник так, чтобы капля полностью покрыла ножку.

Стараемся вытащить конденсатор с другой стороны. Ни в коем случае не тянем его руками, так как можно сильно обжечься.

Можно поставить материнку вот так

После того, как вы выпаяли старый конденсатор, нужно убрать припой из отверстий на плате.
Это можно сделать оловоотсосом или же оплёткой. По мне так проще второй вариант.

Положите оплетку поверх отверстий и ведите жалом, пока не увидите, что медные усики забрали весь припой на себя.
Для большей эффективности сквозь оплётку проткните отверстия, но не прикладывайте чрезмерных усилий, так как можно повредить текстолит.

Ставим новый конденсатор

И вот финишная прямая.
Вставляем новый конденсатор в выпаянное нами отверстие.

Не забывайте про полярность на плате и конденсаторе (в особенности, что касается плат Asus).

  1. С обратной стороны у нас должно получиться вот так.

Наносим флюс по самый верх этих ножек и, проводя каплей «жидкой пайки» снизу вверх по ножке, запаиваем деталь. Припой сам сольётся по ножке и встанет на плату. Если конденсатор не шатается, значит, у вас всё получилось.

По окончании работ обязательно снимите остатки флюса обезжиривателем.
Дело в том, что оставленный флюс начнет разрушать текстолит на плате.

Ножки нужно будет обрезать, но прямо под корень их не рубите, так как конденсатор просто выпадет, и вся работа пойдет насмарку.

Вот и всё. Материнская плата снова работает, компьютер включается, а вы прокачали свой скил!
Финальный результат выглядит так.

Те самые ножки

Лицевая сторона. Все готово!

Всем пока! 

Проверка и замена пускового конденсатора

Для чего нужен пусковой конденсатор?

  • Пусковой и рабочий конденсаторы служат для запуска и работы элетродвигателей работающих в однофазной сети 220 В.
  • Поэтому их ещё называют фазосдвигающими.
  • Место установки — между линией питания и пусковой обмоткой электродвигателя. 
  • Условное обозначение конденсаторов на схемах
  • Графическое обозначение на схеме показано на рисунке, буквенное обозначение-С  и порядковый номер по схеме.

Основные параметры конденсаторов

Ёмкость конденсатора-характеризует энергию,которую способен накопить конденсатор,а также ток который он способен пропустить через себя. Измеряется в Фарадах с множительной приставкой (нано, микро и т.д.).

  1. Самые используемые номиналы для рабочих и пусковых конденсаторов от 1 мкФ (μF) до 100 мкФ (μF).
  2. Номинальное напряжение конденсатора- напряжение, при котором конденсатор способен надёжно и долговременно работать, сохраняя свои параметры.
  3. Известные производители конденсаторов указывают на его корпусе напряжение и соответствующую ему гарантированную наработку в часах,например:
  • 400 В — 10000 часов
  • 450 В —  5000 часов
  • 500 В —  1000 часов

Проверка пускового и рабочего конденсаторов

Проверить конденсатор можно с помощью измерителя ёмкости конденсаторов, такие приборы выпускаются как отдельно, так и в составе мультиметра- универсального прибора, который может измерять много параметров. Рассмотрим проверку мультиметром.

  • обесточиваем кондиционер
  • разряжаем конденсатор, закоротив еговыводы
  • снимаем одну из клемм (любую)
  • выставляем прибор на измерение ёмкости конденсаторов
  • прислоняем щупы к выводам конденсатора
  • считываем с экрана значение ёмкости

У всех приборов разное обозначение режима измерения конденсаторов, основные типы ниже на картинках.

В этом мультиметре режим выбирается переключателем, его необходимо поставить в режим Fcх.Щупы включить в гнёзда с обозначением Сх.

Переключение предела измерения ёмкости ручное. Максимальное значение 100 мкФ.

У этого измерительного прибора автоматический режим, необходимо только его выбрать, как показано на картинке.

Измерительный пинцет от Mastech также автоматически измеряет ёмкость, необходимо только выбрать режим кнопкой FUNC, нажимая её, пока не появится индикация F.

  •    
  • Для проверки ёмкости, считываем на корпусе конденсатора её значение и ставим заведомо больший предел измерения на приборе. (Если он не автоматический)
  • К примеру, номинал 2,5 мкФ (μF), на приборе ставим 20 мкФ (μF).
  • После подсоединения щупов к выводам конденсатора ждём показаний на экране, к примеру время измерения ёмкости 40 мкФ первым прибором — менее одной секунды, вторым — более одной минуты, так что следует ждать.
  • Если номинал не соответствует указанному на корпусе конденсатора, то его необходимо заменить и если нужно подобрать аналог.

Замена и подбор пускового/рабочего конденсатора

Если имеется оригинальный конденсатор, то понятно, что просто-напросто необходимо поставить его на место старого и всё. Полярность не имеет значения, то есть выводы конденсатора не имеют обозначений плюс «+» и минус «-» и их можно подключить как угодно.

Категорически нельзя применять электролитические конденсаторы (узнать их можно по меньшим размерам, при той же ёмкости, и обозначению плюс и минус на корпусе). Как следствие применения — термическое разрушение. Для этих целей производители специально выпускают неполярные конденсаторы для работы в цепи переменного тока, которые имеют удобное крепление и плоские клеммы, для быстрой установки.

Если нужного номинала нет, то его можно получить параллельным соединением конденсаторов. Общая ёмкость будет равна сумме двух конденсаторов:

Собщ=С1+С2+…Сп

  1. То есть, если соединить два конденсатора по 35 мкФ, получим общую ёмкость 70 мкФ, напряжение при котором они смогут работать будет соответствовать их номинальному напряжению.
  2. Такая замена абсолютно равноценна одному конденсатору большей ёмкости.
  3. Если во время замены перепутались провода, то правильное подключение можно посмотреть по схеме на корпусе или здесь: Схема подключения конденсатора к компрессору

Типы конденсаторов

Для запуска мощных двигателей компрессоров применяют маслонаполненные неполярные конденсаторы.

Корпус внутри заполнен маслом для хорошей передачи тепла на поверхность корпуса. Корпус обычно металлический, аллюминиевый. 

  • Самые доступные конденсаторы такого типа CBB65.
  • Для запуска менее мощной нагрузки, например двигателей вентиляторов, используют сухие конденсаторы, корпус которых, обычно, пластмассовый.
  • Наиболее распространённые конденсаторы   этого типа CBB60, CBB61.
  • Клеммы для удобства соединения сдвоенные или счетверённые.

Замена электролитического конденсатора ⋆ diodov.net

При выполнении ремонта или модернизации электронного устройства часто требуется замена электролитического конденсатора вышедшего из строя.

Однако аналога со стопроцентным совпадением может не оказаться в наличие, но имеются другие накопители, имеющие некоторые отличия от оригинала.

В этой статье мы рассмотрим, на какие параметры следует ориентироваться, чтобы правильно выполнить замену электролитического конденсатора для любой случая, при этом не нарушить режим работы электронного устройства.

Электролитический конденсатор характеризуется тремя основными параметрами: ориентируясь на которые, достаточно просто правильно подобрать замену. К этим параметрам относятся допустимое напряжение, емкость и температура.

Однако, прежде чем перейти к рассмотрению указанных параметров, следует не забывать, что данный накопитель энергии является полярным, поэтому необходимо соблюдать полярность. Положительный вывод паяем к плюсу, а отрицательный – к минусу.

Чтобы не спутать выводы вдоль всего корпуса со стороны отрицательного вывода наносится знак минус «-», более подробно о маркировке написано здесь.

Замена электролитического конденсатора – основные правила

Чаще всего ремонт блока питания любого электронного устройства заключается в замене вздутого или высохшего электролитического конденсатора.

При такой неисправности достаточно выпаять вышедший из строя конденсатор и заменить его новым.

Однако довольно редко имеется в наличие аналогичный электролитический конденсатор, но во многих случаях его можно заменить другим, имеющим несколько отличительные параметры.

В первую очередь следует ориентироваться на напряжение. При отсутствии подходящего номинала подойдет конденсатор с большим напряжением. Например, если на корпусе оригинального конденсатора написано 35 В, то подойдет аналог с напряжением 50 В, 63 В, 100 В и т. д. – в сторону увеличения. Нельзя выполнять замену на аналог с более низким напряжением: 25 В, 16 В или 9 В. Иначе он взорвется.

Получить требуемое напряжение можно путем последовательного соединения нескольких накопителей, о чем более подробно с примерами расчетов рассказано здесь.

Следующий параметр – емкость. Как правило, в преобладающем большинстве случаев, электролитические конденсаторы, особенно большой емкости, применяются для сглаживания пульсаций выпрямленного напряжения: чем большая емкость, тем лучше сглаживаются пульсации. Поэтому, в случае отсутствия накопителя такой же емкости, его можно заменить аналогом большей емкости.

Если отсутствуют электролитические конденсаторы нужной емкости и достаточно места на печатной плате устройства, то вместо одного накопителя можно впаять несколько параллельно соединенных. При этом емкости их будут складываться, о чем подробно с примерами расчетов рассказано здесь.

Урок 2.3 — Конденсаторы

Конденсатор встречается в наборах Мастер Кит (да и вообще в электронных устройствах) почти так же часто, как и резистор. Поэтому важно хотя бы в общих чертах представлять его основные характеристики и принцип работы.

Принцип работы конденсатора

В простейшем варианте конструкция состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок. Чем больше отношение площади пластин к толщине диэлектрика – тем выше ёмкость конденсатора.

Чтобы избежать физического увеличения размеров конденсатора до огромных размеров, конденсаторы изготавливают многослойными: например, сворачивают ленты пластин и диэлектриков в рулон.

Так как любой конденсатор имеет диэлектрик, то он не способен проводить постоянный ток, но он может сохранять электрический заряд, приложенный к его обкладкам, и в нужный момент отдавать его. Это важное свойство

Давайте договоримся: радиодеталь мы называем конденсатором, а его физическую величину – ёмкостью. То есть правильно сказать так: «конденсатор имеет ёмкость 1 мкФ», но некорректно сказать: «замени на плате вон ту ёмкость». Вас, конечно, поймут, но лучше соблюдать «правила хорошего тона».

Электрическая ёмкость конденсатора – это главный его параметрЧем больше ёмкость конденсатора, тем больший заряд он может сохранить. Электрическая ёмкость конденсатора измеряется в Фарадах, обозначается F.

1 Фарад — очень большая ёмкость (земной шар имеет ёмкость менее 1Ф), поэтому для обозначения ёмкости в радиолюбительской практике используются следующие основные размерные величины — префиксы: µ (микро), n (нано) и p (пико):• 1 микроФарад — 10-6 (одна миллионная часть), т.е.

1000000µF = 1F• 1 наноФарад — 10-9 (одна миллиардная часть), т.е. 1000nF = 1µF

• p (пико) — 10-12 (одна триллионная часть), т.е. 1000pF = 1nF

Как и Ом, Фарад – это фамилия физика. Поэтому, как культурные люди, пишем прописную букву «Ф»: 10 пФ, 33 нФ, 470 мкФ.

Номинальное напряжение конденсатораРасстояние между пластинами конденсатора (особенно конденсатора большой ёмкости) очень мало, и достигает единиц микрометра. Если приложить к обкладкам конденсатора слишком высокое напряжение, слой диэлектрика может быть нарушен.

Поэтому каждый конденсатор имеет такой параметр, как номинальное напряжение. При эксплуатации напряжение на конденсаторе не должно превышать номинального. Но лучше, когда номинальное напряжение конденсатора несколько выше напряжения в схеме.

То есть, например, в схеме с напряжением 16В могут работать конденсаторы с номинальным напряжением 16В (в крайнем случае), 25В, 50В и выше. Но нельзя ставить в эту схему конденсатор с номинальным напряжением 10В.

Конденсатор может выйти из строя, причём часто это происходит с неприятным хлопком и выбросом едкого дыма.

Как правило, в радиолюбительских конструкциях для начинающих не используется напряжение питания выше 12В, а современные конденсаторы чаще всего имеют номинальное напряжение 16В и выше. Но помнить о номинальном напряжении конденсатора очень важно.

Типы конденсаторовО разнообразных конденсаторах можно написать много томов. Впрочем, это уже сделали некоторые другие авторы, поэтому я расскажу только самое необходимое: конденсаторы бывают неполярные и полярные (электролитические).

  • Неполярные конденсаторыНеполярные конденсаторы (в зависимости от типа диэлектрика подразделяются на бумажные, керамические, слюдяные…) могут устанавливаться в схему как угодно – в этом они похожи на резисторы.
  • Как правило, неполярные конденсаторы имеют относительно небольшую ёмкость: до 1 мкФ.

Маркировка неполярных конденсаторовНа корпус конденсатора нанесён код из трёх цифр. Первые две цифры определяют значение ёмкости в пикофарадах (пФ), а третья – количество нулей. Так, на изображённом ниже рисунке на конденсатор нанесён код 103. Определим его ёмкость:

10 пФ + (3 нуля) = 10000 пФ = 10 нФ = 0,01 мкФ.

Конденсаторы ёмкостью до 10 пФ маркируются по-особенному: символ «R» в их кодировке обозначает запятую. Теперь Вы можете определить ёмкость любого конденсатора. Приведённая ниже табличка поможет Вам проверить себя.

КодНоминалКодНоминалКодНоминал
1R01 пФ101100 пФ3323.3 нФ
2R22.2 пФ121120 пФ3623.6 нФ
3R33.3 пФ151150 пФ4724.7 нФ
4R74.7 пФ181180 пФ5625.6 нФ
5R15.1 пФ201200 пФ6826.8 нФ
5R65.6 пФ221220 пФ7527.5 нФ
6R86.8 пФ241240 пФ8228.2 нФ
7R57. 5 пФ271270 пФ9129.1 нФ
8R28.2 пФ301300 пФ10310 нФ
10010 пФ331330 пФ15315 нФ
12012 пФ361360 пФ22322 нФ
15015 пФ391390 пФ33333 нФ
16016 пФ431430 пФ47347 нФ
18018 пФ471470 пФ68368 нФ
20020 пФ511510 пФ1040.1 мкФ
22022 пФ561560 пФ1540.15 мкФ
24024 пФ621620 пФ2240.22 мкФ
27027 пФ681680 пФ3340. 33 мкФ
30030 пФ751750 пФ4740.47 мкФ
33033 пФ821820 пФ6840.68 мкФ
36036 пФ911910 пФ1051 мкФ
39039 пФ1021 нФ1551.5 мкФ
43043 пФ1221.2 нФ2252.2 мкФ
47047 пФ1321.3 нФ4754.7 мкФ
51051 пФ1521.5 нФ10610 мкФ
56056 пФ1821.8 нФ
68068 пФ2022 нФ
75075 пФ2222.2 нФ
82082 пФ2722.7 нФ
91091 пФ3023 нФ

Как правило, в радиолюбительских конструкциях допустима замена некоторых конденсаторов на близкие по номиналу. Например, вместо конденсатора 15 нФ набор может комплектоваться конденсатором 10 нФ или 22 нФ, и это не отразится на работе готовой конструкции. Керамические конденсаторы не имеют полярности и могут устанавливаться в любом положении выводов.

Некоторые мультиметры (кроме самых бюджетных) имеют функцию измерения ёмкости конденсаторов, и Вы можете воспользоваться этим способом.

Полярные (электролитические) конденсаторыЕсть два способа увеличения ёмкости конденсатора: либо увеличивать размер его пластин, либо уменьшать толщину диэлектрика. Чтобы минимизировать толщину диэлектрика, в конденсаторах большой ёмкости (выше нескольких микрофарад) применяется специальный диэлектрик в виде оксидной плёнки.

Этот диэлектрик нормально работает только при условии правильно приложенного напряжения на обкладках конденсатора. Если перепутать полярность напряжения, электролитический конденсатор может выйти из строя. Метка полярности всегда маркируется на корпусе конденсатора.

Это может быть либо значок «+», но чаще всего в современных конденсаторах полосой на корпусе маркируется вывод «минус». Другой, вспомогательный способ определения полярности: плюсовой вывод конденсатора длиннее, но ориентироваться на этот признак можно только до того, как выводы радиодетали обрезаны.

На печатной плате также присутствует метка полярности (как правило, значок «+»). Поэтому при установке электролитического конденсатора обязательно совмещайте метки полярности и на детали, и на печатной плате. Как правило, в радиолюбительских конструкциях допустима замена некоторых конденсаторов на близкие по номиналу.

Также допустима замена конденсатора на аналогичный с бОльшим значением допустимого рабочего напряжения. Например, вместо конденсатора 330 мкФ 25В набор можно применить конденсатор 470 мкФ 50В, и это не отразится на работе готовой конструкции.

Внешний вид электролитического конденсатора (правильно установленный на плату конденсатор)

Скачать урок в формате PDF

Как правильно заменить конденсатор на материнской плате

Всем привет, сегодня я покажу на своем примере, как можно быстро и правильно произвести замену вздутых конденсаторов на материнской плате компьютера своими руками.

Сразу предупрежу, замена конденсаторов своими руками требует определенных знаний и умений пользоваться таким инструментом как паяльник. В моем случае это китайская паяльная станция Lukey 702.

Моя паяльная станция

Если опыта в пользовании паяльника нет, то сто раз подумайте, прежде чем браться за замену конденсаторов.

На материнской плате компьютера, как правило, конденсаторы начинают выходить из строя через 3-4 года пользования им. Но бывают и исключения, в т.ч. брак. В современных реалиях это нормальное явление, поэтому будем менять их на новые.

Признаки неисправности конденсаторов в материнской плате компьютера

  1. При включении компьютер сначала включается, потом выключается. После трех-четырех раз включения он включается нормально, и грузится операционная система. После этого он работает без проблем, но только стоит его выключить и включить на следующий день, проблема опять повторяется.

    Эти признаки говорят о том, что возможно у вас высохли и вздулись конденсаторы на плате.

  2. Компьютер просто не включается. Возможно причиной не включения могут быть также конденсаторы, как на материнской плате, так и в блоке питания.
  3. При включении или работе компьютера часто появляется синий экран с указанием ошибки.

    Это также может быть причиной вздутия и неисправностей конденсаторов на материнской плате. Как правило это первичные признаки, когда конденсаторы только начинают вздуваться.

Начнем с внешнего осмотра, откройте боковую крышку системного блока и внимательно осмотрите материнскую плату.

Как правило визуально можно понять, что конденсаторы на материнской плате вздулись и требуют замены.

Вздутые конденсаторы на материнской платеЕще один пример вздутых конденсаторов

Постарайтесь осмотреть материнскую плату очень внимательно, т.к. если человек неопытен в данном вопросе, он не всегда с первого раза может выявить неисправный конденсатор. Далее, нам необходимо найти новые конденсаторы на замену.

Обычно есть два варианта, либо взять со старой материнской платы, либо купить в любом магазине радиодеталей, они совсем не дорогие.

Алгоритм простой, выпаиваете старые конденсаторы, смотрите номинал и покупаете новые, лучше взять с собой старые, чтобы показать продавцу (главное, необходимо помнить, что по вольтажу можно брать больше, но не меньше). Например, стояли 6.3 вольт 1500 мкф, на замену можно поставить 16 вольт 1500 мкф.

Конденсатор 6.3 В 1500 мкф

Опять же, если у вас или у ваших друзей есть старая материнская плата, можете выпаять и с нее. Ну вот, у нас все готово для перепайки, начнем замену конденсаторов на материнской плате своими руками.

Повторюсь, на всякий пожарный, замена конденсаторов на материнской плате своими руками требует определенных умений работы с паяльником, если же вы готовы, приступаем.

При замене конденсаторов нам потребуется следующее:

  • Паяльник
  • Канифоль
  • Припой
  • Зубочистки
  • Бензин очищенный (для удаления канифоли с платы)

Примерный набор для пайки конденсаторов

После того как мы выпаяли старый конденсатор, нужно прочистить отверстия для впаивания нового, иначе старый припой просто не даст его нормально вставить. Будем использовать для этого зубочистку или скрепку.

Аккуратно вставляем ее в отверстия и нагреваем паяльником с обратной стороны, чтобы вытолкнуть весь лишний припой.

Еще раз повторюсь, делать это нужно очень аккуратно, так как материнская плата многослойная и можно повредить дорожки внутри платы.

После прочистки отверстий вставляем конденсатор на место, обязательно соблюдая полярность.

Обычно, на материнской плате есть обозначения установки конденсаторов (закрашенная сторона это — минус), но лучше всего запомнить как был установлен старый.

Данное правило не относится к материнским платам ASUS, у них все наоборот. На самих конденсаторах также есть обозначения в виде полосы со знаком .

Полоса с минусом на конденсаторе

Конечная стадия нашего процесса, запаиваем конденсатор с обратной стороны платы. Затем обрезаем ножки конденсаторов.

Финальная стадия замены конденсаторов на материнской плате

Не забываем очистить плату от флюса или канифоли.

Ну вот и все, на этом наш ремонт завершен. Главное не бояться и аккуратно пробовать паять своими руками. Скажу вам по секрету, это очень увлекательный процесс.

Конденсаторы в БП?

Напряжение написанное на конденсаторе показывает по сути его запас прочности. Подадите более высокое — его пробьет. Вы просто увеличили «запас прочности» конденсаторам, и ничего более.

Если погуглите на тему блоков питания — ставить конденсаторы с запасом по напряжению рекомендуют практически все, единственное ограничение здесь — запас лучше делать разумным, т.к. конденсаторы бОльшего вольтажа, как правило, крупнее и дороже.

По поводу увеличения емкости — совет верен в отношении фильтров блоков питания, но не в остальных случаях (скажем, если вы значительно измените емкость конденсатора в кроссовере колонок, вы измените частоты среза и вероятно подпортите звук).

В традиционных трансформаторных блоках питания (с импульсными не знаком) конденсатор гасит пульсации, там с увеличением емкости увеличивается и подавление пульсаций, но при этом на старте значительно возрастает ток первичной зарядки конденсатора.

Сейчас вы подвергаете их определенному воздействию, которое немного выше номинальных показателей По идее, все должно работать и так, но я бы перестраховался Капитан, перелогиньтесь.

Китайцы в бп ставят 16В 1000мФ кондюки, потому что они дешевле, по сути если поставить на 25В 1000мФ ничего не случится, просто у конюков будет больше запас для пикового напряжения. К примеру стандартные 16В 1000мФ вздываются или взрываются иногда не только от пиковых напряжений, но и от температуры в бп. Я тоже ставлю вместо 16В кондюков 25В и бп живет еще дольше, чем до поломки.

Нравится 1 Комментировать

У каждой микросхемы есть определенный «запас прочности», иными словами- разность показателей, в пределах которых все составляющие схемы работают нормально (простой пример- лампочка «Ильича», расчитанная на 220-240В.).

Сейчас вы подвергаете их определенному воздействию, которое немного выше номинальных показателей (12.28 вместо 12 и 5. 13 вместо 5, хотя разумеется, что блок питания не выдает ровно 5 и ровно 12в). Основная характеристика конденсатора- это емкость. В Вашем случае она не изменилась.

По идее, все должно работать и так, но я бы перестраховался и сходил в магазин радиодеталей…

На материнской плате можно ставить электролитические конденсаторы меньшей емкости. Проверено. Я ставил вместо 3300 mkf 1800/ А с напряжением осторожнее. Дело в том, что конденсатор на 25 вольт при разрядке дает 25 вольт.

Если заменить конденсатор на 6,3 в на конд. 25 в, то возможен выход из строя материнки при разряде конденсатора при выключении компьютера. Хороше, если есть защита типа стабилитрона, варикапа… А если нет…

Однозначно — выход из строя материнки.

Конденсатор.Типы конденсаторов.

Типы конденсаторов

Конденсатор – один из самых распространённых радиоэлементов. Роль конденсатора в электронной схеме заключается в накоплении электрического заряда, разделения постоянной и переменной составляющей тока, фильтрации пульсирующего тока и многое другое.

Конструктивно конденсатор состоит из двух проводящих обкладок, изолированных диэлектриком. В зависимости от конструкции и назначения конденсатора диэлектриком может служить воздух, бумага, керамика, слюда.

Основными параметрами конденсаторов являются:

  • Номинальная ёмкость. Ёмкость измеряют в Фарадах (Ф). Ёмкость в 1 Фараду очень велика. К примеру, земной шар имеет ёмкость менее 1 Ф, а точнее около 710 мкф. Правда, тут надо понимать, что физики любят аналогии. Говоря про электрическую ёмкость земного шара, они имеют ввиду, что в качестве примера взят металлический шар размером с планету Земля и являющийся уединённым проводником. Это всего лишь аналогия. В технике существует электронный компонент, который обладает ёмкостью более 1 Фарады – это ионистор.

    В основном, в электронике и радиотехнике используются конденсаторы с ёмкостью равной миллионной доле фарады – микрофарада (1мкФ = 0,000001 Ф). Также находят применение конденсаторы с ёмкостями исчисляемыми десятками – сотнями нанофарад (1нФ = 0,000000001 Ф) и пикофарад (1пФ = 0,000000000001 Ф). Номинальную ёмкость указывают на корпусе конденсатора.

    Чтобы не запутаться в сокращениях (мкФ, нФ, пФ), и научиться переводить микрофарады в пикофарады, а нанофарады в микрофарады необходимо знать о сокращённой записи численных величин.

  • Номинальное напряжение. Это напряжение, при котором конденсатор выполняет свои функции. При превышении допустимого значения конденсатор будет пробит, то есть, превратится в обычный проводник. Диапазон допустимых значений рабочих напряжений конденсаторов лежит в пределах от нескольких вольт до единиц киловольт (1 киловольт – 1 000 вольт). Номинальное напряжение маркируют на корпусе конденсатора.

  • Допуск. Также как у резисторов и у конденсаторов есть допустимое отклонение величины его реальной ёмкости от той, что указана на его корпусе. Допуск обозначается в процентах. Допуск у конденсаторов может достигать 20 – 30%. В технике, где требуется особая точность номинальных значений ёмкости, применяются конденсаторы с малым допуском (1% и менее).

Три указанных параметра являются основными. Знание этих параметров достаточно, чтобы самостоятельно подбирать конденсаторы для изготовления самоделок и ремонта электроники.

Изображается конденсатор на принципиальных схемах так, как показано на рисунке.

Типы конденсаторов

Кроме обычных существуют ещё и электролитические конденсаторы. Емкость их намного больше, чем у обычных, следовательно, габариты также существенно больше. Отличительная особенность электролитических конденсаторов – полярность. Если обычные конденсаторы можно впаивать в схему не беспокоясь о полярности прикладываемого к конденсатору напряжения, то электролитический конденсатор необходимо включать в схему строго в соответствии с полярностью напряжения. У электролитических конденсаторов один вывод плюсовой, другой минусовой.

Обозначение электролитического конденсатора на схемах.

Также широкое применение получили подстроечные конденсаторы. Подстроечные конденсаторы необходимы в тех случаях, когда требуется точная подстройка ёмкости в электронной схеме. В таких конденсаторах подстройку ёмкости производят один раз или очень редко.

Обозначается так.

Наряду с подстроечными конденсаторами существуют и конденсаторы переменной ёмкости. В отличие от подстроечных, переменные конденсаторы служат для частой подстройки ёмкости. В простом (не цифровом) приёмнике настройка на радиостанцию как раз и осуществляется с помощью конденсатора переменной ёмкости.

Свойства конденсатора
  • Конденсатор не пропускает постоянный ток и является для него изолятором.

  • Для переменного тока конденсатор не является преградой. Сопротивление конденсатора (ёмкостное сопротивление) переменному току уменьшается с увеличением его ёмкости и частоты тока, и наоборот, увеличивается с уменьшением его ёмкости и частоты тока.

Свойство конденсатора оказывать разное сопротивление переменному току нашло широкое применение. Конденсаторы используют для фильтрации, отделения одних частот от других, отделения переменной составляющей от постоянной…

Вот так выглядят конденсаторы постоянной ёмкости.

Электролитический конденсатор. Длинный вывод – плюсовой, короткий – минусовой.

Планарный электролитический конденсатор. На корпусе указана номинальная ёмкость22 мкФ (22), номинальное напряжение16 Вольт (16V). Видно, что емкость обозначена только цифрами. Ёмкость электролитических конденсаторов указывается в микрофарадах.

Со стороны отрицательного вывода конденсатора на верхней части корпуса чёрный полукруг.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

Как правильно выбрать алюминиевый электролитический конденсатор

Благодаря высокой емкости на единицу объема и возможности их использования практически в любой электронной системе алюминиевые электролитические конденсаторы занимают особое место среди различных типов конденсаторов. Их можно использовать во многих приложениях, включая накопление энергии и фильтрацию нежелательных частот переменного тока. Благодаря своим высоким значениям емкости и низким значениям импеданса они часто используются в источниках питания, инверторах и преобразователях постоянного тока в постоянный.

Технология алюминиевых электролитических конденсаторов развивается в результате новых материалов и усовершенствований процессов, повышающих их надежность и прочность, что позволяет эксплуатировать их до 20 лет. При правильном выборе они являются важной частью большинства электрических конструкций. Но что такое алюминиевый электролитический конденсатор и как его правильно выбрать для своих проектов?

Что такое алюминиевый электролитический конденсатор?

Конденсаторы состоят из двух слоев электропроводящего материала (электродов), разделенных диэлектрическим материалом (или изолятором).Конденсаторы накапливают энергию в электрическом поле, создаваемом этим устройством, когда подается ток для зарядки конденсатора. В алюминиевом электролитическом конденсаторе электроды изготовлены из алюминиевой фольги. Между двумя алюминиевыми электродами находится токопроводящая жидкость, называемая электролитом. В результате электрохимической реакции оксидный слой (\ [Al_2O_3 \]) создается на одном из электродов (аноде), который служит диэлектриком в алюминиевом электролитическом конденсаторе.

Рисунок 1. Конструкция алюминиевого электролитического конденсатора. Изображение любезно предоставлено TDK.

Рисунок 2. Другой вид конструкции алюминиевого электролитического конденсатора. Изображение предоставлено TDK (PDF).

Электрические характеристики

Конструкция и материалы алюминиевых электролитических конденсаторов придают им уникальные электрические характеристики, что делает их идеальными для многих приложений.

Характеристики Описание
Большая емкость Алюминиевые электролитические конденсаторы обладают большой емкостью на единицу объема при заданном номинальном напряжении.
Номинальное высокое напряжение Алюминиевые электролитические конденсаторы могут использоваться в самых разных областях.
Накопитель энергии Алюминиевые электролитические конденсаторы имеют большую емкость и высокое напряжение, что означает возможность аккумулирования большой энергии.

Преимущества алюминиевых электролитических конденсаторов

Самым большим преимуществом алюминиевых электролитических конденсаторов является то, что электролиты обладают высокой объемной эффективностью, т. Е. Более высокой емкостью на единицу объема, чем любой обычно доступный конденсатор. Алюминиевые электролиты часто являются единственно возможным решением для определенных применений. При правильном выборе и проектировании в схему это преимущество может быть максимизировано.

Еще одним преимуществом алюминиевых электролитических конденсаторов является наличие высокого номинального напряжения. 2 \]

Уравнение 1. Энергия, запасенная в конденсаторе (U = джоули, C = емкость, V = напряжение)

Энергия, запасенная в конденсаторе, увеличивается линейно с увеличением емкости и экспоненциально с увеличением напряжения.

Выбор конденсатора для силовых приложений

Понимание основ алюминиевых электролитов — первый шаг к выбору правильного электролита для силовой электроники. Вот ключевые особенности дизайна:

Номинальное напряжение / снижение

Номинальное напряжение конденсатора обеспечивает безопасный рабочий диапазон конденсатора.Работа в этих пределах предотвращает их повреждение и продлевает срок их службы. Алюминиевые электролитические конденсаторы обычно обеспечивают объемную емкость для шин напряжения питания.

Рисунок 3. Пример схемы преобразователя частоты. Изображение любезно предоставлено TDK.

Поскольку алюминиевые электролитические конденсаторы поляризованы, они используются только в приложениях с постоянным напряжением — после выпрямления постоянного тока в схеме примера. Конденсатор следует выбирать с учетом условий нагрузки приложения, т. Е. Рабочего напряжения, импульсных и переходных напряжений, тока пульсаций, температуры окружающей среды, условий охлаждения и ожидаемого срока службы. Не рекомендуется выбирать номинальное напряжение намного выше, чем требуется, поскольку более высокие значения напряжения обычно совпадают с более высоким ESR. В приложениях с высоким пульсационным током, подобных этому, более высокое ESR вызовет серьезные проблемы.

Сопротивление эквивалентной серии

Инженеры узнают об идеальных конденсаторах на раннем этапе обучения, но реальные конденсаторы не идеальны.Реальные конденсаторы можно смоделировать как идеальный конденсатор с несколькими паразитными элементами вокруг него.

Рисунок 4. Эквивалентная схема реального конденсатора. Изображение любезно предоставлено TDK.

На этом изображении \ [C_S \] является идеальным емкостным компонентом эквивалентной последовательной схемы. Измеренная емкость будет зависеть как от температуры, так и от частоты сигнала, используемого для измерения. ESR — это резистивный компонент эквивалентной последовательной цепи.ESR зависит как от частоты, так и от температуры и связан с коэффициентом рассеяния следующим уравнением: \ [ESR = tan \ delta / \ omega * C_S \], где tan δ — коэффициент рассеяния, а ω — применяемая частота. Наконец, ESL является индуктивным компонентом эквивалентной схемы и является результатом внутренней конструкции конденсатора и конфигурации его выводов или выводов.

Для источника питания наибольшее беспокойство вызывает эквивалентное последовательное сопротивление (ESR). Часть переменного тока тока, воспринимаемого конденсатором, или пульсирующий ток, вызывает рассеивание мощности за счет ESR в конденсаторе.Этот эффект зависит от частоты пульсаций тока. Чем выше ESR, тем больше мощности рассеивается внутри конденсатора, что означает повышенное тепловыделение и сокращение срока службы конденсатора. Нет необходимости выбирать минимально возможное значение ESR при указании конденсатора для конструкции источника питания, но рекомендуется выбирать номинальное значение ESR, которое работает с током пульсаций в конструкции.

Пульсации тока

Термин «пульсирующий ток» используется для обозначения среднеквадратичного значения переменного тока, протекающего через устройство в результате любого пульсирующего или пульсирующего напряжения.Потери мощности, возникающие из-за пульсаций тока, вызывают самонагрев конденсатора. Максимально допустимое значение пульсирующего тока зависит от температуры окружающей среды, ESR на частоте сигнала переменного тока, теплового сопротивления, которое в основном определяется площадью поверхности конденсатора (т. Е. Площадь рассеивания тепла), и применяемого охлаждения. . Кроме того, он ограничен возможностью пульсации контактных элементов по току.

Рисунок 5. Выпрямленное напряжение, сглаженное емкостью. Изображение любезно предоставлено Spinningspark [CC BY-SA 3.0].

Номинальные пульсирующий ток (\ [I_ {переменного ток, R}, \]) обычно указываются в верхней температуре категории и опорной частоте.

Поскольку термическое напряжение оказывает решающее влияние на ожидаемый срок службы конденсатора, тепло, выделяемое током пульсаций, является важным фактором, влияющим на срок его службы. Эти тепловые соображения подразумевают, что при определенных обстоятельствах может потребоваться выбрать конденсатор с более высоким напряжением или номинальной емкостью, чем обычно требуется для соответствующего приложения.

Скачки, переходные процессы и обратные напряжения
Конденсаторы

чувствительны к переходным процессам, перенапряжениям и обратным напряжениям. Типичные алюминиевые электролитические конденсаторы могут выдерживать скачки напряжения на 10 процентов выше их номинальных значений в течение коротких периодов времени. Некоторые типы конденсаторов могут выдерживать импульсы напряжения, превышающие импульсное напряжение. Поскольку требования в значительной степени различаются в зависимости от конкретного применения, рекомендуется выбирать конструкцию конденсатора в соответствии с техническими условиями применения.Всегда рекомендуется, чтобы инженеры понимали возможные переходные процессы и перенапряжения для конденсаторов в их конструкциях.

Алюминиевые электролиты — это поляризованные конденсаторы, которые могут получить катастрофические повреждения от обратных напряжений. При необходимости следует предотвратить появление напряжений противоположной полярности, подключив диод. Обратное напряжение ≤1,5 ​​В допустимо в течение менее одной секунды, что делает диодную защиту жизнеспособной. Алюминиевые электролиты не выдерживают обратного напряжения даже на уровне ≤1.5 В, непрерывная или повторяющаяся работа.

Охлаждение

Значения срока службы, указанные в наших технических паспортах, применимы к алюминиевым электролитическим конденсаторам с естественным охлаждением (т. Е. Тепло, выделяемое в обмотке, рассеивается через корпус). Можно увеличить допустимый пульсирующий ток и / или продлить срок службы с помощью дополнительных мер охлаждения (например, радиатора или принудительной вентиляции).

Поскольку через основание корпуса рассеивается большое количество тепла, радиатор, подключенный к основанию конденсатора, обеспечивает наиболее эффективное охлаждение.TDK предлагает специально разработанные версии высоковольтных конденсаторов с винтовыми или защелкивающимися клеммами, которые могут быть установлены на радиаторе для обеспечения оптимальной теплоотдачи от зоны тепловыделения через основание корпуса радиатора.

Рисунок 6. Алюминиевый электролитический конденсатор с радиатором. Изображение любезно предоставлено TDK.

Требуемый срок службы

Последнее ключевое соображение при проектировании — это требуемый срок службы конденсатора при проектировании.Чтобы инженер знал, что его конструкция прослужит долго, необходимо понимать все факторы, которые уже обсуждались, а также требования к сроку службы.

Существует множество факторов и нюансов, но инженерам не нужно становиться глубокими специалистами по алюминиевым электролитическим конденсаторам, чтобы иметь возможность их правильно использовать. TDK предоставляет на своем веб-сайте веб-приложение AlCap Useful Life Calculation Tool, которое помогает инженерам рассчитывать срок службы их конденсаторов в конкретных проектных условиях.

Рис. 7. Инструмент расчета срока службы AlCap TDK.

Собираем все вместе: пошаговое руководство по выбору с использованием AlCap Useful Life Calculation Tool

Шаг 1: Определите требуемую емкость.

Шаг 2: Определите ожидаемую рабочую температуру окружающей среды.

Шаг 3: Определите рабочее напряжение постоянного тока, подаваемое на конденсатор.

Шаг 4: Ограничьте пространство, доступное для конденсатора (если доступное пространство вызывает беспокойство).

Шаг 5: Рассчитайте ожидаемый ток пульсаций на конденсаторе в соответствии с конструкцией.

Шаг 6: Выберите несколько возможных конденсаторов. Выберите минимум, необходимый для номинальной емкости, температуры и напряжения (шаги 1, 2 и 3).

Шаг 7: Рассчитайте пульсирующий ток для лучших кандидатов. Рассчитайте, используя ожидаемый пульсирующий ток и ESR возможных конденсаторов.

Шаг 8: Определите требуемый срок службы конденсатора в соответствии с проектным приложением.

Шаг 9: Подсчитайте срок полезного использования лучших кандидатов. Используйте удобный онлайн-калькулятор TDK, который позволяет ввести 15 условий нагрузки, которые предоставят точную информацию о сроке службы.

Шаг 10: Определите, требуется ли для конденсатора радиатор, принудительное воздушное или естественное охлаждение, используя инструмент AlCap Useful Life Calculation для моделирования выходной мощности.

Шаг 11: Выбираем лучшего кандидата на дизайн.

Отраслевые статьи — это форма контента, позволяющая отраслевым партнерам делиться полезными новостями, сообщениями и технологиями с читателями All About Circuits, что не подходит для редакционного контента. Все отраслевые статьи подчиняются строгим редакционным правилам с целью предложить читателям полезные новости, технические знания или истории. Точки зрения и мнения, выраженные в отраслевых статьях, принадлежат партнеру, а не обязательно All About Circuits или ее авторам.

Выбор номинального напряжения конденсаторов

В целом, номинальное напряжение конденсатора составляет максимум, он может выдерживать и при этом оставаться в пределах спецификаций. Неполяризованные колпачки, как керамические, могут принимать любое напряжение + — номинальное значение напряжения. Поляризованные колпачки, такие как электролитические и танталовые, могут принимать любое напряжение от 0 до заданного значения напряжения.

Тем не менее, с разными типами крышек происходят разные вещи, когда их напряжение приближается к максимальному. У электролитов срок службы сокращается.Теоретически у уважаемого производителя номинальный срок службы указан при максимальном напряжении и температуре, если не указано иное. Таким образом, можно сказать, что срок службы увеличивается, если вы используете колпачок ниже его номинального максимального напряжения. Двумя основными факторами напряжения электролитических крышек являются напряжение и температура. Сильный ток также может повредить им, но это связано с нагревом, поэтому на самом деле это проблема температуры.

Керамика имеет разные свойства. Напряжение не сильно влияет на срок службы многослойных SMD-конденсаторов, если, конечно, вы не превышаете спецификации.Однако некоторые керамические изделия не накапливают заряд линейно в зависимости от приложенного электрического поля. Они удерживают меньший дополнительный заряд при одинаковом приращении напряжения при высоком напряжении, чем при низком напряжении. Это означает, что кажущаяся емкость уменьшается с увеличением напряжения. Дешевая керамика, особенно та, в названии которой есть буква «Y» и некоторые другие, демонстрируют этот эффект сильнее, чем другие. Если вы просто игнорируете цифровой чип, это не имеет большого значения. Однако, если колпачок используется в аналоговом фильтре, то это, вероятно, имеет значение, и вы обычно хотите придерживаться керамики с буквой «X» в их названии и внимательно просматривать техническое описание.

Также есть проблемы со слишком низким напряжением, особенно с электролитами. Они работают на тонком оксидном слое алюминия. Это может ухудшиться, если на нем нет заряда.

Итак, чтобы наконец дать вам конкретный ответ, если вы собираетесь использовать электролитические колпачки, постарайтесь установить их на 3/4 или 2/3 их номинального напряжения. Вполне нормально иметь периодические всплески до максимума, но никогда не превышайте его. Для них тоже нормально быть выключенными, но лучше, чтобы они годами не разряжались полностью.

Стабилизатор напряжения

— Как мне решить, какой конденсатор использовать в цепи?

В случае 7805, который безусловно стабилен, тип и номинал конденсаторов не очень важны — как сказано в примечании, вы можете полностью их не использовать, и он будет «работать» и не будет колебаться. Он будет работать лучше с указанными минимальными емкостями и будет доволен гораздо большими конденсаторами ( 47 мкФ на входе и 1 мкФ-10 мкФ на выходе — особенно керамические конденсаторы на выходе — всегда хорошо с 78xx).Однако, если предположить, что это плохая привычка, поскольку большинство современных регуляторов не так снисходительны.

Тип не так важен, как значение, номинальное напряжение и ESR. Как правило, более низкое ESR — это хорошо, но некоторые старые стабилизаторы LDO (с низким падением напряжения) не переносят слишком плохие конденсаторы или слишком хорошие и могут колебаться. Используйте слишком низкое значение, и они могут колебаться. Используйте слишком низкое номинальное напряжение, и они могут выйти из строя раньше времени. Обычно нет никаких штрафов (кроме стоимости и размера) за использование более высокого номинального напряжения, чем необходимо, или за использование несколько большего, чем необходимо, значения емкости (часто допуски электролитических крышек составляют -20 / + 80%, поэтому они могут быть больше чем отмечен в любом случае).

Если у вас быстрая логика и тому подобное, вы захотите использовать керамический конденсатор (с его низким ESR) или электролитический с низким импедансом, возможно, параллельно с более низким керамическим конденсатором. ESR входного конденсатора обычно не слишком важен для линейных регуляторов, но чем ниже, тем лучше.

В некоторых случаях вам может действительно потребоваться ухудшить керамический (выходной) конденсатор, добавив последовательно резистор сопротивлением около одного или трех Ом, чтобы стабилизатор оставался довольным!

В схеме, которую вы показываете, стабилизатор будет стабильным и будет работать с конденсаторами от 0 до тысяч мкФ на входе или выходе (0. 33 электролитических или 0,1 керамических или больше на входе рекомендуется, если вы находитесь далеко от крышки входного фильтра). Если у вас есть микроконтроллер или логика на выходе, требуются конденсаторы 0,1 мкФ и / или 1 мкФ на выходе рядом с нагрузками.

В первый раз, когда вы берете новое техническое описание регулятора, внимательно его прочтите и выполните поиск по словам «конденсатор» и «стабильность», чтобы убедиться, что вы ничего не пропустили. Внимательно посмотрите на любые связанные графики. Например, 7905 (отрицательный линейный стабилизатор без LDO 5 В) требует минимальной емкости на выходе для стабильности.

Выбор пленочных или электролитических конденсаторов для цепей преобразования мощности

Благодаря низкому эквивалентному последовательному сопротивлению (ESR), обеспечивающему хорошую обработку пульсаций тока, а также высоким номинальным импульсным напряжениям и самовосстановлению, пленочные конденсаторы являются сильными кандидатами. для многих задач по кондиционированию энергии в ключевых приложениях, таких как электромобили, возобновляемые источники энергии и промышленные приводы. Они особенно подходят для сценариев, в которых не требуется задержка (или прохождение), например, в случае сбоя или между пиками пульсаций линейной частоты, а также там, где есть необходимость в передаче или приеме больших высокочастотных сигналов. пульсации тока с высокой надежностью и низкими потерями.

Пленочные конденсаторы

также отлично подходят для приложений, работающих с высокими напряжениями на шине постоянного тока, чтобы минимизировать омические потери. Поскольку алюминиевые электролитические конденсаторы доступны только с номиналами до 550 В, приложения, работающие с более высокими напряжениями, требуют последовательного подключения нескольких устройств. Затем возникает необходимость предотвратить дисбаланс напряжений либо путем выбора конденсаторов с согласованными значениями, что дорого и требует много времени, либо путем добавления резисторов для выравнивания напряжения, которые приводят к дополнительным потерям энергии и стоимости спецификации.

С другой стороны, алюминиевый электролит остается сильным выбором, когда первоочередной задачей является чистая плотность накопления энергии (джоуль / см 3 ). Одним из примеров являются обычные автономные источники питания, где для поддержания выходного напряжения постоянного тока в случае отключения электроэнергии без резервного аккумулятора требуется экономичное накопление энергии. Подходящее снижение характеристик может снизить срок службы и проблемы надежности, часто связанные с алюминиевыми электролитами.

Однако верно, что алюминиево-электролитические конденсаторы могут выдерживать перенапряжения только около 20% до того, как произойдет повреждение, тогда как пленочные конденсаторы могут выдерживать воздействие напряжений, примерно в два раза превышающих их номинальные, в течение коротких периодов.Самовосстановление обеспечивает более безопасную реакцию на периодические нагрузки, которые обычно встречаются в реальных приложениях.

Кроме того, пленочные конденсаторы упрощают подключение и монтаж, они неполяризованы и, следовательно, невосприимчивы к ошибкам обратного подключения. Их часто упаковывают в изолированные, эффективные по объему прямоугольные «коробчатые» корпуса. Доступны различные типы электрических соединений, такие как винтовые клеммы, проушины, «фастоны» или шины.

В таблице 1 сравниваются свойства широко используемых типов пленочных конденсаторов.Типы полиэфиров используются при низких напряжениях, в то время как полипропилен обычно демонстрирует самые низкие потери и самую высокую надежность при нагрузках благодаря низкому коэффициенту рассеяния (DF) и высокому диэлектрическому пробою на единицу толщины. DF также относительно стабилен при изменении температуры и частоты. Также доступен сегментированный высококристаллический металлизированный полипропилен, обладающий плотностью энергии, сравнимой с плотностью алюминиевых электролитов.

Таблица 1. Характеристики распространенных типов пленочных конденсаторов.(Источник: Википедия: пленочный конденсатор)

Выбор подходящего конденсатора

Анализ некоторых распространенных схем преобразования мощности может показать, как выбор конденсаторной технологии сильно влияет на размер, вес и стоимость, в зависимости от того, нужна ли емкость для хранения энергии или для обработки пульсаций или шума.

Например, сравнение электролитических и пленочных конденсаторов, используемых в качестве объемной емкости для автономного преобразователя мощностью 1 кВт, наглядно демонстрирует различия между свойствами этих двух типов.Преобразователь, как показано на рис. , рис. 1 , оснащен входным каскадом с коррекцией коэффициента мощности и имеет номинальное напряжение на шине постоянного тока (Vn) 400 В.

1. Емкость в качестве накопителя энергии при перебоях в подаче электроэнергии.

Предположим, что КПД составляет 90%, а падение напряжения (Vd) 300 В, ниже которого выходное регулирование теряется. Если происходит сбой, конденсатор большой емкости C1 подает энергию для поддержания постоянной выходной мощности, когда напряжение на шине падает с 400 В до 300 В.Мы можем рассчитать значение C1, необходимое для обеспечения 20-миллисекундного пробега до того, как напряжение упадет ниже 300 В:

Алюминиево-электролитический конденсатор емкостью 680 мкФ, 450 В из серии TDK-EPCOS B43508 в корпусе диаметром 35 мм × 55 мм соответствует требованиям с общим объемом 53 см 3 (около трех кубических дюймов). Напротив, решение с использованием пленочных конденсаторов будет непрактично большим: может потребоваться параллельное подключение до 15 пленочных конденсаторов TDK-EPCOS B32678, в результате чего общий объем составит 1500 см 3 (91 кубический дюйм).

Выбор резко изменился бы, если бы конденсатор был нужен только для управления пульсациями напряжения в линии постоянного тока, например, в трансмиссии электромобилей. Напряжение на шине может быть 400 В, как и раньше, но питаться от аккумулятора, поэтому нет необходимости в прохождении через него. Было бы реалистично попытаться ограничить пульсации в пределах, скажем, 4 В (среднеквадратичное значение), в то время как преобразователь, расположенный ниже по потоку, потребляет 80-А действующий импульсный ток при частоте переключения 20 кГц. Требуемая емкость:

Электролитический конденсатор на 180 мкФ, 450 В из серии TDK-EPCOS B43508 имеет номинальный ток пульсации около 3.5 А среднеквадратичное значение при 60 ° C, включая частотную коррекцию. Для работы с током 80 А потребуется 23 конденсатора, подключенных параллельно, что дает ненужную большую емкость в 4140 мкФ и общий объем около 1200 см 3 (73 кубических дюйма). Это согласуется с практическим правилом 20 мА / мкФ для номинальных значений пульсаций тока электролитических конденсаторов.

Используя пленочные конденсаторы серии TDK-EPCOS B32678, всего четыре параллельно подключенных устройства дают номинальный ток пульсации 132 А среднеквадратичного значения в объеме 402 см 3 (24,5 кубических дюйма).Более того, если ожидается, что температура окружающей среды останется ниже 70 ° C, можно выбрать конденсаторы в еще меньшем размере корпуса.

Есть и другие причины, по которым пленочные конденсаторы являются лучшим выбором. Чрезмерная емкость параллельных электролитов может вызвать такие проблемы, как управление энергией в пусковом токе. Кроме того, пленочные типы гораздо более устойчивы в случае переходных перенапряжений в цепи постоянного тока, которые часто встречаются в приложениях с легкой тягой, таких как электромобили.

Аналогичный анализ может быть применим для таких приложений, как системы ИБП, кондиционирование энергии в ветряных или солнечных генераторах, инверторы, подключенные к общей сети, и сварочные аппараты.

Фильм как первый выбор

Относительная стоимость пленочных или электролитических конденсаторов может быть проанализирована с точки зрения накопления в больших объемах или с точки зрения устойчивости к колебаниям. Цифры, опубликованные в 2013 году, сравнивают типичные затраты на шину постоянного тока, питаемую от выпрямленного источника переменного тока 440 В (Таблица 2) .

Таблица 2.Сравнение стоимости пленочных и электролитических конденсаторов.

С учетом этого анализа пленочные конденсаторы являются отличным выбором для развязки, демпфирования переключателя и таких приложений фильтрации, как подавление электромагнитных помех или фильтрация на выходе инвертора.

Разделительный конденсатор, помещенный на шину постоянного тока инвертора или преобразователя, обеспечивает путь с низкой индуктивностью для циркуляции высокочастотных токов. Практическое правило — использовать около 1 мкФ на 100 А коммутируемого тока. Стоит отметить, что соединения с конденсатором должны быть как можно короче, чтобы избежать возникновения переходных напряжений.При большом токе и высокой частоте возможны изменения до 1000 А / мкс. Учитывая, что дорожки на печатной плате могут иметь индуктивность около 1 нГн / мм, каждый миллиметр может соответствовать переходному процессу 1 В в соответствии с:

В схеме переключения-демпфирования конденсатор подключается последовательно с комбинацией резистор / диод и подключается к переключателю питания — обычно IGBT или MOSFET — для управления dV / dt (рис. 2) . Демпфер замедляет звон, контролирует электромагнитные помехи и предотвращает ложное включение / выключение.Демпферная емкость обычно выбирается примерно в два раза больше суммы выходной емкости переключателя и монтажной емкости. Затем выбирается значение сопротивления для критического гашения любого звона.

2. Переключатель демпфера IGBT или MOSFET.

Подавление электромагнитных помех

Пленочные конденсаторы

также идеальны в качестве конденсаторов X и Y для уменьшения дифференциального и синфазного шума, соответственно (рис. 3) , используя их возможности самовосстановления и переходных перенапряжений.Конденсаторы класса безопасности X1 (4 кВ) или X2 (2,5 кВ) подключаются к линиям электропередачи и обычно представляют собой полипропиленовые конденсаторы со значением емкости в микрофарадах, если это необходимо для соответствия применимым стандартам ЭМС.

3. Конденсаторы X и Y для подавления электромагнитных помех.

Конденсаторы

Y с низкой индуктивностью подключения подключаются в положениях «фаза-земля». На рис. 3 конденсаторы Y1 или Y2, рассчитанные на переходные процессы 8 кВ и 5 кВ, соответственно, подключены в положениях «линия-земля», как показано.Соображения по току утечки ограничивают величину допустимой емкости. Хотя низкая индуктивность подключения пленочных конденсаторов помогает поддерживать высокий собственный резонанс, внешние подключения к системе заземления также должны быть короткими.

Фильтрация выхода инвертора

Неполяризованные пленочные конденсаторы в сочетании с последовательными катушками индуктивности, часто в одном модуле, создают фильтры нижних частот для ослабления высокочастотных гармоник на выходе переменного тока приводов и инверторов (рис.4) . Они все чаще используются для соответствия системным требованиям по ЭМС и снижения нагрузки на кабели и двигатели, связанной с dV / dt, особенно когда нагрузка находится далеко от приводного устройства.

4. Пленочные конденсаторы используются для фильтрации ЭМС моторных приводов.

Заключение

Знание относительной прочности электролитических и пленочных конденсаторов для приложений преобразования энергии может помочь разработчикам сделать правильный выбор для оптимального общего размера, веса и стоимости материалов. Их можно резюмировать следующим образом:

Конденсаторы электролитические:

  • Более высокая плотность накопленной энергии (джоуль / см 3 )
  • Снижение затрат на объемную емкость для «прохода» напряжения на шине постоянного тока
  • Поддерживать номинальный ток пульсаций при более высоких температурах

Пленочные конденсаторы:

  • Более низкое СОЭ для превосходной обработки пульсаций
  • Более высокие значения импульсного напряжения
  • Самовосстановление повышает надежность и срок службы системы

Руди Рамос — менеджер проекта по маркетингу технического контента в Mouser Electronics.

Как правильно выбрать конденсаторы

А конденсатор везде. В источниках питания, светодиодном освещении, в коммерческой электронике, при обработке сигналов и т. Д. Вам понадобится конденсатор. Какова его конкретная роль в основном? Конденсатор выполняет несколько функций. Это устранит проблемы с шумом в цепи, работая как фильтр. Это основная часть в фильтрах низких и высоких частот, полосовых, полосовых и т. Д. Также очень важно при выпрямлении получить постоянное постоянное напряжение.В источниках питания конденсатор действует как накопитель энергии. Много приложений для этой простой электронной части. Я больше не буду здесь обсуждать, из чего состоит конденсатор, а просто сосредоточусь на том, как выбрать конденсаторы.

Как выбрать конденсатор — важные факторы

При выборе конденсатора для вашей схемы необходимо учитывать важные параметры. Либо вы хотите перейти на микросхему, либо на сквозную. Либо пленка, либо электролитическая и тд.Давайте обсудим здесь все соображения.

1. Как выбрать конденсатор

Емкость

Емкость — это электрическое свойство конденсатора. Таким образом, это вопрос номер один при выборе конденсатора. Какая емкость вам нужна? Что ж, это зависит от вашего приложения. Если вы собираетесь фильтровать выходное выпрямленное напряжение, то вам точно понадобится большая емкость. Однако, если конденсатор предназначен только для фильтрации шума сигнала в цепи небольшого сигнала, тогда подойдет малая емкость от пико до нанофарад.Итак, знайте свое приложение.

Предположим, что приложение действительно предназначено для фильтрации выпрямленного напряжения, тогда вам потребуется большая емкость в сотни микрофарад. Вы можете использовать метод проб и ошибок, пока пульсации напряжения не будут в пределах требований. Или вы можете провести расчеты для начала.

Для моста и двухполупериодного выпрямителя требуемую емкость можно вычислить, как показано ниже.

Cmin = ток нагрузки / (пульсация напряжения X частота)

Где;

Cmin — минимально необходимая емкость

Ток нагрузки — это просто нагрузка выпрямителя

Пульсации напряжения — это колебания напряжения от пика до пика при измерении на выходе выпрямителя

Частота — для мостового и двухполупериодного выпрямителей это удвоенная частота сети.

Пример:

Схема ниже представляет собой мостовой выпрямитель с входным напряжением 120 В среднеквадратичного значения при 60 Гц, током нагрузки 2 А и требованием пульсации напряжения 43 В от пика к пику. Мы оценим, какой должна быть минимальная емкость, необходимая для C1.

Схема мостового выпрямителя

Cmin = ток нагрузки / (пульсация напряжения X частота)

Cmin = 2A / (43 В X 2 X 60 Гц) = 387 мкФ

На основе моделирования, приведенного ниже, размах пульсаций напряжения при использовании 387 мкФ составляет 35.5В. Это близко к 43В. Поскольку результатом вычислений является минимальная емкость, при выборе емкости с более высоким значением пульсационное напряжение будет еще больше уменьшаться.

2. Допуск

— также фактор при выборе конденсатора

Помимо емкости, еще одна вещь, которую следует учитывать при выборе конденсаторов, — это допуск. Если ваше приложение очень критично, рассмотрите очень маленький допуск. Конденсаторы имеют несколько вариантов допуска, например 5%, 10% и 20%.Это ваш призыв. В большинстве случаев более высокий допуск дешевле, чем деталь с более низким допуском. Вы всегда можете использовать деталь с допуском 20% и просто добавить больше полей в свой дизайн.

3. Как выбрать конденсатор

Номинальное напряжение

Конденсатор будет поврежден из-за напряжения. Таким образом, необходимо учитывать напряжение при выборе конденсатора. Вам необходимо знать уровень напряжения, на котором будет установлен конденсатор. Конденсатор в большинстве случаев устанавливается параллельно цепи, устройству или подсхеме.Хотя случаев последовательной установки конденсатора немного. В своих конструкциях я не допускаю напряжения более 75% . Это означает, что если фактическое напряжение цепи составляет 10 В, минимальное напряжение конденсатора, которое я выберу, составляет 13,33 В (10 В / 0,75). Однако такого напряжения нет. Итак, я перейду на следующий более высокий уровень, то есть на 16 В. Можете ли вы использовать 20 В, 25 В или даже выше? Ответ положительный. Это зависит от вашего бюджета, потому что чем выше напряжение, тем дороже конденсатор. Это также будет зависеть от требований к физическому размеру.Физический размер конденсатора в большинстве случаев прямо пропорционален номинальному напряжению.

Например, в приведенном выше примере схемы максимальный уровень напряжения на конденсаторе — это пиковый уровень 120 В среднеквадратичного значения, который составляет около 170 В (1,41 X 120 В). Итак, номинальное напряжение конденсатора должно быть 226,67 В (170 / 0,75). И я выберу стандартное значение рядом с этим.

4. Выбор конденсатора

Номинальный ток — знайте пульсирующий ток

Если вы не любитель электроники и не работаете в поле какое-то время, возможно, вы не знакомы с термином пульсирующий ток.Это термин, обозначающий ток, который проходит через конденсатор. В идеальном случае нет тока, который будет течь к конденсатору, когда он установлен на линии постоянного напряжения. Однако, если фактическое напряжение на конденсаторе не является чистым постоянным током, например, есть небольшие колебания напряжения, это приведет к пульсации тока. Для схемы с низким энергопотреблением и колебаниями напряжения очень незначительно, вам не следует беспокоиться об этом номинальном токе пульсаций.

Однако для конденсаторов, устанавливаемых для фильтрации пульсирующего постоянного тока от выпрямителя, ток пульсаций является критическим.Чем выше нагрузка, тем выше ток пульсации. Итак, как выбрать конденсаторы для этого приложения? Для выпрямления в большинстве случаев требуется большая емкость, чтобы получить напряжение, близкое к прямолинейному. Таким образом, первый вариант — рассмотреть электролитический конденсатор. В некоторых приложениях, где пульсации тока очень высоки, электролитический конденсатор больше не будет работать, так как его пульсационный ток меньше. В этом случае выбираются пленочные конденсаторы, так как они имеют очень высокий номинальный ток пульсации.Однако недостатком является то, что емкость ограничена несколькими микрофарадами, поэтому требуется большее их количество параллельно. Рассматривая приведенную ниже схему выпрямителя, конденсатор фильтра 330 мкФ и нагрузку 2 А от источника переменного тока 120 В среднеквадратического значения при 60 Гц. Это то же самое, что и приведенная выше схема, но перерисовано и смоделировано в LTspice. LTspice — это бесплатный инструмент для моделирования схем от Linear Technology. Если вы хотите узнать, как выполнять моделирование на LTspice, прочитайте статью «Учебники по моделированию цепи LTSpice для начинающих».

Смоделированный пульсирующий ток равен 3,4592 A .

Полноволновой выпрямитель

Если вы не разбираетесь в моделировании, вы можете оценить фактический ток пульсаций, используя приведенное ниже уравнение.

Iripple = C X dV X Частота

Где;

Iripple — фактическая пульсация тока, протекающего через конденсатор

С — емкость в цепи

dV — это изменение входного напряжения от нуля до пика

Частота — это частота переменного напряжения (не частота выпрямленного сигнала)

Сделаем расчет по вышеперечисленным данным:

Iripple = C X dV X Частота

Iripple = 330 мкФ X (170 В-0 В) X 60 Гц = 3.366A

Вычисленное значение очень близко к результату моделирования. Затем я буду рассматривать здесь максимальное напряжение тока 75%. Таким образом, выбранный конденсатор должен иметь номинальный ток пульсации не менее 4,5 A (3,366 A / 0,75).

5.

Учитывайте рабочую температуру при выборе конденсаторов

Также необходимо учитывать факторы окружающей среды при выборе конденсаторов. Если ваш продукт будет подвергаться воздействию температуры окружающей среды 100 ° C, не используйте конденсатор, рассчитанный только на 85 ° C.Аналогичным образом, если минимальная температура окружающей среды составляет -30 ° C, не используйте конденсатор, который может выдерживать только температуру -20 ° C.

Эта спецификация кажется очень простой. Однако, если конденсатор подвергается воздействию очень сильного пульсирующего тока, произойдет внутренний нагрев, и это приведет к повышению температуры выше температуры окружающей среды. Значит, вам нужен больший запас на рабочую температуру. Например, максимальная температура окружающей среды, в которой будет установлен продукт, составляет 60 ° C.Не выбирайте конденсатор, рассчитанный только на 60 ° C. Выберите, возможно, номинальную температуру 105 ° C. Это даст достаточный запас за счет внутреннего нагрева.

6. Выбор диэлектрического материала конденсатора

В микросхеме резистора вы встретите эту опцию при просмотре онлайн-магазинов, таких как Mouser и Digikey. Что означает этот параметр? Это диэлектрический материал, из которого изготовлен конденсатор. Я не могу более подробно останавливаться на физике конструкции конденсатора, но в своих проектах я всегда использую диэлектрик X7R, NP0 или C0G.У них обычно более высокий температурный диапазон. См. Ниже несколько примеров X7R, NP0 или C0G по сравнению с X5R.

X7R, NP0 / C0G диэлектрический материал X5R диэлектрический материал

7. Как выбрать конденсатор

— ожидаемый срок службы

Срок службы конденсатора или ожидаемый срок службы — это время, в течение которого конденсатор будет оставаться в рабочем состоянии в соответствии с конструкцией. Это очень важно для электролитических конденсаторов. Для керамических конденсаторов это не проблема, и, вероятно, не стоит на нее обращать внимание при выборе конденсаторов для цепей малых сигналов.Для него все еще есть предел жизни, но более чем достаточно, чтобы выдержать весь жизненный цикл продукта. В отличие от электролитических конденсаторов, если их не оценить должным образом, они выйдут из строя до окончания жизненного цикла продукта, и этого не должно происходить. Пульсации тока сократят срок службы конденсатора. Так что лучше управляй им. В технических паспортах или у поставщиков есть справочные расчеты срока службы конденсатора. Это простые уравнения, которые можно использовать при выборе конденсатора с учетом ожидаемого срока службы.Некоторые также предоставляют график для облегчения понимания. Ниже пример расчета и графика взяты из таблицы KEMET. KEMET — один из ведущих производителей конденсаторов.

Расчет ожидаемого срока службы конденсатора

8.

Физические размеры и тип установки являются факторами при выборе конденсатора

Последнее, о чем следует подумать, — это физические размеры, а также способ монтажа. Иногда выбор конденсатора продиктован доступным пространством.Чип-конденсаторы имеют небольшие размеры, но имеют ограниченное значение емкости. С другой стороны, электролитические конденсаторы имеют большую емкость, но они громоздкие. Вы собираетесь использовать поверхностное крепление или деталь со сквозным отверстием? Что ж, решать вам. Оцените свои требования к пространству, прежде чем уходить далеко от других параметров.

Технические характеристики конденсатора образца

Ниже приведены характеристики конденсаторов, которые я взял со страницы электроники Mouser. Он имеет емкость, напряжение, допуск, ток пульсации, рабочую температуру, физические размеры, ориентацию при установке и срок службы.Но обратите внимание, указанный срок службы — это просто базовый срок службы или это срок службы при максимально допустимой рабочей температуре.

Характеристики номинала конденсатора

Связанные

Электролитический конденсатор

| Типы | Направляющая конденсатора

Что такое электролитические конденсаторы?

Электролитический конденсатор — это тип конденсатора, в котором используется электролит для достижения большей емкости, чем у конденсаторов других типов. Электролит — это жидкость или гель, содержащий высокую концентрацию ионов.Почти все электролитические конденсаторы поляризованы, а это означает, что напряжение на положительной клемме всегда должно быть больше, чем напряжение на отрицательной клемме. Преимущество большой емкости электролитических конденсаторов имеет также несколько недостатков. Среди этих недостатков — большие токи утечки, допуски по величине, эквивалентное последовательное сопротивление и ограниченный срок службы. Электролитические конденсаторы могут быть либо с жидким электролитом, либо с твердым полимером. Обычно они изготавливаются из тантала или алюминия, хотя могут использоваться и другие материалы.Суперконденсаторы — это особый подтип электролитических конденсаторов, также называемых двухслойными электролитическими конденсаторами, с емкостью в сотни и тысячи фарад. Эта статья будет основана на алюминиевых электролитических конденсаторах. Они имеют типичную емкость от 1 мкФ до 47 мФ и рабочее напряжение до нескольких сотен вольт постоянного тока. Алюминиевые электролитические конденсаторы используются во многих областях, таких как источники питания, материнские платы компьютеров и многие бытовые приборы. Поскольку они поляризованы, их можно использовать только в цепях постоянного тока.

Определение электролитического конденсатора

Электролитический конденсатор — это поляризованный конденсатор, в котором используется электролит для достижения большей емкости, чем у конденсаторов других типов.

Считывание значения емкости

В случае сквозных конденсаторов значение емкости, а также максимальное номинальное напряжение указаны на корпусе. Конденсатор, на котором напечатано «4,7 мкФ 25 В», имеет номинальное значение емкости 4,7 мкФ и максимальное номинальное напряжение 25 В, которое никогда не должно превышаться.

В случае электролитических конденсаторов SMD (поверхностного монтажа) существует два основных типа маркировки. В первой четко указано значение в микрофарадах и рабочее напряжение. Например, при таком подходе конденсатор 4,7 мкФ с рабочим напряжением 25 В будет иметь маркировку «4,7 25V. В другой системе маркировки за буквой следуют три цифры. Буква представляет номинальное напряжение в соответствии с таблицей ниже. Первые два числа представляют значение в пикофарадах, а третье число — это количество нулей, добавляемых к первым двум.Например, конденсатор 4,7 мкФ с номинальным напряжением 25 В будет иметь маркировку E476. Это соответствует 47000000 пФ = 47000 нФ = 47 мкФ.

Письмо Напряжение
e 2,5
G 4
Дж 6,3
А 10
С 16
D 20
E 25
В 35
H 50

Характеристики

Дрейф емкости

Емкость электролитических конденсаторов с течением времени отклоняется от номинального значения, и они имеют большие допуски, обычно 20%.Это означает, что ожидается, что алюминиевый электролитический конденсатор с номинальной емкостью 47 мкФ будет иметь измеренное значение от 37,6 мкФ до 56,4 мкФ. Танталовые электролитические конденсаторы могут изготавливаться с более жесткими допусками, но их максимальное рабочее напряжение ниже, поэтому они не всегда могут использоваться в качестве прямой замены.

Полярность и безопасность

Из-за конструкции электролитических конденсаторов и характеристик используемого электролита электролитические конденсаторы должны иметь прямое смещение.Это означает, что положительный вывод всегда должен иметь более высокое напряжение, чем отрицательный вывод. Если конденсатор становится смещенным в обратном направлении (если полярность напряжения на выводах меняется на обратную), изолирующий оксид алюминия, который действует как диэлектрик, может быть поврежден и начать действовать как короткое замыкание между двумя выводами конденсатора. Это может вызвать перегрев конденсатора из-за протекающего через него большого тока. Когда конденсатор перегревается, электролит нагревается и протекает или даже испаряется, что приводит к взрыву корпуса.Этот процесс происходит при обратном напряжении около 1 В и выше. Для обеспечения безопасности и предотвращения взрыва корпуса из-за высокого давления, возникающего в условиях перегрева, в корпусе установлен предохранительный клапан. Обычно это делается путем нанесения царапины на верхней поверхности конденсатора, которая контролируемым образом открывается при перегреве конденсатора. Поскольку электролиты могут быть токсичными или едкими, могут потребоваться дополнительные меры безопасности при очистке после и замене перегретого электролитического конденсатора.

Существует специальный тип электролитических конденсаторов для переменного тока, который выдерживает обратную поляризацию. Этот тип называется неполяризованным или NP-типом.

Устройство и свойства электролитических конденсаторов

Алюминиевые электролитические конденсаторы состоят из двух алюминиевых фольг и бумажной прокладки, пропитанной электролитом. Одна из двух алюминиевых фольг покрыта оксидным слоем, и эта фольга действует как анод, а непокрытая фольга действует как катод.Во время нормальной работы анод должен находиться под положительным напряжением по отношению к катоду, поэтому катод чаще всего маркируется знаком минус вдоль корпуса конденсатора. Анод, бумага, пропитанная электролитом, и катод уложены друг на друга. Пакет сворачивается, помещается в цилиндрический корпус и подключается к цепи с помощью штифтов. Есть две общие геометрии: осевая и радиальная. Осевые конденсаторы имеют по одному штырьку на каждом конце цилиндра, тогда как в радиальной геометрии оба штифта расположены на одном конце цилиндра.

Электролитические конденсаторы имеют большую емкость, чем большинство других типов конденсаторов, обычно от 1 мкФ до 47 мФ. Существует особый тип электролитического конденсатора, называемый двухслойным конденсатором или суперконденсатором, емкость которого может достигать тысяч фарад. Емкость алюминиевого электролитического конденсатора определяется несколькими факторами, такими как площадь пластины и толщина электролита. Это означает, что конденсатор большой емкости является громоздким и большим по размеру.

Следует отметить, что электролитические конденсаторы, изготовленные по старой технологии, не имели очень длительного срока хранения, обычно всего несколько месяцев. Если его не использовать, оксидный слой разрушается, и его необходимо восстанавливать в процессе, называемом риформингом конденсатора. Это можно сделать, подключив конденсатор к источнику напряжения через резистор и медленно увеличивая напряжение, пока оксидный слой не будет полностью восстановлен. Современные электролитические конденсаторы имеют срок хранения 2 года и более.Если конденсатор остается неполяризованным в течение длительного времени, его необходимо преобразовать перед использованием.

Применения для электролитических конденсаторов

Существует множество приложений, в которых не требуются жесткие допуски и поляризация переменного тока, но требуются большие значения емкости. Они обычно используются в качестве фильтрующих устройств в различных источниках питания для уменьшения пульсаций напряжения. При использовании в импульсных источниках питания они часто являются критическим компонентом, ограничивающим срок службы источника питания, поэтому в этом приложении используются высококачественные конденсаторы.

Они также могут использоваться при сглаживании входа и выхода в качестве фильтра нижних частот, если сигнал является сигналом постоянного тока со слабой составляющей переменного тока. Однако электролитические конденсаторы плохо работают с сигналами большой амплитуды и высокой частотой из-за мощности, рассеиваемой на паразитном внутреннем сопротивлении, называемом эквивалентным последовательным сопротивлением (ESR). В таких приложениях необходимо использовать конденсаторы с низким ESR, чтобы уменьшить потери и избежать перегрева.

Практический пример — использование электролитических конденсаторов в качестве фильтров в усилителях звука, основная цель которых — уменьшить гудение в сети.Сетевой гул — это электрический шум 50 или 60 Гц, вызванный сетью, который будет слышен при усилении.

Как каждый раз выбирать правильные типы конденсаторов

«Какие типы конденсаторов мне следует выбрать?»

Это вопрос, который задают многие новички. Я дам вам простой ответ на этот вопрос, не вдаваясь во все детали. После прочтения я хочу, чтобы вы сразу же смогли найти нужный конденсатор.

Я также написал о том, как выбрать номиналы конденсаторов, которые рекомендую вам проверить.

Поляризация

В первую очередь сводим его к двум типам конденсаторов:

  • Конденсатор поляризованный
  • Конденсатор неполяризованный

Разница между поляризованным конденсатором и неполяризованным конденсатором заключается в том, что поляризованный конденсатор имеет положительную и отрицательную стороны. Таким образом, он должен быть размещен с положительным контактом там, где наиболее положительное напряжение. Вы можете разместить неполяризованный конденсатор как хотите.

Вам нужен поляризованный конденсатор? Или неполяризованный конденсатор? Чтобы понять это, взгляните на свою принципиальную схему.Какой символ конденсатора используется?

Это неполяризованные конденсаторы:

Это поляризованные конденсаторы:

Конденсаторы поляризованные

Если вам нужен поляризованный конденсатор, вам понадобится нечто, называемое «электролитическим» конденсатором. Электролитические конденсаторы бывают двух типов:

Алюминий

Наиболее распространены алюминиевые конденсаторы.Это также самый дешевый из двух. Алюминиевые колпачки обычно поставляются в виде сквозных отверстий. Но вы также можете найти его версии для поверхностного монтажа. Если у вас нет особых требований, выбирайте алюминиевые колпачки.

Тантал

Если вам нужен конденсатор меньшего размера и более прочный, вы должны выбрать танталовый тип.

Танталовые колпачки доступны в небольших корпусах для поверхностного монтажа. Они могут работать в широком диапазоне температур. Обратите внимание, что некоторые танталовые крышки также выпускаются в неполяризованной версии.

Конденсаторы неполяризованные

Если вам нужен неполяризованный конденсатор, ищите керамический или пленочный конденсатор.

Керамические колпачки маленькие и дешевые. Это наиболее распространенный выбор для неполяризованных конденсаторов. Их часто используют в качестве развязывающих конденсаторов.

Если у вас есть особые требования, такие как низкие допуски, высокая надежность или конденсатор, способный работать при высоких температурах, выберите пленочный конденсатор.Для этого намного лучше.

Пленочные заглушки могут быть из полистирола, поликарбоната или тефлона. У каждого из них есть свои свойства, но это выходит за рамки этой страницы.


Другие типы конденсаторов

Есть еще несколько типов конденсаторов, но перечисленные выше являются наиболее распространенными.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *