Как подобрать автомат по мощности таблица: Подбор автоматов по мощности (таблица). Таблица автоматов по мощности и току

Содержание

Подбор автомата для трехфазного двигателя по току

Друзья приветствую всех на сайте «Электрик в доме». Мне на почту часто приходят письма с просьбой разъяснить правильно ли выбран автомат. Я понял, что для вас этот вопрос актуален, поэтому в данной статье будет таблица автоматов по мощности и току, по которой Вы с легкостью сможете выбрать автоматический выключатель под свою нагрузку и сечение кабеля.

Главной функцией автомата является защита электропроводки от перегрузки, которая приводит к разрушению изоляции электрического кабеля, короткому замыканию и пожару. Для того чтобы избежать проблем с электропроводкой в обязательном порядке устанавливают автоматические выключатели.

Конструктивно такой аппарат состоит из теплового и электромагнитного механизмов отключения (расцепителей).

Главной задачей электромонтажника является грамотный расчет характеристик автомата для его долговечной, стабильной работы и выполнения тех функций, которые на него возложены.

Ремонтные работы вследствие выхода из строя электропроводки – сложное и очень дорогое дело. Более того, от правильного выбора защитных устройств зависит жизнь и здоровье человека, поэтому важно подойти к этому вопросу очень ответственно.

В этой статье будет представлен правильный алгоритм выбора автоматических выключателей в зависимости от номинала и других характеристик.

Шкала номинальных токов автоматических выключателей

На корпусе автоматических выключателей производителем всегда указываются главные характеристики устройства, его модель, серийный номер и бренд.

Главной и самой важной характеристикой автомата является значение номинального тока. Она показывает максимально допустимый ток, который может долго проходить через автоматический выключатель без его нагрева и отключения. Значение тока измеряется и указывается в Амперах (А). Если номинальный ток, протекающий через устройство, будет превышен, то защитный автомат отключится и разомкнет цепь.

Модели автоматов имеют стандарт значений номинального тока и бывают 6, 10, 16, 20, 25, 32, 40, 50, 63, 80, 100А. Бывают и более мощные приборы, но в быту они не используются и предназначены только для специальных задач в промышленности.

Согласно нормативно-технической документации номинальный ток для любого автоматического выключателя указывается для работы прибора при температуре окружающей среды +30 градусов Цельсия.

Устанавливают автоматы в электрощитах на дин-рейку по несколько штук в зависимости от количества защищаемых линий. При одновременном расположении нескольких устройств вплотную друг к другу они «подогревают» друг друга, это приводит к уменьшению значения тока, который они могут пропустить без отключения. В связи с этим в каталогах и инструкциях к приборам защиты производители часто указывают поправочные коэффициенты для размещения групп выключателей.

Выбор автомата защиты и контактора по мощности двигателя

Используя информацию из таблицы ниже можно по мощности трехфазного двигателя (или его номинальному току) выбрать автомат защиты двигателя и подходящий контактор. Под таблицей даны ответы на вопросы. В таблице показано наличие изделий: зеленый — в наличии, голубой — ожидается, серый — под заказ.

Мощность двигателя 3~400В, кВтДиапазон уставки, А Imin – IномТок мгновенного расцепителя, А (авт. выключателя)Ном. откл. способн., кА (авт. выключателя)Автомат защиты двигателяМодуль соединенияКонтакторАдаптер на DIN-рейку
0,10 – 0,162,1100M4-32T-0,16M4 32 VK1K1-09D10 230
0,060,16 – 0,253,3100M4-32T-0,25M4 32 VK1K1-09D10 230
0,090,25 – 0,45,2100M4-32T-0,4M4 32 VK1K1-09D10 230
0,180,4 – 0,638,2100M4-32T-0,63M4 32 VK1K1-09D10 230
0,250,63 – 113100M4-32T-1M4 32 VK1K1-09D10 230
0,551,0 – 1,620,8100M4-32T-1,6M4 32 VK1K1-09D10 230
0,751,6 – 2,532,5100M4-32T-2,5M4 32 VK1K1-09D10 230
1,52,5 – 452100M4-32T-4M4 32 VK1K1-09D10 230
2,24 – 678100M4-32T-6M4 32 VK1K1-09D10 230
35 – 8104100M4-32T-8M4 32 VK1K1-09D10 230
46 – 1013050M4-32T-10M4 32 VK1K1-09D10 230
5,59 – 1316950M4-32T-13M4 32 VK1K1-12D10 230
7,511 – 1722120M4-32T-17M4 32 VK3K3-18ND10 230
7,514 – 2228615M4-32T-22M4 32 VK3K3-22ND10 230
1118 – 2633815M4-32T-26M4 32 VK3K3-22ND10 230
1522 – 3241615M4-32T-32M4 32 VDK3-32A00 230M4 32 HU1
0,10 – 0,162,1100M4-32R-0,16M4 32 VK3K3-10ND10 230
0,060,16 – 0,253,3100M4-32R-0,25M4 32 VK3K3-10ND10 230
0,090,25 – 0,45,2100M4-32R-0,4M4 32 VK3K3-10ND10 230
0,180,4 – 0,638,2100M4-32R-0,63M4 32 VK3K3-10ND10 230
0,250,63 – 113100M4-32R-1M4 32 VK3K3-10ND10 230
0,551,0 – 1,620,8100M4-32R-1,6M4 32 VK3K3-10ND10 230
0,751,6 – 2,532,5100M4-32R-2,5M4 32 VK3K3-10ND10 230
1,52,5 – 452100M4-32R-4M4 32 VK3K3-10ND10 230
2,24 – 678100M4-32R-6M4 32 VK3K3-10ND10 230
35 – 8104100M4-32R-8M4 32 VK3K3-10ND10 230
46 – 10130100M4-32R-10M4 32 VK3K3-10ND10 230
5,59 – 13169100M4-32R-13M4 32 VK3K3-14ND10 230
7,511 – 1722150M4-32R-17M4 32 VK3K3-18ND10 230
7,514 – 2228650M4-32R-22M4 32 VK3K3-22ND10 230
1118 – 2633850M4-32R-26M4 32 VK3K3-22ND10 230
1522 – 3241650M4-32R-32M4 32 VDK3-32A00 230M4 32 HU1
12,518 – 2633850M4-63R-26M4 63 VDK3-32A00 230M4 63 HU1
1522 – 3241650M4-63R-32M4 63 VDK3-32A00 230M4 63 HU1
18,528 – 4052050M4-63R-40M4 63 VDK3-40A00 230M4 63 HU1
2234 – 5065050M4-63R-50M4 63 VDK3-50A00 230M4 63 HU1
3045 – 6381950M4-63R-63M4 63 VDK3-62A00 230M4 63 HU1
3045 – 6381950M4-100R-63M4 100 VDK3-62A00 230M4 100 HU1
3755 – 7597550M4-100R-75M4 100 VDK3-74A00 230M4 100 HU1
4570 – 90117050M4-100R-90K3-90A00 230
80 – 100130050M4-100R-100K3-115A00 230

Как осуществлять подбор автоматического выключателя для защиты электродвигателя:

1. Номинальный ток автоматического выключателя должен быть больше или равен номинальному току электродвигателя. 2. Пусковой ток электродвигателя обычно в 7 раз превышает номинальный (точная величина для конкретного двигателя указывается в паспорте). Т.к. автоматический выключатель не должен срабатывать при пуске двигателя, необходимо удостовериться, что величина в колонке «Ток мгновенного расцепления при к.з.» с некоторым запасом будет выше пускового тока. Пусковой ток для этих вылей вычисляем по формуле
Iном*KРАТН*КОЭФ
, где
Iном
— номинальный ток электродвигателя,
КРАТН
— кратность пускового тока электродвигателя,
КОЭФ
— поправочный коэффициент, учитывающий отклонение пускового тока от номинального, колебания напряжения (принимаем равным 1,4). 3. Номинальный ток автоматического включателя должен быть меньше предельно допустимого тока кабеля, которым осуществляется подключение электродвигателя.
Пример
: возьмем двигатель АИР90L4 мощностью 2. 2кВт, в паспорте указаны: номинальный ток Iн (треугольник/звезда) (220/380В) = 8,91А / 5,16А; кратность пускового тока Iп/Iн=6,8. По номинальному току электродвигателя (5,16А) выбираем автомат защиты двигателя
M4-32T-6
c номинальным током

. Проверяем: пусковой ток 5,16*6,8*1,4=
49,12А
не превышает «Ток мгновенного расцепления при к.з.» равный
78А
. Т.О. автомат не будет срабатывать при пуске двигателя. Следовательно данный автоматический выключатель подходит для защиты указанного электродвигателя.

Вопросы и ответы:
В: В каких случаях срабатывает автомат защиты двигателя?
О: Автоматические выключатели M4 снабжены: 1. биметаллическим тепловым размыкателем, который срабатывает в зависимости от уставки по номинальному току двигателя (уставка задается регулятором на лицевой панели), данный размыкатель инерционен и срабатывает тем быстрее, чем выше ток. 2. мгновенным электромагнитным размыкателем, срабатывающим в случае к. з., порог срабатывания в 13 раз выше номинала автоматического выключателя и поэтому позволяет исключить ложные срабатывания при запуске электродвигателя.
В: Чем отличаются автоматы защиты M4-32T.. от M4-32R..?
О: Автоматы защиты M4-32
T
имеют кнопочный механизм включения, в то время как M4-32
R
оборудованы поворотным переключателем.
В: Для каких условий эксплуатации предназначены автоматы защиты двигателя M4?
Автоматические выключатели M4 подходят для любого климата. Для исключения ложных срабатываний рекомендуется избегать обдува автоматов свежим или холодным воздухом (от системы кондиционирования). Автоматы защиты M4 предназначены для функционирования в закрытых помещениях при нормальных условиях (т.е. без пыли, приводящих к коррозии паров или вредных газов). В случае использования в помещениях с отличными от нормальных условиями эксплуатации, необходимо использовать защитный корпус IP65, например,
M4 32R PFh5
(серый) или
M4 32R PFHN4
(желто-красный).
В: Где найти информацию по аксессуарам для автоматов-защиты двигателей M4?
О: См. раздел АКСЕССУАРЫ ДЛЯ МОТОР-АВТОМАТОВ BENEDICT? (блоки доп. контактов, контакты сигнализации срабатывания, расцепитель минимального напряжения, независимый расцепитель, перемычки и т.д.)
В: На какое конкретно значение должна выставляться уставка автомата защиты двигателя?
О: Уставка автоматического выключателя должна выставляться на значение номинального рабочего тока электродвигателя, указанное на шильдике (в паспорте).

В: Возможно ли использование автоматов защиты двигателя M4 для однофазных электродвигателей?
О: Да, возможно. В этом случае подключение должно осуществляться, как показано на рисунке:
В: Какую защиту обеспечивают автоматические выключатели M4?1. Защита при возникновении токов короткого замыкания.
Мгновенный расцепитель при возникновении короткого замыкания в нагрузке, обеспечивает отключение нагрузки от сети питания, таким образом предотвращая возникновение дополнительного ущерба от действия больших токов. Автоматические выключатели M4 имеют отключающую способность 50кА и 100кА, что при напряжениях 380-400В AC является исчерпывающе надежной защитой, т.к. более высокие токи обычно не могут возникать в точке установки данного оборудования. В общем случае использование предохранителей не требуется, однако установка предохранителей дополнительно может производиться в тех случаях, когда ток короткого замкания в точке монтажа оборудования может превышать номинальную отключающую способность автоматического выключателя.
2. Защита двигателя.
Характеристики срабатывания автоматических выключателей M4 специально разработаны для защиты трехфазных электродвигателей. Поэтому автоматические выключатели для защиты электродвигателей так же могут называться ручными пускателями двигателя. Номинальный ток защищаемого двигателя выбирается регулятором на лицевой панели устройства.
3. Защита сети.
Автоматы защиты двигателя M4 так же обеспечивают защиту сети. Они соответствуют требованиям ГОСТ IEC 60947-3-2016 (Выключатели, разъединители, выключатели-разъединители и комбинации их с предохранителями) и ГОСТ IEC 60947-2-2014 (Аппаратура распределения и управления низковольтная). В соответствии с ГОСТ Р МЭК 60204-1-2007 данные автоматические выключатели могут быть использованы как основной или аварийной выключатель (следует учитывать, что в случае использования аксессуара для дверного сочленения не выполняются требования к изоляции).
Характеристики срабатывания автоматических выключателей M4 для защиты электродвигателя:


I — Кривая показывает средний рабочий ток при температуре 20°С, если устройство было полностью охлаждено перед началом работы. II — Кривая показывает характеристику мгновенного электромагнитного расцепителя (расцепление при к.з.)
Информация по аксессуарам для автоматов защиты двигателя M4

Важность время-токовой характеристики

Некоторые электрические приборы имеют высокий пусковой ток при включении. Его значение бывает выше номинального тока автомата, но действует он краткое время. Для электрического кабеля такой ток не представляет опасности (если его величина в разумных пределах соотносится с типом кабеля), но автомат может срабатывать при пусковом токе, воспринимая это как перегрузку.

Для того чтобы не происходило постоянных отключений из-за запуска устройств с высокими пусковыми токами, автоматы имеют разделение на типы по время-токовой характеристике.

Конструктивно автоматический выключатель состоит из двух расцепителей: электромагнитного и теплового.

Электромагнитный расцепитель предназначен для отключения устройства при коротком замыкании. Для работы такого механизма отключения в автомате используется электромагнитная катушка и соленоид. При многократном превышении значения электрического тока появляется магнитное поле в катушке, та задействует соленоид и он отключает автомат.

Автоматические выключатели имеют характеристику по току короткого замыкания (предельный ток отключения), которая по номиналу бывает в 3, 4,5, 6 и 10кА. Для бытовых целей при устройстве защиты в квартире или доме чаще всего применяют автоматы с номиналом тока КЗ 6кА.

Тепловой расцепитель – это пластина, состоящая из двух различных металлов. При длительной нагрузке, превышающей номинальный ток, эта пластина нагревается, выгибается, воздействует на рычаг расцепителя и устройство отключается. Главная задача такого механизма – защищать линию от долговременных перегрузок выше номинального тока автомата.

Чтобы не думать о том, какую нагрузку включить в розетку, не рассчитывать постоянно суммарную мощность приборов и не думать о пусковых токах была придумана характеристика по времени-току.

Данная характеристика показывает время и ток, которые влияют на отключение аппарата. На автоматах она указывается буквой В, С или D.

Автоматические выключатели с одинаковыми номиналами и различной время–токовой характеристикой будут отключаться в разное время и с разным током превышения.

Такое разделение автоматов является очень удобным и позволяет уменьшить количество ложных отключений.

В соответствии с ГОСТ Р 50345-2010 существует три стандарта время-токовых характеристик:

  1. B – превышение в 3 — 5 раз от номинального тока, самые чувствительные автоматы имеют такую характеристику и применяются в сетях с приборами не имеющими больших пусковых токов.
  2. C – превышение в 5 — 10 раз от номинального тока, самая популярные автоматы с такой характеристикой, они используются в квартирах и частных домах.
  3. D – превышение в 10 — 20 раз от номинального тока, используется для защиты сетей с оборудованием имеющим высокие пусковые токи и кратковременные перегрузки.

Конструкция автоматического выключателя

Внутренняя же конструкция его не такая уж и простая.

В корпусе располагаются:

  • Механизм взвода;
  • Винт тепловой установки;
  • Биметаллический тепловой расцепитель;
  • Электромагнитный катушечный расцепитель;
  • Дугогасительная камера;
  • Силовые контакты;
  • Канал отвода раскаленных газов.

Каждый из этих элементов выполняет определенную работу. Читайте по теме — что такое дифавтомат, как подключить.

Механизм взвода соединен с тумблером, а на концах его установлены силовые контакты. Им и производится передача электрического тока с входящих клемм на выходящие.

Биметаллический (тепловой) расцепитель представляет собой пластину, которая при нагреве изгибается, разъединяя силовые контакты.

Предназначен этот расцепитель для прекращения подачи тока, если его сила не имеет пикового значения.

При незначительном превышении силы тока со временем пластина разогреется и произойдет размыкание контактов. То есть, срабатывает этот расцепитель через определенное время.

Винтом же регулируется зазор между пластиной и контактом. Регулировка этого винта выполняется заводом-изготовителем.

Электромагнитный расцепитель предназначен для мгновенного обесточивания сети. Срабатывает он только при воздействии на него токов больших значений, возникающих при коротком замыкании.

При срабатывании одного из расцепителей, между контактами неизбежно произойдет возникновение электрической дуги, и чем больше сила тока – тем она сильнее.

Чтобы эта дуга не привела к повреждению элементов выключателя, в его конструкцию входит дугогасительная камера, которая гасит внутри себя возникшую дугу.

При всем этом внутри образуются газы с повышенной температурой, которые отводятся по специальному каналу.

ПОПУЛЯРНОЕ У ЧИТАТЕЛЕЙ: Стабилизаторы напряжения – какой выбрать для дома и дачи

Конструктивно все автоматические выключатели практически одинаковы, но рабочие параметры их отличаются.

Существуют определенные критерии выбора автоматических выключателей, которые и учитывают их параметры.

Почему автомат С16 не отключится при токе 16 Ампер?

Теперь давайте попробуем понять, почему при сечении электрического кабеля 2,5 кв.мм, который выдерживает ток 25А (ПУЭ таблица 1.3.6) должен защищать автоматический выключатель на 16А, а не на 25А.

Все дело в тепловом расцепителе, который нагревается со временем при воздействии нагрузки и защищает от длительного превышения тока. Длительность этого времени может занимать и 10 минут и 1 час.

Автоматические выключатели имеют такую характеристику, как «ток неотключения», он рассчитан и составляет 1,13 от номинального тока (смотри ГОСТ Р 50345-2010 п. 8.6.2). Эта характеристика означает, что автомат не отключится при этом значении тока в течение часа.

Например, автомат на 16А не отключится, при протекании через него тока в 18,08 А в течение часа, это заложено в работу теплового расцепителя устройства.

Еще одной характеристикой автоматов является «условный ток отключения» и он тоже стандартен для всех защитных автоматов и равен 1,45 от номинального тока. При токе, например, 36,25А автомат на 25А обязательно отключится в течение часа. Это правило действует только при условии, что изначально автоматы были холодными.

Поэтому нужно иметь в виду, что автоматические выключатели не отключаются при достижении значения тока их номинала. Они могут работать и дольше, поэтому всегда выбирают защитное устройство с номиналом ниже, чем пропускающая способность кабеля.

Номиналы автоматов по току таблица

Для того, чтобы защитить линию от перегрузки и короткого замыкания нужно тщательно и правильно выбрать номинал автомат по току. Вот, например, если вы защищаете линию с кабелем 2,5 кв.мм. автоматом на 25А и одновременно включили несколько мощных бытовых приборов, то ток может превысить номинал автомата, но при значении меньше 1,45 автомат может работать около часа.

Если тока будет 28 А, то изоляция кабеля начнет плавиться (так как допустимый ток только 25А), это приведет к выходу из строя, пожару и другим печальным последствиям.

Поэтому таблица автоматов по мощности и току выглядит следующим образом:

Сечение медных жил кабеля, кв.ммДопустимый длительный ток, АНоминальный ток автомата, АМаксимальная мощность (220 В)Применение
1,519104,1Освещение
2,525165,5Розетки
435257,7Водонагреватели, духовки
642329,24Электроплиты
10554012,1Вводы в квартиру

ВАЖНО! Обязательно следуйте значениям таблицы и указаниям нормативной электротехнической документации!

Как подобрать автомат для трехфазного двигателя

Автоматический выключатель (АВ) выбирают по номинальному току I н. вык выключателя и номинальному току I н.расц расцепителя. I расц =I дл /К т

, где I дл =I н.дв – длительный ток в линии, I н.дв – номинальный ток двигателя, К т – тепловой коэффициент, учитывающий условия установки АВ.
К т =1
— для установки в открытом исполнении;
К т =0,85
– для установки в закрытых шкафах.

Iдл=Iн= Р н /(Uн·√3·ηн·cosφ), (1)

гдеРн — мощность двигателя, кВт; Uн – номинальное напряжение электродвигателя, кВ; ηн – КПД двигателя (без процентов), cosφ – коэффициент мощности двигателя. Номинальный ток асинхронного двигателя с к. з. ротором будет примерно равен его удвоенной мощности, взятой в киловаттах: Iн≈ 2Рн(кВт)

Выбираем АВ: Тип – Iн.вык – Iрасц –

Необходимо, чтобы выполнялось условие: Iмгн.ср ≥ KIкр, где Iмгн.ср — ток мгновенного срабатывания, Iкр – максимальный кратковременный ток, К – коэффициент, учитывающий неточность определения Iкр в линии. К = 1,25

– для АВ с Iн > 100А;
К = 1,4
– для АВ с Iн ≤ 100А. Iкр = Iпуск = Кi Iн, где Кi – кратность пускового момента
Кi = Iпуск/Iн
. Значения Кi берутся из таблиц. Если условие выполняется, значит АВ выбран верно, если не выполняется, то выбирается АВ с большим значением тока расцепителя.

Приведем пример .

Условие установки АВ:

По типу двигателя выписываем из таблицы его номинальные данные:

Так как автомат устанавливается в шкафу, то Кт = 0,85, поэтому:

По току расцепителя выбираем автомат: ВА 51-25; Iн = 25 А Iрасц = 16 А;

Iмгн.ср = 10∙Iрасц = 10∙16 = 160 А

Неравенство выполняется, значит автомат выбран верно.

Источник

Какой автомат выбрать для кабеля 2.5 мм2?

Для потребителей, суммарная мощность которых не будет превышать 3,5 кВт рекомендуем использовать медный кабель сечением 2,5кв.мм и защищать эти линии автоматом на 16А.

Для медного кабеля сечением 2,5 кв.мм согласно таблице 1.3.6 ПУЭ длительный допустимый ток 27А. Исходя из этого, можно подумать, что к такому кабелю подойдет автомат на 25А. Но это не так. Кстати кто не знает где искать публикую данную таблицу:

Согласно ПУЭ, п. 1.3.10 значение тока 25А разогреет кабель 2,5 кв.мм до 65 градусов Цельсия. Это достаточно высокая температура для постоянных режимов работы.

Еще важно понимать, что не все производители изготавливают кабель согласно ГОСТ и его сечение может быть ниже заявленного. Так что сечение может быть 2,0 кв.мм вместо 2,5 кв.мм. Качество меди у разных заводов тоже отличается и вы не сможете гарантировано точно сказать о том, какое качество кабеля имеете.

Поэтому очень важен запас в защите кабеля для избегания проблем в процессе эксплуатации электропроводки. Выбор автомата по сечению кабеля осуществляют следующим образом:

  • кабель 1,5 кв.мм применяю при монтаже сигнализации и освещения, ему соответствует автомат 10А;
  • кабель 2,5 кв.мм часто используется для отдельных розеток и розеточных групп, где суммарная мощность потребителей не будет превышать 3,5 кВт. Ему соответствует номиналы автоматов по току 16А;
  • кабель 4 кв.мм используют в быту для подключения духовых шкафов, стиральных и посудомоечных машин, обогревателей и водонагревателей, к нему покупают автомат номиналом 25А;
  • кабель 6 кв.мм нужен для подключения серьезных мощных потребителей: электрических плит, электрических котлов отопления. Номинал автомата 32А;
  • кабель 10 кв.мм обычно максимальное сечение используемое в быту, предназначено для ввода питания в квартиры и частные дома к электрощитам. Автомат на 40А.

Для расчета электрической сети у себя дома смело и строго руководствуйтесь предоставленной выше таблицей и руководством. При правильном расчете силовых линий и защитных устройств всё будет работать долговечно и не принесет вам неудобств и проблем.

Подобрать автомат по мощности как это сделать

Выбор защитных автоматических выключателей производится не только в ходе установки новой электрической сети, но и при модернизации электрощита, а также при включении в цепь дополнительных мощных приборов, повышающих нагрузку до такого уровня, с которым старые устройства аварийного отключения не справляются. И в этой статье речь пойдет о том, как правильно производить подбор автомата по мощности, что следует учитывать в ходе этого процесса и каковы его особенности.

Непонимание важности этой задачи может привести к очень серьезным проблемам. Ведь зачастую пользователи не утруждают себя, производя выбор автоматического выключателя по мощности, и берут в магазине первое попавшееся устройство, пользуясь одним из двух принципов – «подешевле» или «помощнее». Такой подход, связанный с неумением или нежеланием рассчитать суммарную мощность устройств, включенных в электросеть, и в соответствии с ней подобрать защитный автомат, зачастую становится причиной выхода дорогостоящей техники из строя при коротком замыкании или даже пожара.

Для чего нужны защитные автоматы и как они работают?

Современные АВ имеют две степени защиты: тепловую и электромагнитную. Это позволяет обезопасить линию от повреждения в результате длительного превышения протекающим током номинальной величины, а также короткого замыкания.

Основным элементом теплового расцепителя является пластина из двух металлов, которая так и называется – биметаллической. Если на нее в течение достаточно длительного времени воздействует ток повышенной мощности, она становится гибкой и, воздействуя на отключающий элемент, вызывает срабатывание автомата.

Наличием электромагнитного расцепителя обусловлена отключающая способность автоматического выключателя при воздействии на цепь сверхтоков короткого замыкания, выдержать которые она не сможет.

Расцепитель электромагнитного типа представляет собой соленоид с сердечником, который при прохождении сквозь него тока высокой мощности моментально сдвигается в сторону отключающего элемента, выключая защитное устройство и обесточивая сеть.

Это позволяет обеспечить защиту провода и приборов от потока электронов, величина которого намного выше расчетной для кабеля конкретного сечения.

Чем опасно несоответствие кабеля сетевой нагрузке?

Правильный подбор защитного автомата по мощности – очень важная задача. Неверно выбранное устройство не защитит линию от внезапного возрастания силы тока.

Но не менее важно правильно подобрать по сечению кабель электропроводки. В противном случае, если суммарная мощность превысит номинальную величину, которую способен выдерживать проводник, это приведет к значительному росту температуры последнего. В итоге изоляционный слой начнет плавиться, что может привести к возгоранию.

Чтобы более наглядно представить, чем грозит несоответствие сечения проводки суммарной мощности включенных в сеть устройств, рассмотрим такой пример.

Новые хозяева, купив квартиру в старом доме, устанавливают в ней несколько современных бытовых приборов, дающих суммарную нагрузку на цепь, равную 5 кВт. Токовый эквивалент в этом случае будет составлять около 23 А. В соответствии с этим в цепь включается защитный автомат на 25 А. Казалось бы, выбор автомата по мощности сделан верно, и сеть готова к эксплуатации. Но через некоторое время после включения приборов в доме появляется задымление с характерным запахом горелой изоляции, а через некоторое время возникает пламя. Автоматический выключатель при этом не будет отключать сеть от питания – ведь номинал тока не превышает допустимого.

Если хозяина в этот момент не окажется поблизости, расплавленная изоляция через некоторое время вызовет короткое замыкание, которое, наконец, спровоцирует срабатывание автомата, но пламя от проводки может уже распространиться по всему дому.

Причина в том, что хотя расчет автомата по мощности был сделан правильно, кабель проводки сечением 1,5 мм² был рассчитан на 19 А и не мог выдержать имеющейся нагрузки.

Чтобы вам не пришлось браться за калькулятор и самостоятельно высчитывать сечение электропроводки по формулам, приведем типовую таблицу, в которой легко найти нужное значение.

Защита слабого звена электроцепи

Итак, мы убедились, что расчет автоматического выключателя должен производиться, исходя не только из суммарной мощности включенных в цепь устройств (независимо от их количества), но и из сечения проводов. Если этот показатель неодинаков на протяжении электрической линии, то выбираем участок с наименьшим сечением и производим расчет автомата, исходя из этого значения.

Требования ПУЭ гласят, что выбранный автоматический выключатель должен обеспечивать защиту наиболее слабого участка электроцепи, или иметь номинал тока, который будет соответствовать аналогичному параметру включенных в сеть установок. Это также означает, что для подключения должны использоваться провода, поперечное сечение которых позволит выдержать суммарную мощность подключенных устройств.

Если нерадивый хозяин проигнорирует это правило, то в случае аварийной ситуации, возникшей из-за недостаточной защиты наиболее слабого участка проводки, ему не стоит винить выбранное устройство и ругать производителя – виновником сложившейся ситуации будет только он сам.

Как рассчитать номинал автоматического выключателя?

Допустим, что мы учли все вышесказанное и подобрали новый кабель, соответствующий современным требованиям и имеющий нужное сечение. Теперь электропроводка гарантированно выдержит нагрузку от включенных бытовых приборов, даже если их достаточно много. Теперь переходим непосредственно к выбору автоматического выключателя по номиналу тока. Вспоминаем школьный курс физики и определяем расчетный ток нагрузки, подставляя в формулу соответствующие значения: I=P/U.

Здесь I – величина номинального тока, P – суммарная мощность включенных в цепь установок (с учетом всех потребителей электричества, в том числе и лампочек), а U – напряжение сети.

Чтобы упростить выбор защитного автомата и избавить вас от необходимости браться за калькулятор, приведем таблицу, в которой указаны номиналы АВ, которые включаются в однофазные и трехфазные сети, и соответствующие им мощности суммарной нагрузки.

Эта таблица позволит легко определить, сколько киловатт нагрузки какому номинальному току защитного устройства соответствуют. Как мы видим, автомату 25 Ампер в сети с однофазным подключением и напряжением 220 В соответствует мощность 5,5 кВт, для АВ на 32 Ампера в аналогичной сети – 7,0 кВт (в таблице это значение выделено красным цветом).

В то же время для электрической сети с трехфазным подключением «треугольник» и номинальным напряжением 380 В автомату на 10 Ампер соответствует мощность суммарной нагрузки 11,4 кВт.

Заключение

В представленном материале мы рассказали о том, для чего нужны и как работают устройства защиты электрической цепи. Кроме того, учитывая изложенную информацию и приведенные табличные данные, у вас не вызовет затруднения вопрос, как выбрать автоматический выключатель.

PS.

При выборе автоматов постоянно допускается одна и та же ошибка — не учитывается температура окружающей среды.Номинальный ток автомата назначается по ПУЭ при температуре в + 30 градусов Цельсия,а номинальный ток кабеля или провода назначается по ПУЭ при температуре в + 25 ,а эксплуатироваться автомат и кабель будут при комнатной температуре,допустим в + 18 градусов Цельсия.Если номинальный ток двухжильного или трехжильного, с защитным проводником, кабель — провода сечением 2.5 миллиметра квадратного по меди в однофазной сети равно 25 ампер ( 27 ампер это для кабелей с дополнительной изоляцией в виде ПЭТ ленты или композитного стекломиканита или стеклоленты,заполнением пространства под общей оболочкой мелованной резиной и т. д.),то при + 18 градусов Цельсия это уже номинальный ток в 27 ампер,а номинальный ток автомата на 16 ампер уже фактически равен 18.3 ампера,если учесть что при токах в 1.13 номинального тока автомат не отключается гарантированного в течении более одного часа,то реальный предельный рабочий ток провода уже 20.7 амер,то есть автомат на 16 ампер превращается уже в автомат на 20 ампер,при этом ,согласно DIN стандарту на модульные автоматы ,изготовленные по этому стандарту,номинальный ток кабеля или провода должен быть в полтора раза больше номинального тока автомата или 20.7 * 1.5 = 31 ампер,а номинальный ток кабеля 27 ампер,значит автомат на 16 ампер не годится и нужен автомат на 13 ампер.При температуре в + 35 градусов Цельсия опять же автомат на 16 ампер превращается в автомат на 15 ампер,а номинальный ток провода снижается до 22 ампер,то есть 15 * 1.13 * 1.5 = 25.5 ампера ,а номинальный ток кабеля — 22 ампера .И опять автомат на 16 ампер не годится и нужен автомат на 13 ампер.А вообще кабель всегда нужно проверять по термическому уравнению Tкабеля = t окружающей среды + к * ( I ) ^ 2 ,где T кабеля — температура кабеля в градусах Цельсия, t окружающей среды — температура окружающей среды в градусах Цельсия ,I — ток протекающий по кабелю в амперах,нагрев провода током пропорционален квадрату этого тока, к — температурный коэффициент провода,безразмерная величина, для его определения используют формулу к = (65 — 25 ) /( i ^ 2) номинальный,где 65 — максимальная рабочая температура кабеля по ПУЭ в + 65 градусов Цельсия ,25 — температура кабеля при которой назначается его номинальный ток в + 25 градусов Цельсия и i номинальный ток кабеля при температуре в + 25 градусов Цельсия. 2.

Ресурс: я электрик.

Калькулятор мощности обработки и формулы

Расчет мощности, необходимой (в кВт или л.с.) станка с ЧПУ для выполнения конкретной операции фрезерования, токарной обработки или сверления , необходим для проверки того, что наше оборудование может выполнять операцию обработки без слишком близко к пределу мощности. Воспользуйтесь нашим онлайн-калькулятором или узнайте, как его рассчитать (включая подробные формулы).

Меню мощности обработки

  1. Калькулятор мощности обработки
  2. Что такое мощность обработки?
  3. Как рассчитывается мощность обработки?
  4. Формулы мощности резания
  5. Факторы, влияющие на мощность резания
  6. Таблица удельных сил резания

Калькулятор мощности обработки

Что такое мощность обработки?

В физике мощность определяется как количество энергии, передаваемой в единицу времени. В случае обработки с ЧПУ электрическая сеть передает энергию электродвигателю шпинделя, который передает ее режущему инструменту. Режущий инструмент использует эту энергию для извлечения материала из заготовки. Если предположить, что эффективность составляет 100%, мощность, необходимая для удаления материала, равна мощности, используемой двигателем машины. Каждая машина имеет предел максимальной мощности, с которой она может справиться. Поэтому полезно рассчитать мощность, необходимую для выполнения операции механической обработки, такой как фрезерование или токарная обработка, и сравнить ее с возможностями нашего станка. Например:

  • Станок: 3-х осевой фрезерный станок с максимальной мощностью 30 л.с. (22 кВт)
  • Операция: Торцевое фрезерование нержавеющей стали фрезой 4″, при глубине резания 0,5″, подача на зуб 0,005″ и скорость резания 300 SFM. (100 мм, 12,7 мм, 0,13 мм/зуб, 100 мм/мин).
  • Требуемая мощность в данном случае составляет около 28 л. с. (21 кВт)
  • Из расчета видно, что мы можем выполнить эту работу, но для этого потребуется, чтобы машина работала почти на полной мощности, и лучше выбрать машину с большей мощностью.

Как рассчитывается мощность обработки?

В механике мощность двигателя представляет собой произведение крутящего момента и угловой скорости вала. При обработке это означает, что крутящий момент, действующий на шпиндель, умножается на скорость вращения шпинделя:

  • В приложениях с вращением (фрезерование и сверление) это сила, действующая на режущую кромку, умноженная на радиус фрезы, умноженная на скорость вращения инструмента ( скорость вращения шпинделя).
  • В невращающихся операциях (точение и обработка канавок) это сила, действующая на заготовку, умноженная на радиус заготовки, умноженная на скорость вращения заготовки (скорость вращения шпинделя).

Проблема заключается в том, что расчет силы резания является довольно сложным вычислением, которое невозможно свести к простым формулам. К счастью, есть обходной путь, который прост в реализации и дает относительно точные результаты (около +/- 15%).

Метод заключается в умножении скорости съема металла (MRR) на удельную силу резания (KC). ), которые операция механической обработки удаляет за одну минуту. Узнать больше  

  • Удельная сила резания (KC):  Свойство материала, указывающее усилие, необходимое для извлечения стружки из заготовки. В таблицах материалов в Интернете (или в каталогах) указано значение KC для каждого сырья или группы материалов. ( Узнайте больше об удельной силе резания )
  • \(
    \begin{matrix}
    &\text{Q}& & \text {KC} & & \text {Чтобы получить кВт или HP}\\
    \ большая МОЩНОСТЬ = &\overbrace{\text{Скорость удаления металла}} &\times&\overbrace{\text{Удельная сила резания}} &\times&\overbrace{\text {Единичная постоянная}}
    \end{matrix}
    \)

    \( \begin{matrix}
    \text{POWER = }\\
    \text{Скорость удаления металла (Q)}\,\,\times\\
    \text{ Удельная сила резания (KC)}\,\,\times\\
    \text{Единичная константа (для получения кВт или л. с.)}
    \end{matrix} \)

    Формулы мощности резания

    Расчет резания Power требует 4 шага:

    Шаг 1 – Расчет скорости съема металла (Q)

    Скорость съема материала (MRR) – это объем материала, удаляемого в единицу времени во время операций механической обработки, таких как фрезерование, токарная обработка, сверление и канавка. Он обозначается буквой Q и измеряется в кубических дюймах в минуту или кубических сантиметрах в минуту.

    ( For detailed explanations, check our in-depth MRR article )

    00137 \times F_n \times V_c \ \)

    Application Metric [Cubic Cm] Inch [Cubic Inch]
    Milling

    \(\БОЛЬШОЙ \frac {A_p \times\, A_e \times\, V_f }{1,000}\)

    \( \large A_p \times A_e \times V_f  \)

    9 Токарная обработка9

    \( \большой A_p \times F_n \times V_c \\)

    \ (\ Большой A_P \ Times F_N \ Times V_C \ \ Times 12 \)

    DRILLIC F_n \times\, V_c }{4}\)

    \( \большой D \times F_n \times V_c\ \times 3 \)

    Канавка
    9018

    \( \large W \times F_n \times V_c\ \times 12 \)

    Units used in the above table:

    • A p , A e , D, W – mm or Inch
    • V f – mm/min or inch/min
    • V c – м/мин или фут/мин (SFM)
    • F n – мм/об или дюйм/об
    • MRR – Скорость съема металла CM 3 /мин или дюйм 3 /мин

    Этап 2 – Получение удельной силы резания материалов (KC1. 1)

    Каждый материал имеет коэффициент удельной силы резания , который выражает силу в направлении резания, необходимую для срезания стружки площадью один квадратный миллиметр и толщиной 1 миллиметр с верхним передним углом 0° , отсюда и название КС 1.1 . В дополнение к KC1 каждый материал имеет константу MC , которая показывает, как изменяется KC по мере удаления от своей нормализованной точки . Значения KC1.1 и MC перечислены в таблицах, подобных приведенной внизу этой страницы, или в технических руководствах по режущим инструментам. (Подробнее о Удельная сила резания )

    Шаг 3 – Расчет фактической Удельная сила резания (KC)

    сила резания KC подходит для наших условий. Это самая сложная часть процесса, и она различается в зависимости от приложения. Для выполнения вычислений нам потребуется получить 4 параметра .

    \( \большой \bf KC = KC1. {-MC}\,\times\,\left (1\,- \,0.01\,\times\, GAMF\right ) \) 9{-MC}\,\times \)
    \( \large \left (1 – 0.01\,\times\, GAMF\right ) \)

    1. KC1.1 – Нормализованная удельная сила резания [KPSI] или [KW] – получено из приведенной ниже диаграммы
    2. MC – Наклон кривой графика KC. – Получено из приведенной ниже таблицы
    3. GAMF – Верхний передний угол. – Получено из каталога инструментов/вставок или чертежа.
    4. HM – Толщина стружки [дюйм] или [мм] – необходимо рассчитать для каждого применения.
    a и b) У нас уже есть KC1.1 и MC из шага 2 выше.
    c) Верхний передний (радиальный) угол -GAMF

    Каждый режущий инструмент имеет радиальный передний угол. Угол измеряется между режущей кромкой и заготовкой. Поэтому, когда сменная пластина устанавливается на инструментальную оправку, следует использовать комбинированный угол (угол верхней передней поверхности относительно зажимной плоскости инструмента, когда пластина установлена ​​в гнезде). Уважаемый поставщик инструментов предоставит этот ракурс в своих каталогах. Если у вас возникли проблемы с его получением, используйте +7° в качестве значения по умолчанию, так как большинство режущих инструментов имеют небольшой положительный передний угол.

    d) Толщина стружки (HM) Рассчитывается по-разному в зависимости от области применения :
    • Сверление – Толщина стружки – это просто подача на зуб (или канавку). HM=FN/2 (для 90% сверл это будет FN/2)
    • Отрезка/канавка – Толщина стружки – это просто подача на оборот. HM=FN
    • Токарная обработка – Толщина стружки зависит от угла в плане (KAPR) .
    • Когда угол подхода составляет 90° (или больше), используйте подачу на оборот как толщину стружки HM=FN К формуле: HM = Fn X SIN (KAPR)
    • Метринг — Чип Thciness Зависит от двух факторов:

    Угол подхода (KAPR):

    • , когда . 0003 угол подхода равен 90° (Стандартные прямые фрезы), используйте подачу на оборот как толщину стружки HM=FN
    • По мере уменьшения угла подхода толщина стружки уменьшается по формуле: HM = FN X SIN(KAPR)
    • Для круглых форм формула более сложная и здесь не рассматривается.

    Радиальная глубина резания (AE):

    • Когда AE>=D/2 , используйте подачу на зуб в качестве толщины стружки HM=FN
    • Когда AE , толщина стружки уменьшается в соответствии с коэффициентом радиального утончения стружки (RCTF). HM=FZ/RCTF
    • Подробные формулы для радиального утонения стружки (RCTF) подробно объясняются здесь

    в дюймах, а KC в KPSI, результат следует разделить на 400, чтобы получить мощность в единицах HP.
  • Предполагая, что входные значения указаны в миллиметрах, а KC в МПа (Н/мм 2 ), результат следует разделить на 60 000, чтобы получить мощность в кВт.
  • Отсюда окончательные формулы: большое P[кВт] = \БОЛЬШОЕ \frac{Q\,\times\,KC}{60,000}
    \)

    Факторы, влияющие на мощность резания

    Понимая влияние каждого параметра на энергопотребление при обработке, мы можем решить, что изменить, когда мы хотим оптимизировать приложение для меньшего энергопотребления.

    Факторы, влияющие непосредственно на формулы мощности обработки
    Сырье:

    Тип материала заготовки  на сегодняшний день является наиболее важным фактором.  Удельная сила резания (КС) составляет от 700 МПа для алюминия до 3 500 МПа для сплавов на основе никеля. Обработка заготовки из инконеля потребует 400 % больше энергии, чем , чем алюминия (при тех же условиях резания).

    Передний угол:

    Каждые градуса переднего угла увеличивают/уменьшают энергопотребление примерно на 1% . Радиальные передние углы (GAMF) варьируются от +20° для пластин с высоким положительным углом и до -20° для пластин с K-образной фаской. Таким образом, максимальный потенциал влияния переднего угла составляет 40% .

    Угол в плане:

    Угол в плане (KAPR) большинства режущих инструментов составляет 90°. Тем не менее, существует множество инструментов с углом в плане 45° и фрез с высокой подачей, у которых угол в плане составляет всего 12°.  По мере уменьшения угла толщина стружки уменьшается на SIN(KAPR) . Поскольку толщина стружки является одним из компонентов формулы удельной силы резания (см. выше), она косвенно влияет и на требуемую мощность обработки. По мере уменьшения угла подхода мощность обработки возрастает.  Максимальный  потенциал влияния угла въезда составляет 30% .

    Дополнительные факторы, которые следует учитывать

    Существуют дополнительные факторы, которые не включены в формулы, но оказывают существенное влияние на фактические требования к мощности обработки.

    Износ режущей кромки

    Формулы мощности резания основаны на новой пластине без износа . Поскольку режущая кромка постепенно изнашивается , силы резания увеличиваются, а мощность возрастает . Разница между энергопотреблением свежей вставки и изношенной вставки может составлять до 50% .

    Эффективность станка

    До сих пор мы научились оценивать теоретическую мощность обработки. Это механическая мощность, необходимая для извлечения стружки из заготовки. Интересующее нас значение — это требования к мощности двигателя станка с ЧПУ. Коэффициент между этими двумя цифрами представляет собой КПД машины и обозначается μ. На него влияют технология двигателя и передачи мощности, а также возраст машины и ее механическое состояние. В приведенной ниже таблице вы можете найти типичные значения эффективности:

    .
    Technology
    Гидравлический 60-90%

    Таблица удельной силы резания

    Типичные значения KC1 и MC приведены в таблице ниже. Разница между конкретными материалами внутри групп материалов незначительна, и точность в большинстве случаев достаточно высока. Более подробные таблицы вы найдете здесь

    сообщите об этом объявлении

    Как правильно выбрать фрезерный станок

    Прислал mkuyvenhoven@e… в пн, 18.10.2021 — 10:50

    Фрезерные станки

    часто являются универсальным продуктом металлообрабатывающего цеха. С большим количеством применений, чем мы могли бы назвать, фрезерные станки являются очень универсальным дополнением к любой мастерской. Но перед покупкой нового фрезерного станка необходимо учитывать множество факторов — область применения, рабочий объем, потребность в мощности и т. д.

    Во-первых, каковы основные функции фрезерного станка? Фрезерные станки используются для резки материала и удаления слоев с большой точностью. Этот процесс, также известный как механическая обработка, выполняется на токарных станках, фрезерных станках, сверлильных станках, шлифовальных станках и т. д. Механическая обработка — это невероятно точное искусство, и инструменты, необходимые для достижения успеха, по своей природе столь же точны. Что делает фрезерный станок уникальным и невероятно ценным в магазине, так это его скорость, точность и универсальность. Его скорость обычно объясняется популярностью систем ЧПУ, но даже опытные операторы фрезерных станков могут быстро выполнить точный проект, используя традиционные системы управления. Имея полный контроль над осями X, Y и Z режущего инструмента, оператор ограничен только своим воображением.

    Универсальность фрезерных станков, безусловно, является наиболее заметной. Существуют тысячи вариантов режущих инструментов, каждый из которых предлагает различные функции. Эти режущие насадки можно использовать для гравировки, вырезания, резки или даже отделки металла.

    Фрезерные станки сильно различаются по цене — в основном в зависимости от таких факторов, как поворот и размер стола, максимальное количество шпинделя относительно стола, производительность, параметры скорости и тип управления. Давайте обсудим эти факторы и какие варианты могут быть лучшими для вас!

     

    Тип фрезерного станка

    Существует несколько различных типов фрезерных станков, некоторые из которых имеют собственные подкатегории. Вертикально-фрезерные станки на сегодняшний день являются наиболее распространенным и наиболее используемым типом фрезерных станков. Подобно сверлильному станку, он имеет вертикально выровненный шпиндель, но стол перемещается по осям X и Y, что позволяет ему выполнять фрезерование. Горизонтально-фрезерные станки аналогичны с подвижным столом по осям X и Y; однако резак находится в горизонтальной ориентации. Другие варианты фрезерных станков, такие как универсальные фрезерные станки, портальные фрезерные станки, обрабатывающие центры с ЧПУ и т. д., классифицируются по типу работы, размеру и конструкции. Поскольку вертикально-фрезерные станки в целом являются наиболее используемым типом фрезерных станков, мы сосредоточимся в первую очередь на их ориентации и различных спецификациях.

     

    Настольный фрезерный станок и коленный фрезерный станок

    Первое различие, на которое следует обратить внимание при поиске нового фрезерного станка, — это настольный фрезерный станок и коленный фрезерный станок. Кто-то скажет, что разница только в цене и качестве. Тем не менее, оба типа мельниц имеют свои сильные стороны, и каждая из них подходит для различных областей применения. Настольные мельницы, часто называемые фрезерными станками, — это именно то, что вы ожидаете.

    Это настольные фрезерные станки, которые можно прикрепить болтами к любой рабочей поверхности. Настольные фрезерные станки очень похожи на стандартные настольные сверлильные станки, однако имеют особенности, позволяющие выполнять фрезерование (резку по осям X и Y без изменения глубины Z). При работе с верстачным фрезером стол не перемещается по вертикали, а шпиндельная бабка опускается на нужную глубину. Однако фрезерные станки имеют неподвижную переднюю бабку с вертикально перемещающимся столом. Фрезерные сверла обычно имеют гораздо более прочную конструкцию и в целом считаются более точными фрезерными станками. И настольные, и коленные мельницы имеют действие сверлильного станка, при котором пиноль можно опустить с помощью маховика или рычага.

     


    Изображение

    Jet JMD-18 Mill/Drill

    Изображение

    Фрезерный станок с регулируемой частотой вращения 9 x 49 дюймов США Industrial Machinery

    Изображение

    Коленный фрезерный станок с ЧПУ South Bend 12 x 58 дюймов

     

    Изображение

    Grizzly Industrial 10” x 31” Закрытый фрезерный станок с ЧПУ

     

    Количество осей и ориентация

    Фрезерные операции, как правило, просты: сверление, концевая фреза, квадратная фреза, фрезерование уступов, фрезерование пазов и т. д. В нашей типичной 3-осевой ориентации , стол перемещает заготовку по осям X и Y, головка или стол перемещаются по оси Z, а режущий инструмент делает все остальное. Самые популярные фрезерные станки работают по 3 осям, и именно такую ​​ориентацию вы можете ожидать от большинства фрезерных станков на рынке. Как всегда, приложение играет ключевую роль в определении ориентации оси, необходимой для вашего магазина. Короче говоря, по мере увеличения сложности желаемого конечного продукта увеличивается и потребность в большем количестве осей движения. Почти все 4-осевые и 5-осевые фрезерные станки имеют ЧПУ.

    В 4-осевых фрезерных станках 4-я ось движения всегда представляет собой вращение одной из 3 основных осей — X, Y или Z. 5-осевые фрезерные станки аналогичны, но имеют несколько вращающихся осей. Обычно понимается, что линейная ось движения (X, Y, Z) соответствует оси вращения (A, B, C) как таковой: ось A является осью вращения X, ось B является осью вращения Y, а ось C является осью вращения Z.

    Хотя это общая схема многоосевой работы, она должна дать вам достаточно информации, чтобы принять обоснованное решение относительно того, какой тип фрезерного станка лучше всего подойдет для вашего цеха. или бизнес. Если у вас есть дополнительные вопросы, сотрудники отдела продаж Elite Metal Tools могут помочь вам подобрать станок, подходящий для вашего применения.

     

    Изображение

    Традиционные, с ЧПУ и с механической подачей

    Обычные фрезерные станки работают по 3 осям за счет использования оператором маховиков. Маховики имеют пошаговую маркировку в миллиметрах или других размерах, чтобы дать оператору полный контроль над движением стола. Станки с обычным управлением всегда представляют собой коленные фрезы, что означает, что один из трех маховиков перемещает стол вертикально по оси Z, что определяет глубину фрезерной операции. Кроме того, обычные мельницы часто имеют дополнительные системы цифрового считывания (DRO). УЦИ обеспечивают невероятно точное считывание положения осей в режиме реального времени. Хотя опытным операторам может и не понадобиться УЦИ, эти инструменты могут значительно повысить точность и снизить вероятность ошибок, связанных с человеческим фактором. Традиционные фрезерные станки могут выполнять любые операции, ожидаемые от вертикально-фрезерного станка. Однако это ограничено навыками оператора и временем, необходимым для выполнения разрезов.

    Безусловно, самый распространенный вариант фрезерного станка — это станки с осями с механическим приводом. Классифицируемые как обычные фрезерные станки, фрезерные станки с механической подачей перемещаются по осям X, Y или Z с помощью двигателя с механической подачей. При простом нажатии на рычаг или кнопку стол будет двигаться, как правило, вдоль оси X или Y с постоянной скоростью. Механическая подача может снизить вероятность человеческой ошибки при фрезеровании, повысить скорость работы и снизить утомляемость оператора в цехах с высокой производительностью. Фрезерные станки можно приобрести с механической подачей по любой из 3-х осей, дополнительно традиционные фрезерные станки можно дооснастить механической подачей по оси X или Y.

    ЧПУ или фрезерные станки с числовым программным управлением быстро устаревают. В связи со снижением стоимости технологий и повышением их доступности станки с ЧПУ занимают свое место на рынке. Однако некоторые фрезерные станки с ЧПУ все еще продаются и эксплуатируются в США. Их сходство со станками с ЧПУ заключается в способности повторять операции с точностью много раз подряд. Причем, с небольшим вмешательством оператора. В отличие от более новых, более совершенных фрезерных станков с ЧПУ, фрезерные станки с ЧПУ не могут сохранять, редактировать или создавать наборы операций. Скорее, они способны только прочитать набор инструкций и перемолоть.

    Станки с ЧПУ, несомненно, являются наиболее точными, эффективными и простыми в эксплуатации вариантами вертикально-фрезерных станков. Операторы создают цифровые изображения желаемого конечного продукта либо на внешнем компьютере, либо на встроенном компьютере станка с ЧПУ. Эти 3D-файлы считываются операционным компьютером и автоматически генерируют набор инструкций. Фрезерные станки с ЧПУ, быстро ставшие наиболее популярным вариантом, особенно для крупных магазинов, сводят риск ошибки пользователя практически к нулю. Вертикальные фрезерные станки с ЧПУ бывают одного из двух стилей: более стандартный стиль коленной фрезы или полностью закрытый стиль — обрабатывающие центры AKA. Обрабатывающие центры с ЧПУ также могут более эффективно использовать охлаждающую жидкость. Полностью закрытая машина удерживает жидкую охлаждающую жидкость и металлическую стружку внутри, а также защищает операторов и персонал.

     


    Другие характеристики

    Технические характеристики фрезерного станка — это мельчайшие детали, которые стоит учитывать при поиске фрезерного станка, соответствующего вашим потребностям.

     

    От шпинделя до стола Max

    Эта первая деталь может говорить сама за себя, но это важный фактор, который следует учитывать. В вертикально-фрезерных станках максимальное расстояние от шпинделя до стола относится к максимальному вертикальному расстоянию между вашим столом, на котором закреплена заготовка, и вашим шпинделем. Это, как и все другие приведенные ниже характеристики, определяется вашим конкретным приложением. При работе с крупногабаритными заготовками знание вертикального зазора и грузоподъемности может решить вашу задачу по фрезерованию. Также стоит отметить, что ваш шпиндель до максимума стола не включает в себя ваш инструмент. Инструмент большего размера может повлиять на величину зазора на вашем станке.

    Скорость вращения шпинделя

    Скорость вращения шпинделя является важным аспектом вашего фрезерного станка, который необходимо учитывать. Выбор соответствующего диапазона скорости шпинделя влияет на размер инструмента, скорость подачи и глубину резания, которые вы можете использовать. Согласно последним тенденциям, все больше мастерских выбирают станки с более высокими оборотами (оборотов в минуту) с небольшими инструментами с покрытием, которые режут на меньшей глубине. Эти высокие скорости подачи и скорости шпинделя обеспечивают более чистую обработку и требуют меньше мощности и крутящего момента, что, в свою очередь, изменяет требования к мощности. При выполнении больших резов инструментами большого диаметра требуется более низкая скорость шпинделя, а также более высокая мощность и крутящий момент. Понимание того, что вы хотите от своих фрезерных станков — в отношении качества отделки, скорости операций, производительности и т. д., — поможет вам определить наилучшую ориентацию для вас.

    Смазка и охлаждающая жидкость

    Можно с уверенностью сказать, что большинство новых моделей фрезерных станков имеют встроенную систему охлаждения и смазки. Однако до сих пор можно увидеть традиционные фрезерные станки без этих систем. В отрасли согласны с тем, что смазочно-охлаждающая жидкость способствует повышению производительности и долговечности вашего фрезерного станка и необходима для простой работы станков с ЧПУ. Сухое измельчение является обычной практикой и имеет свое место в различных областях применения. Это также снижает затраты и создает более чистую рабочую среду. Однако, поскольку фрезерные станки используются для самых разных целей, разумным решением будет рассмотреть систему смазки для вашего нового фрезерного станка.

    Что такое смазочно-охлаждающая жидкость? Смазочно-охлаждающая жидкость или смазочно-охлаждающая жидкость — это специально разработанная жидкость, которая служит трем целям при использовании при фрезеровании. Он сначала смазывает режущий инструмент. Это снижает нагрузку на режущий инструмент и заготовку, обеспечивая более гладкую резку и более длительный срок службы инструментов. Вторая его функция – охлаждающая жидкость. Смазочно-охлаждающая жидкость/смазочно-охлаждающая жидкость отводит тепло от поверхности заготовки, а также от режущего инструмента, продлевая срок службы вашего инструмента, а также предотвращая деформацию и заедание. Наконец, смазочно-охлаждающая жидкость очищает поверхность заготовки от всей стружки и стружки. Это упрощает работу без ЧПУ и снижает риск нежелательных сколов и ошибок.

    Питание

    При выборе типа входной мощности у вас есть два варианта — однофазный (1Ph) или трехфазный (3Ph). Разница между ними на удивление проста. Однофазная — это двухпроводная система, в которой по одному проводу подается питание, а другой — нейтральный, при этом силовой ток проходит по проводу нагрузки и нейтральному проводу. Однофазная мощность имеет низкое напряжение и создает одиночную синусоидальную волну, что указывает на непостоянный поток мощности. Трехфазное питание использует до 4 проводов и обеспечивает 3 переменных тока. Трехфазная мощность имеет более высокое напряжение и создает 3 чередующихся синусоидальных волны. Это обеспечивает более стабильное и стабильное питание.

    При выборе между двумя вариантами основным определяющим фактором, как обычно, является приложение. Трехфазные машины, как правило, более способны выдерживать большие нагрузки, чем однофазные машины. Трехфазные машины потребляют более высокую электронную нагрузку и, следовательно, могут работать с более высокой производительностью. Для приложений, которые не требуют работы с высоким крутящим моментом и высокой нагрузкой, однофазные машины могут быть лучшим вариантом. Однофазные станки невероятно полезны для магазинов, которые периодически используют фрезерный станок. Они также уже настроены для использования в любом магазине. Трехфазные машины требуют специальной проводки, которой нет во многих магазинах. Если вы заинтересованы в использовании преимуществ трехфазного питания, мы рекомендуем вам обратиться к сертифицированному электрику, чтобы установить ваши требования к электропитанию.

    Изображение

     

    Размер стола и перемещение стола

    Не менее важным фактором, который следует учитывать при выборе фрезерной системы, является ее пропускная способность. Выбор станка с равным или большим диапазоном, чем требуется, имеет важное значение для точного фрезерования. Регулировка заготовки для фрезерования за пределами возможностей вашего станка очень распространена, но никогда не будет производиться точная, воспроизводимая продукция. Этот метод также требует больше времени, замедляя производство вашего магазина.

    Размер стола фрезерного станка говорит сам за себя. Эти размеры стола важно учитывать в зависимости от ваших приложений для машины. Однако размеры стола имеют значение только в зависимости от перемещения (или поворота) стола в системе.

    Это измерение, известное как ход стола, поворот или перемещение по осям, определяет размер поверхности стола, пригодной для фрезерования. В то время как стол может иметь размеры 6 x 24 дюйма, ход стола может составлять только 6 x 12 дюймов. Это важный фактор, который следует учитывать, поскольку вы не можете фрезеровать всю поверхность стола.

    Если вы фрезеруете мелкие детали, рекомендуем приобрести фрезерный станок с размахом стола немного больше, чем требуется. Это даст вам немного больше свободы и универсальности, не тратя больше, чем необходимо. При фрезеровании деталей, превышающих размеры стола и размеры стола, мы рекомендуем использовать программное обеспечение ЧПУ для точного выравнивания заготовки между циклами фрезерования. Это уменьшает количество ошибок оператора и помогает поддерживать согласованность.

     

    Изображение


    Независимо от области применения всегда найдется фрезерный станок, соответствующий вашим потребностям. От настольных фрезерных станков до 5-осевых фрезерных центров — мы можем помочь вам найти то, что подходит для вашего магазина или бизнеса.

  • Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *