Инфракрасный: Что такое инфракрасный нагрев и когда его лучше использовать :: информационная статья компании Полимернагрев

Содержание

Что такое инфракрасный нагрев и когда его лучше использовать :: информационная статья компании Полимернагрев

Инфракрасные системы нагрева доступны уже несколько десятилетий. Из-за текущего роста цен на электроэнергию многие технологические процессы сейчас все больше переходят на инфракрасный нагрев. Следующие несколько советов представляют собой общие моменты, которые следует учитывать компаниям, планирующим использовать инфракрасные нагреватели на своих производственных объектах.

Как работает инфракрасный нагрев

Инфракрасные системы содержат инфракрасные излучатели, нагревающие объект до высоких температур. Конечная температура детали определяется временем выдержки ее в инфракрасной печи. Передача ИК энергии растет по мере увеличения разницы между температурой нагревателя и температурой нагреваемой детали.

Инфракрасная или ИК энергия состоит из электромагнитных волн, которые передают энергию непосредственно продукту со скоростью света.  При высоких температурах окружающей среды в печи немного энергии рассеивается на влажность воздуха внутри, и эта потеря оказывает незначительное влияние на производительность системы. Если энергия отражается или не попадает в продукт, она не теряется. Вместо этого инфракрасные лучи отражаются от внутренних стенок печи, которые могут быть с отражающей поверхностью, или повторно излучается на продукт от противоположного нагревателя.


Все органические материалы, такие как краски, порошки, пластмассы, пленки, ткани и бумага, имеют уникальные спектры электромагнитного поглощения, которые, как и отпечатки пальцев, являются характеристиками, специфичными для состава материала. Спектры поглощения обычно основаны на определенной толщине материала и будут показывать максимальную и минимальную длины волн. То есть области, где материал поглощает инфракрасную энергию, области, где материал пропускает инфракрасное излучение через материал, и области с частичным поглощением.

Основываясь на этих знаниях, можно выбрать длину волны нагревателя, эффективную для нагрева поверхности или всей толщины для каждого материала.

Определите, когда использовать инфракрасный, а когда конвекционный обогрев

Конвекционные печи — самый простой способ разогреть продукт. При конвекции, будь то электрическая или газовая система, энергия передается продукту, сначала нагревая воздух, который затем передает энергию материалу.

В электрических системах обычно используются открытые нихромовые спирали, сухие керамические ТЭНы или ТЭНы с металлической оболочкой для воздуха. В газовых системах прямого сжигания пламя используется для непосредственного нагрева воздуха. В газовых системах косвенного сжигания используется теплообменник для отделения технологического воздуха от воздуха для горения. 

Чтобы понять разницу между конвекционным обогревом и инфракрасным излучением, рассмотрим следующий пример: вы сидите перед закрытым окном перед восходом солнца, а в комнате прохладно. Вы включаете обогрев в комнате, и температура в комнате постепенно повышается до вашего комфортного уровня.

 Когда солнце начинает светить в окно, сразу становится тепло, хотя температура воздуха в комнате не изменилась. Солнце дает вам инфракрасную энергию быстрее, чем воздух в комнате отводит ее. Инфракрасная энергия может передаваться непосредственно продукту с гораздо большей скоростью, чем конвекция.

В конвекционной печи продукт проводит значительную часть от общего времени пребывания в ней только до достижения температуры процесса. Это основная часть потребляемой энергии. 

Инфракрасное излучение нагревает материал до температуры быстрее, чем конвекционная печь, из-за более высокой скорости передачи энергии, а также производит нагрев с большей эффективностью. 

В конвекционной печи с типичным временем выдержки от 20 до 30 минут может потребоваться от 15 до 20 минут, чтобы довести детали до температуры; инфракрасная печь может сократить время до 1–3 мин. Это связано с тем, что инфракрасное излучение является прямой формой передачи энергии, которая не зависит от проводимости через такую ​​среду, как воздух.  Другие преимущества включают уменьшенную длину конвейера, меньшее количество креплений и экономию площади пола. Общая цель — снизить удельные затраты на обработку.

Проверьте совместимость деталей с инфракрасным излучением

Цель состоит в том, чтобы определить, будет ли система, разработанная с использованием инфракрасного излучения, иметь преимущества перед конвекционной системой. 

Трудности с инфракрасным нагревом могут возникнуть, если:

  • Собранные детали, изготовленные из нескольких материалов.
  • Материалы разной плотности.
  • Плохо проводящие тепло изделия со скрытыми участками сложной формы.

Инфракрасный нагрев будет эффективен в случаях, если:

  • Материал будет быстро проводить тепло (например, большинство металлов).
  • Деталь, если на ней есть скрытые области, можно повернуть.
  • Детали подвешиваются на подвесном конвейере только в один ряд (не складываются вдвое, если части детали скрыты от инфракрасной энергии), или детали представляют собой низкопрофильные конструкции, плоские панели или непрерывные полотна.

Чтобы компенсировать детали, которые не являются идеальными кандидатами для инфракрасного излучения, часто разрабатываются комбинированные инфракрасные / конвекционные системы. Чем выше доля энергии процесса, обеспечиваемая конвекцией, тем ниже будет общий КПД печи. В какой-то момент преимущества комбинированной инфракрасной / конвекционной системы больше не будут экономичными, и следует использовать традиционную конвекционную систему.

Поймите разницу между коротковолновым, средним и длинноволновым инфракрасным излучением

Доступны инфракрасные обогреватели, которые излучают в коротковолновой, средней и длинноволновой областях инфракрасного спектра. Наиболее эффективный тип нагревателя для конкретного процесса определяется фактическим процессом и потребностями продукта. Это относится к спектрам электромагнитного поглощения нагреваемого продукта и к тому, сколько энергии требуется для этого процесса.

Коротковолновые нагреватели

Коротковолновые или высокоинтенсивные нагреватели излучают энергию в диапазоне длин волн менее 2 микрон. Поскольку коротковолновые нагреватели могут излучать часть своей энергии в области видимого света, процесс может быть чувствительным к разным цветным покрытиям и может потребовать различных настроек печи для каждого из них. Коротковолновая энергия имеет тенденцию проникать через тонкие органические покрытия. 

Коротковолновые нагреватели обычно представляют собой кварцево-вольфрамовые галогенные лампы и обычно используют отражатели или огнеупоры, чтобы направить часть производимой энергии на продукт. Предполагаемый срок службы нагревателя составляет примерно 5000 часов при работе на номинальной мощности.

Средневолновые нагреватели

Обогреватели средней длины волны

или средней интенсивности излучают в диапазоне длин волн от 2 до 4 микрон. Средневолновые нагреватели доступны во многих конфигурациях, включая трубчатые кварцевые нагреватели, стандартные кварцевые панели QP, карбоновые ик излучатели, а также нестандартные кварцевые панели.  

Инфракрасное излучение средней длины волны имеет тенденцию непосредственно поглощаться органическими покрытиями. Пиковое поглощение воды попадает в этот режим, что делает его пригодным для эффективного нагрева продуктов с высоким содержанием влаги или покрытий на водной основе. Некоторые конструкции обогревателей имеют встроенные световозвращающие устройства для сокращения затрат на техническое обслуживание. Продолжительность жизни может превышать 30 000 часов.

Длинноволновые нагреватели

Длинноволновые или низкоинтенсивные нагреватели излучают в области более 4 микрон. На самых низких уровнях энергии длинноволновые обогреватели приближаются к более низкой эффективности конвекционной печи.

Керамические инфракрасные нагреватели относятся к средне и длинноволновому излучению, так как они могут иметь длину волны от 2 до 10 мкм в зависимости от мощности.


Разработайте конвейерную систему, совместимую с инфракрасным излучением

Инфракрасное излучение, как и свет, передает энергию тому, что видит.  Внутри инфракрасной печи энергия, которая не поглощается продуктом напрямую, будет отражаться или повторно излучаться (обычно на более низкой длине волны) внутри корпуса печи, предоставляя множество возможностей для поглощения энергии продуктом. Материал, из которого изготовлено изделие, может способствовать передаче энергии, получаемой от инфракрасного обогревателя, к скрытым областям на изделии. Это касается металлических изделий с высокой проводимостью.

При использовании инфракрасной системы наиболее эффективное представление детали происходит в одном измерении. Если покрытие находится на одной стороне, инфракрасное излучение можно разместить на стороне с покрытием или на обеих сторонах, чтобы сократить общее время пребывания в печи. Для трехмерных деталей вращение детали в печи часто повышает однородность нагрева продукта.

Инфракрасное излучение не обеспечивает максимальной эффективности:

  • когда детали имеют большие размеры и сложную форму; 

  • когда они транспортируются с несколькими частями по ширине конвейера; 

  • когда они подвешены на стойке, где одна часть может быть заблокирована или скрыта от инфракрасной энергии другой частью.

     

Если вы не полагаетесь на теплопроводность от открытых участков или на помощь горячего воздуха, изделие должно иметь близкую к «прямой видимости» инфракрасную энергию.

Контроль температуры процесса

Управление процессом без обратной связи — это когда источник инфракрасного излучения, газовый или электрический, устанавливается в процентах от полной мощности. Это похоже на обычную электрическую или газовую кухонную плиту, где у вас есть низкие, средние или высокие настройки. В систему управления не поступает информация о фактической температуре нагревателя или продукта.

В управлении процессом с обратной связью используется устройство измерения, такое как термопара. Системы управления с обратной связью могут автоматически компенсировать изменения температуры окружающей среды, изменения температуры продукта на входе и колебания линейных напряжений в электрических системах.

Для некритических процессов, где допустимая температура продукта может находиться в диапазоне от 14 до 28 o C, регулирование с разомкнутым контуром является более эффективным с точки зрения затрат и может обеспечить достаточный контроль продукта и повторяемость процесса.  Там, где требуется жесткий контроль температуры, например, менее 5 ø C, замкнутый контур управления является предпочтительным выбором.

Комбинированные системы могут использоваться, когда первая часть процесса регулируется без обратной связи, чтобы поднять продукт до общего температурного диапазона, а последняя часть системы является замкнутой, обеспечивая желаемый конечный температурный допуск и повторяемость для всего процесса.

Используйте инфракрасный нагрев для модернизации и замены систем

Если у вашей компании есть конвекционная печь или даже существующая инфракрасная печь, которая не работает должным образом для достижения ваших производственных целей, подумайте о модернизации системы. Если существующая печь находится в хорошем состоянии и на линии есть место для добавления инфракрасной системы предварительного или последующего нагрева, бустерная система может обеспечить наибольшую окупаемость инвестиций. 

Обычное применение — инфракрасная система предварительного нагрева на линии порошкового покрытия.  Инфракрасное излучение будет обеспечивать энергию для плавления порошка. Фактические эксплуатационные расходы на каждую деталь могут снизиться, поскольку энергия, потребляемая конвекционной печью, будет уменьшена до энергии, необходимой только для поддержания температуры детали. Качество продукта может повыситься, потому что с бустерной системой продукт может дольше выдерживать температуру для лучшей текучести.

Компания Полимернагрев производит инфракрасные нагреватели различных типов: керамические, кварцевые, галогенные лампы, карбоновые, а также готовое инфракрасное оборудование, такое как печи полимеризации порошкового окрашивания, формовочные столы, инфракрасные панели, туннельные сушки и многое другое.

что это такое, опасно ли, как оно появляется?

Инфракрасное излучение (ИК) или инфракрасный свет — это тип лучистой энергии, который невидим для человеческого глаза, но который мы можем ощущать как тепло. Все объекты во Вселенной излучают инфракрасное излучение в той или иной степени, но два наиболее очевидных источника — солнце и огонь.

ИК-излучение — это один из трёх способов передачи тепла из одного места в другое.

ИК — это тип электромагнитного излучения, континуум частот, возникающий, когда атомы поглощают, а затем выделяют энергию. Электромагнитное излучение от самой высокой до самой низкой частоты включает гамма-лучи, рентгеновские лучи, ультрафиолетовое излучение, видимый свет, инфракрасное излучение, микроволны и радиоволны. Вместе эти виды излучения составляют электромагнитный спектр.

По данным НАСА, британский астроном Уильям Гершель открыл инфракрасный свет в 1800 году. В эксперименте по измерению разницы температур между цветами видимого спектра он поместил термометры на пути света в пределах каждого оттенка. Он наблюдал повышение температуры от синего до красного и обнаружил ещё более высокую температуру сразу за красным концом видимого спектра.

Как появляются ИК-волны

В электромагнитном спектре инфракрасные волны возникают на частотах выше частот микроволн и чуть ниже частот красного видимого света — отсюда и название «инфракрасный». По данным Калифорнийского технологического института, волны инфракрасного излучения длиннее, чем волны видимого света. Частоты ИК-излучения находятся в диапазоне от примерно 300 гигагерц (ГГц) до примерно 400 терагерц (ТГц), а длина волны оценивается в диапазоне от 1000 микрометров (мкм) до 760 нанометров. Хотя, по данным НАСА, эти значения не являются окончательными.

А знаете ли вы, как выглядит современный Лас-Вегас в инфракрасном свете?

Подобно спектру видимого света, который варьируется от фиолетового (самая короткая длина волны видимого света) до красного (самая длинная длина волны), инфракрасное излучение имеет свой собственный диапазон длин волн. Более короткие «ближние инфракрасные» волны, которые ближе к видимому свету в электромагнитном спектре, не излучают заметного тепла и излучаются пультом дистанционного управления телевизором для переключения каналов. 

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

По данным НАСА, более длинные «дальние инфракрасные» волны, которые ближе к микроволновой части электромагнитного спектра, можно ощущать как сильное тепло — такое как тепло от солнечного света или огня.

ИК-излучение — это один из трёх способов передачи тепла из одного места в другое, два других — конвекция и теплопроводность. Всё, что имеет температуру выше примерно минус 268 градусов по Цельсию, излучает ИК-излучение. По данным Университета Теннесси, Солнце излучает половину своей полной энергии в виде инфракрасного излучения, а большая часть видимого света звезды поглощается и как бы переизлучается в виде инфракрасного излучения.

Бытовое использование

Бытовые приборы, такие как тепловые лампы и тостеры, используют ИК-излучение для передачи тепла — как и промышленные обогреватели, например те, которые используются для сушки и отверждения материалов. По данным Агентства по охране окружающей среды, лампы накаливания преобразуют только около 10 процентов потребляемой ими электроэнергии в энергию видимого света. Остальные 90 процентов преобразуются в инфракрасное излучение.

Хорошие новости! Исследователи разработали специальные очки для незрячих, которые используют инфракрасную технологию, помогающую ориентироваться в пространстве.

Инфракрасные лазеры можно использовать для прямой связи на расстоянии в несколько сотен метров или ярдов. Согласно How Stuff Works, пульты дистанционного управления телевизора, использующие инфракрасное излучение, посылают импульсы ИК-энергии от светоизлучающего диода (LED) к ИК-приёмнику в телевизоре. Приёмник преобразует световые импульсы в электрические сигналы, которые указывают микропроцессору выполнить запрограммированную команду.

Инфракрасное зондирование

Одним из наиболее полезных применений ИК-спектра является обнаружение. Все объекты на Земле излучают ИК-излучение в виде тепла. Это можно обнаружить с помощью электронных датчиков — таких как те, которые используются в очках ночного видения и инфракрасных камерах.

Простым примером такого датчика является болометр, который состоит из телескопа с чувствительным к температуре резистором или термистором в фокусе, согласно Калифорнийскому университету в Беркли. Если тёплое тело попадает в поле зрения этого прибора, тепло вызывает заметное изменение напряжения на термисторе.

Камеры ночного видения используют более сложную версию болометра. Эти камеры обычно содержат микросхемы формирования изображений с зарядовой связью (ПЗС), которые чувствительны к ИК-излучению. Изображение, сформированное ПЗС, затем можно воспроизвести в видимом свете. Эти системы могут быть сделаны достаточно маленькими, чтобы их можно было использовать в портативных устройствах или очках ночного видения. Такие камеры можно использовать и для прицелов с добавлением ИК-лазера для наведения или без него.

Инфракрасная спектроскопия измеряет ИК-излучение материалов на определённых длинах волн. ИК-спектр вещества будет показывать характерные провалы и пики, когда фотоны (частицы света) поглощаются или испускаются электронами в молекулах, когда электроны переходят между орбитами или энергетическими уровнями. Затем эту спектроскопическую информацию можно использовать для идентификации веществ и мониторинга химических реакций.

инфракрасных волн | Управление научной миссии

Инфракрасные волны или инфракрасный свет являются частью электромагнитного спектра. Люди сталкиваются с инфракрасными волнами каждый день; человеческий глаз не может его видеть, но люди могут обнаружить его как тепло.

Пульт дистанционного управления использует световые волны за пределами видимого спектра света — инфракрасные световые волны — для переключения каналов на вашем телевизоре. Эта область спектра делится на ближнюю, среднюю и дальнюю инфракрасную область. Ученые Земли называют область от 8 до 15 микрон (мкм) тепловым инфракрасным излучением, поскольку эти длины волн лучше всего подходят для изучения длинноволновой тепловой энергии, излучаемой нашей планетой.

СЛЕВА:  Обычный пульт дистанционного управления телевизором использует инфракрасную энергию с длиной волны около 940 нанометров. Хотя вы не можете «видеть» свет, исходящий от пульта дистанционного управления, некоторые цифровые камеры и камеры мобильных телефонов чувствительны к этой длине волны излучения. Попробуйте! СПРАВА:  Инфракрасные лампы Тепловые лампы часто излучают как видимую, так и инфракрасную энергию на длинах волн от 500 до 3000 нм. Их можно использовать для обогрева ванных комнат или подогрева еды. Тепловые лампы также могут согревать мелких животных и рептилий или даже согревать яйца, чтобы они могли вылупиться.

 

Авторы и права: Трой Бенеш

ОТКРЫТИЕ ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ

В 1800 году Уильям Гершель провел эксперимент по измерению разницы температур между цветами в видимом спектре. Он поместил термометры в каждый цвет видимого спектра. Результаты показали увеличение температуры от синего до красного. Когда он заметил еще более высокую температуру сразу за красным концом видимого спектра, Гершель открыл инфракрасный свет!

ТЕПЛОИЗОБРАЖЕНИЕ

Мы можем ощущать часть инфракрасной энергии как тепло. Некоторые объекты настолько горячие, что излучают видимый свет, например огонь. Другие объекты, такие как люди, не такие горячие и излучают только инфракрасные волны. Наши глаза не могут видеть эти инфракрасные волны, но приборы, способные воспринимать инфракрасную энергию, такие как очки ночного видения или инфракрасные камеры, позволяют нам «видеть» инфракрасные волны, излучаемые теплыми объектами, такими как люди и животные. Температура для изображений ниже указана в градусах по Фаренгейту.

Авторы и права: NASA/JPL-Caltech

 
ХОЛОДНАЯ АСТРОНОМИЯ

Многие объекты во Вселенной слишком холодные и тусклые, чтобы их можно было обнаружить в видимом свете, но их можно обнаружить в инфракрасном диапазоне. Ученые начинают раскрывать тайны более холодных объектов во Вселенной, таких как планеты, холодные звезды, туманности и многих других, изучая испускаемые ими инфракрасные волны.

Космический аппарат «Кассини» сделал это изображение полярного сияния Сатурна с помощью инфракрасных волн. Полярное сияние показано синим цветом, а нижележащие облака — красным. Эти полярные сияния уникальны, потому что они могут охватывать весь полюс, тогда как полярные сияния вокруг Земли и Юпитера обычно ограничены магнитными полями кольцами, окружающими магнитные полюса. Большой и переменный характер этих полярных сияний указывает на то, что заряженные частицы, поступающие от Солнца, испытывают над Сатурном некоторый тип магнетизма, который ранее был неожиданным.

ВИДЕНИЕ СКВОЗЬ ПЫЛЬ

Инфракрасные волны имеют более длинные волны, чем видимый свет, и могут проходить через плотные области газа и пыли в космосе с меньшим рассеянием и поглощением. Таким образом, инфракрасная энергия также может обнаруживать объекты во Вселенной, которые нельзя увидеть в видимом свете с помощью оптических телескопов. Космический телескоп Джеймса Уэбба (JWST) оснащен тремя инфракрасными приборами, помогающими изучать происхождение Вселенной и формирование галактик, звезд и планет.

Когда мы смотрим на созвездие Ориона, мы видим только видимый свет. Но космический телескоп НАСА «Спитцер» смог обнаружить около 2300 дисков, формирующих планеты, в туманности Ориона, чувствуя инфракрасное свечение их теплой пыли. У каждого диска есть потенциал для образования планет и собственной солнечной системы. Фото: Томас Мегит (Университет Толедо) и др., Лаборатория реактивного движения, Калифорнийский технологический институт, НАСА

 

Столб из газа и пыли в туманности Киля освещен свечением близлежащих массивных звезд, показанных ниже на изображении в видимом свете, полученном космическим телескопом Хаббл. Интенсивное излучение и быстрые потоки заряженных частиц от этих звезд вызывают образование новых звезд внутри столба. Большинство новых звезд невозможно увидеть на изображении в видимом свете (слева), потому что плотные газовые облака блокируют их свет. Однако, когда столб рассматривается в инфракрасной части спектра (справа), он практически исчезает, открывая маленькие звезды за столбом газа и пыли.

Авторы и права: НАСА, ЕКА и команда Hubble SM4 ERO

 
НАБЛЮДЕНИЕ ЗА ЗЕМЛЕЙ

Для астрофизиков, изучающих Вселенную, источники инфракрасного излучения, такие как планеты, относительно холодны по сравнению с энергией, излучаемой горячими звездами и другими небесными объектами. Земные ученые изучают инфракрасное излучение как тепловое излучение (или тепло) нашей планеты. Когда падающее солнечное излучение попадает на Землю, часть этой энергии поглощается атмосферой и поверхностью, тем самым нагревая планету. Это тепло излучается Землей в виде инфракрасного излучения. Приборы на борту спутников наблюдения за Землей могут обнаруживать это испускаемое инфракрасное излучение и использовать полученные измерения для изучения изменений температуры поверхности земли и моря.

На поверхности Земли есть и другие источники тепла, такие как потоки лавы и лесные пожары. Спектрорадиометр среднего разрешения (MODIS) на борту спутников Aqua и Terra использует инфракрасные данные для мониторинга дыма и точного определения источников лесных пожаров. Эта информация может иметь важное значение для борьбы с пожаром, когда самолеты пожарной разведки не могут пролететь сквозь густой дым. Инфракрасные данные также могут позволить ученым отличить пылающие огни от все еще тлеющих шрамов от ожогов.

Авторы и права: Джефф Шмальц, группа быстрого реагирования MODIS облака и которые были землей и морем. Основываясь на этих различиях температур, он раскрасил каждый отдельно, используя 256 цветов, придав изображению реалистичный вид.

Авторы и права: Центр космической науки и техники, Университет Висконсин-Мэдисон, Ричард Корс, дизайнер

 

Зачем использовать инфракрасное излучение для изображения Земли? Хотя в видимом диапазоне легче отличить облака от земли, в инфракрасном диапазоне облака более детализированы. Это отлично подходит для изучения структуры облаков. Например, обратите внимание, что более темные облака теплее, а более светлые — холоднее. К юго-востоку от Галапагосских островов, к западу от побережья Южной Америки, есть место, где можно отчетливо увидеть несколько слоев облаков, причем более теплые облака находятся на более низких высотах, ближе к океану, который их согревает.

Глядя на инфракрасное изображение кошки, мы знаем, что многие вещи излучают инфракрасный свет. Но многие вещи также отражают инфракрасный свет, особенно ближний инфракрасный свет. Узнайте больше об ОТРАЖЕННОМ ближнем инфракрасном излучении.

 

К началу страницы  | Далее: Отраженные волны ближнего инфракрасного диапазона


Цитата
APA

Национальное управление по аэронавтике и исследованию космического пространства, Управление научной миссии. (2010). Инфракрасные волны. Получено [вставьте дату — например. 10 августа 2016 г.] , с веб-сайта NASA Science: http://science.nasa.gov/ems/07_infraredwaves

MLA

Управление научной миссии. «Инфракрасные волны» NASA Science . 2010. Национальное управление по аэронавтике и исследованию космического пространства. [вставить дату — напр. 10 августа 2016 г.] http://science.nasa.gov/ems/07_infraredwaves

Что такое инфракрасное излучение? | Live Science

Когда вы совершаете покупку по ссылкам на нашем сайте, мы можем получать партнерскую комиссию. Вот как это работает.

Изображение Земли в инфракрасном диапазоне волн показывает относительную температуру по всему миру. На фото виден шлейф загрязнения угарным газом возле Краевого пожара, который вспыхнул возле национального парка Йосемити в Калифорнии 26 августа 2013 года. (Изображение предоставлено: NASA/JPL-Caltech/Институт космических наук)

Инфракрасное излучение (ИК) или инфракрасный свет — это тип лучистой энергии, который невидим для человеческого глаза, но который мы можем ощущать как тепло. Все объекты во Вселенной излучают инфракрасное излучение в той или иной степени, но два наиболее очевидных источника — солнце и огонь.

ИК — это тип электромагнитного излучения, континуум частот, возникающий, когда атомы поглощают, а затем выделяют энергию. Электромагнитное излучение от самой высокой до самой низкой частоты включает гамма-лучи, рентгеновские лучи, ультрафиолетовое излучение, видимый свет, инфракрасное излучение, микроволны и радиоволны. Вместе эти виды излучения составляют электромагнитный спектр.

По данным НАСА, британский астроном Уильям Гершель открыл инфракрасный свет в 1800 году. В эксперименте по измерению разницы температур между цветами видимого спектра он поместил термометры на пути света в пределах каждого цвета видимого спектра. Он наблюдал повышение температуры от синего до красного и обнаружил еще более высокую температуру сразу за красным концом видимого спектра.

В электромагнитном спектре инфракрасные волны возникают на частотах выше частот микроволн и чуть ниже частот красного видимого света, отсюда и название «инфракрасный». По данным Калифорнийского технологического института (Калифорнийский технологический институт), волны инфракрасного излучения длиннее, чем волны видимого света. Диапазон частот ИК-излучения составляет от примерно 300 гигагерц (ГГц) до примерно 400 терагерц (ТГц), а длина волны оценивается в диапазоне от 1000 микрометров (мкм) до 760 нанометров (2,9921 дюйм), хотя, по данным НАСА, эти значения не являются окончательными.

Подобно спектру видимого света, который варьируется от фиолетового (самая короткая длина волны видимого света) до красного (самая длинная длина волны), инфракрасное излучение имеет свой собственный диапазон длин волн. Более короткие «ближние инфракрасные» волны, которые ближе к видимому свету в электромагнитном спектре, не излучают заметного тепла и излучаются пультом дистанционного управления телевизором для переключения каналов. По данным НАСА, более длинные «дальние инфракрасные» волны, которые ближе к микроволновой части электромагнитного спектра, можно ощущать как сильное тепло, такое как тепло от солнечного света или огня.

ИК-излучение — это один из трех способов передачи тепла из одного места в другое, два других — конвекция и теплопроводность. Все, что имеет температуру выше примерно 5 градусов по Кельвину (минус 450 градусов по Фаренгейту или минус 268 градусов по Цельсию), излучает ИК-излучение. По данным Университета Теннесси, Солнце излучает половину своей полной энергии в виде инфракрасного излучения, а большая часть видимого света звезды поглощается и переизлучается в виде инфракрасного излучения.

Бытовое использование

Бытовые приборы, такие как тепловые лампы и тостеры, используют инфракрасное излучение для передачи тепла, как и промышленные нагреватели, например те, которые используются для сушки и отверждения материалов. Лампы накаливания преобразуют только около 10 процентов потребляемой ими электроэнергии в энергию видимого света, в то время как остальные 9 процентовПо данным Агентства по охране окружающей среды, 0 процентов преобразуется в инфракрасное излучение.

Инфракрасные лазеры могут использоваться для прямой связи на расстоянии в несколько сотен метров или ярдов. Согласно How Stuff Works, пульты дистанционного управления телевизора, использующие инфракрасное излучение, посылают импульсы ИК-энергии от светоизлучающего диода (LED) к ИК-приемнику в телевизоре. Приемник преобразует световые импульсы в электрические сигналы, которые предписывают микропроцессору выполнить запрограммированную команду.

Инфракрасное зондирование

Одним из наиболее полезных применений инфракрасного спектра является зондирование и обнаружение. Все объекты на Земле излучают ИК-излучение в виде тепла. Это можно обнаружить с помощью электронных датчиков, таких как те, которые используются в очках ночного видения и инфракрасных камерах.

Простым примером такого датчика является болометр, который состоит из телескопа с чувствительным к температуре резистором или термистором в фокусе, согласно Калифорнийскому университету в Беркли (UCB). Если теплое тело попадает в поле зрения этого прибора, тепло вызывает заметное изменение напряжения на термисторе.

Камеры ночного видения используют более сложную версию болометра. Эти камеры обычно содержат микросхемы формирования изображений с зарядовой связью (ПЗС), которые чувствительны к ИК-излучению. Изображение, сформированное ПЗС, затем можно воспроизвести в видимом свете. Эти системы могут быть сделаны достаточно маленькими, чтобы их можно было использовать в портативных устройствах или носимых очках ночного видения. Камеры также можно использовать для прицелов с добавлением ИК-лазера для наведения или без него.

Инфракрасная спектроскопия измеряет ИК-излучение материалов на определенных длинах волн. ИК-спектр вещества будет показывать характерные провалы и пики, когда фотоны (частицы света) поглощаются или испускаются электронами в молекулах, когда электроны переходят между орбитами или энергетическими уровнями. Затем эту спектроскопическую информацию можно использовать для идентификации веществ и мониторинга химических реакций.

По словам Роберта Маяновича, профессора физики Университета штата Миссури, инфракрасная спектроскопия, такая как инфракрасная спектроскопия с преобразованием Фурье (FTIR), очень полезна для многочисленных научных приложений. К ним относятся изучение молекулярных систем и двумерных материалов, таких как графен.

Инфракрасная астрономия

Калифорнийский технологический институт описывает инфракрасную астрономию как «обнаружение и изучение инфракрасного излучения (тепловой энергии), испускаемого объектами во Вселенной». Достижения в области ИК-ПЗС-систем визуализации позволили детально наблюдать за распределением источников ИК-излучения в пространстве, выявляя сложные структуры в туманностях, галактиках и крупномасштабную структуру Вселенной.

Одно из преимуществ ИК-наблюдения заключается в том, что оно позволяет обнаруживать объекты, которые слишком холодны, чтобы излучать видимый свет. Это привело к открытию ранее неизвестных объектов, в том числе комет, астероидов и тонких облаков межзвездной пыли, которые, кажется, распространены по всей галактике.

ИК-астрономия особенно полезна для наблюдения за холодными молекулами газа и для определения химического состава частиц пыли в межзвездной среде, сказал Роберт Паттерсон, профессор астрономии Университета штата Миссури. Эти наблюдения проводятся с использованием специализированных ПЗС-детекторов, чувствительных к фотонам ИК-диапазона.

Другое преимущество ИК-излучения заключается в том, что его большая длина волны означает, что оно не рассеивает так сильно, как видимый свет, по данным НАСА. В то время как видимый свет может поглощаться или отражаться частицами газа и пыли, более длинные ИК-волны просто обходят эти небольшие препятствия. Благодаря этому свойству инфракрасное излучение можно использовать для наблюдения за объектами, свет которых затенен газом и пылью. К таким объектам относятся вновь формирующиеся звезды, находящиеся в туманностях или в центре земной галактики.

Дополнительные ресурсы:

  • Узнайте больше об инфракрасных волнах от NASA Science.
  • Узнайте больше об инфракрасном диапазоне от обсерватории Джемини.
  • Посмотрите это видео, описывающее инфракрасное зрение, от National Geographic.

Эта статья была обновлена ​​27 февраля 2019 г. участником Live Science Трейси Педерсен.

Будьте в курсе последних научных новостей, подписавшись на нашу рассылку Essentials.

Свяжитесь со мной, чтобы сообщить о новостях и предложениях от других брендов Future. Получайте электронные письма от нас от имени наших надежных партнеров или спонсоров.

Джим Лукас — автор статей для Live Science. Он охватывает физику, астрономию и инженерное дело. Джим окончил Университет штата Миссури, где получил степень бакалавра наук в области физики, а также астрономию и техническое письмо. После окончания университета он работал в Лос-Аламосской национальной лаборатории системным администратором, техническим писателем-редактором и специалистом по ядерной безопасности.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *