- Индукционный нагреватель для автосервиса своими руками — nehomesdeaf
- Индукционный нагреватель собственными руками
- Индукционный нагреватель 500 Ватт собственными руками
- Схема индукционного нагревателя:
- Элементы и катушка:
- Чуть-чуть фотографий:
- Рабочая схема индукционного нагревателя металла собственными руками
- Шаг 1: Рабочий принцип
- Шаг 2: Материалы
- Шаг 3: Инструменты
- Шаг 4: Охлаждение полевых транзисторов
- Шаг 5: Конденсаторная батарея
- Шаг 6: Рабочая спираль
- Шаг 7: Сборка цепи
- Шаг 8: Собираем прибор
- Шаг 9: Установка на основу
- Шаг 10: Проверка работоспособности
- Индукционный нагреватель своими руками — Дневник садовода sadovichkov.ru
- Индукционный нагреватель своими руками
- Как сделать индукционный нагреватель своими руками?
- Инструкция по изготовлению
- Нюансы
- Блиц-советы
- Как сделать высокочастотный индукционный нагреватель своими руками – схема простого индуктивного горна для нагрева металла электричеством
- Шаг 1: Компоненты
- Шаг 2: Схема инвертора
- Шаг 3: Драйвер
- Шаг 4: Передохнём
- Шаг 5: LC-контур
- Шаг 6: Сборка трансформатора
- — где найти медные провода большого сечения для самодельного индукционного нагревателя?
- Индукционный нагреватель из лома
Индукционный нагреватель для автосервиса своими руками — nehomesdeaf
Индукционный нагреватель собственными руками
Индукционный нагреватель очень нужная вещь для кузнецов, токарей, слесарей и домашних умельцев. С его помощью всегда без проблем и легко можно подогреть и даже расплавить металл, вам не требуются не дешёвые тепловые носители, такие, как уголь и газ, необходимо только подключить к прибору электричество. Происходит бесконтактный нагрев металла токами высокой частоты, по научному волнами радиочастотного диапазона. Прибор повсеместно используют для термообработки, закалки и гибки деталей, бесконтактной плавки, пайки и сварки, металлов. В ювелирном деле для обработки термическим способом небольших деталей. В медицине для дезинфекции медицинского инструмента. В автомобильном сервисе слесаря греют заржавевшие гайки. Также индуктор устанавливают в индукционных котлах, используемых для отапливания помещений для жилья.
На этом рисунке показана рабочая схема индукционного нагревателя, который вы легко можете выполнить собственными руками.
Схема индукционного нагревателя
Устройство состоит из задающего генератора высокой частоты собранного на 2-ух мощных полевых транзисторах. Напряжение работы генератора зависит от мощности установленных полевых транзисторов. С транзисторами IRFP250 устройство можно питать напряжением от 12 до 30 вольт. А если установить транзисторы IRFP260, тогда напряжение питания можно поднять от 12 до 60 вольт.
Мощность индуктора ощутимо возрастет, температура нагрева металла увеличится более 1000 градусов, что даст возможность плавить металлы. Во время работы транзисторы будут особенно сильно разогреваться, благодаря этому их нужно установить на большие отопительные приборы и установить мощный вентилятор. На холостом ходу индуктор потребляет не меньше 10А, а в исправном состоянии не меньше 15А, естественно требуется высокомощный блок питания минимум на 20А.
На этом рисунке показана монтажная плата индукционного нагревателя.
Также вам потребуются резисторы R1, R2 на 10К мощностью 0. 25 Ватт. Резисторы R3, R4 с сопротивлением 470 Ом не меньше 2 Ватт. Диоды D1, D2 ультрабыстрые UF4007 или остальные такие же на самый большой ток до 1А. Стабилитроны VD1, VD2 мощностью не меньше 5 Ватт с напряжением стабилизации 12В к примеру 1N5349 и остальные. Дроссели L1, L2 размером 27х14х11 мм жёлтого цвета с белой полосой я вытащил из компьютерных трансформаторов. На каждый дроссель нужно накрутить 25 витков медного провода диаметром 1 мм лучше всего в лаковой изоляции, если не найдете, подойдёт одножильный провод в полихлорвиниловой изоляции на скорость особо не действует.
Конденсаторы С1-С16 металлоплёночные 0.33 мкФ 630В, соединяются параллельно рядами 4х4, в блоке всего шестнадцать штук. С небольшим рабочим напряжением лучше не устанавливать, будут перегреваться. Между конденсаторами оставляйте маленькое расстояние для отличного охлаждения воздушным потоком.
Дроссели решил наклеить герметиком из силикона, чтобы не болтались.
Основную деталь нагревателя, индуктор я сделал из медной трубки диаметром 6 мм длинною 1 метр. Приобрести такую можно в любом автомобильном магазине типа «Газовщик» и там где торгуют газо-балонным оборудованием для машин. Медную трубку наматываем на кусочек полимерной трубы внешним диаметром 40 мм, подобная труба применяется в пластиковом отоплении. Делаем пять витков, расстояние между верхним краем первого витка и нижним краем пятого витка должно быть 40 мм. Концы трубы изгибаем, как на рисунке и закрепляем к отопительным приборам при помощи 2-ух клемных колодок для провода сечением 16 мм?.
Во время работы индуктор будет сильно разогреваться от раскаленной детали, что может привести к повреждению медной трубки, благодаря этому нужно выполнить охлаждение. На концы медной трубки я одел силиконовые трубки и подключил насос омывателя лобового стекла автомобиля. Насос от ВАЗ 2114 и силиконовые трубки купил в автомобильном магазине. Вышла нормальная гидравлическая система охлаждения.
Чтобы охлаждать отопительные приборы и блок конденсаторов поставил мощный вентилятор от процессора. Для питания от 12 вольт подобного охлаждения в реальности достаточно. Если пожелаете поднять напряжение от 12 до 60 вольт, дабы получить самую большую мощность от индукционного нагревателя, выставьте намного мощнее отопительные приборы и очень производительный вентилятор, к примеру от отопителя салона ВАЗ 2107. Лучше всего выполнить железную шторку оберегающую нагреваемую деталь и медный индуктор от потока нагнетаемого вентилятором холодного воздуха.
Так как индукционный нагреватель потребляет большой ток около 20А, все дорожки на монтажной плате следует улучшить медной проволокой, напаянной сверху.
А сейчас самое любопытное… Проверки индукционного нагревателя я проводил от двенадцати вольтового аккумулятора для автомобиля. Иного источника питания способного выдавать большие токи у меня попросту нет. Лезвие от ножа для канцелярских работ нагрелось до красна за 10 секунд. А это эффективный результат, если взять во внимание, что индуктор запитан только от двенадцати вольт!
Друзья! По желанию собрать индукционный нагреватель собственными руками. Мой вам совет… Сразу ставьте полевые транзисторы IRFP260, большие отопительные приборы и мощный вентилятор от отопителя салона ВАЗ 2107, для питания индуктора в первую очередь применяйте мощный источник питания прекраснее всего начиная от 24В до 60В с силой тока минимум на 20А.
Радиодетали для сборки индукционного нагревателя
- Транзисторы Т1, Т2 IRFP250 лучше IRFP260 2 шт.
- Резисторы R1, R2 10K 0.25W 2 шт. R3, R4 470R 2W 2 шт.
- Диоды D1, D2 ультрабыстрые UF4007 2 шт. или подобные
- Стабилитроны VD1, VD2 на 12V 1W 1N5349 или подобные 2 шт.
- Конденсаторы C1-C16 0.33mf 630V 16 шт.
- Дроссели от компьютерного БП жёлтые с белой полосой, размер 27х14х11 мм 2 шт.
- Колодка клемная для провода сечением 16 мм? 2 шт.
- Провод медный в лаковой изоляции d=1 мм длина 2 метра
- Трубка медная d=6 мм, длина 1 метр
- Отопительный прибор если больше, то лучше 2 шт.
- Насос омывателя лобового стекла от ВАЗ 2114 1 шт.
- Трубка силиконовая 2 метра
- Вентилятор чем мощнее, тем лучше. Советую от отопителя салона ВАЗ 2107 1 шт.
Друзья, желаю вам удачи и прекрасного настроения! До встречи в новых статьях!
Советую взглянуть видеоролик о том, как выполнить индукционный нагреватель собственными руками
Индукционный нагреватель 500 Ватт собственными руками
Схема индукционного нагревателя на 500 Ватт, который можно создать собственными руками! Во всемирной сети много аналогичных схем, но интерес к ним исчезает, так как как правило они или не работают или работают но не так как хочется. Эта схема индукционного нагревателя полностью рабочая, проверенная, а основное, не тяжелая, думаю вы оцените!
Схема индукционного нагревателя:
Элементы и катушка:
Рабочая катушка имеет 5 витков, для намотки была применена медная трубка диаметром около 1 см, однако можно и меньше. Такой диаметр выбрали не просто так, через трубку подаётся вода для охлаждения катушки и транзисторов.
Транзисторы ставил IRFP150 так как IRFP250 рядом не оказалось. Конденсаторы плёночные 0,27 мкФ 160 вольт, однако можно установить 0,33 мкФ и выше, если первые найти не выйдет. Необходимо обратить свое внимание, что схему можно питать напряжением до 60 вольт, но в данном случае, рекомендуется устанавливать конденсаторы на напряжение 250 вольт. Если схема будет питаться напряжением до 30 вольт, то на 150 абсолютно хватит!
Стабилитроны разрешено устанавливать любые на 12-15 вольт от 1 Ватт, к примеру 1N5349 и им такие же. Диоды можно применять UF4007 и ему такие же. Резисторы 470 Ом от 2-х Ватт.
Чуть-чуть фотографий:
За место отопительных приборов, были применены медные пластины, которые припаиваются прямо к трубке, так как в этой конструкции применяется водное охлаждение. Я так думаю это очень эффектное охлаждение, так как транзисторы греются отлично и ни какие вентиляторы и супер отопительные приборы не помогут их от перегревания!
Охлаждающие пластины на плате размещены аналогичным образом, что бы трубка катушки проходила через них. Пластины и трубку необходимо припаять между собой, для этого я применил атмосферную горелку и большой паяльный аппарат для пайки автомобильных отопительных приборов.
Конденсаторы размещены на 2-ух стороннем текстолите, плата припаивается также к трубке катушки на прямую, для лучшего охлаждения.
Дроссели намотаны на ферритовых кольцах, персонально я достал их из компьютерного трансформатора, провод употреблялся медных в изоляции.
Индукционный нагреватель вышел достаточно мощным, латунь и алюминий плавит довольно легко, металлические детали тоже плавит, но чуть-чуть очень медленно. Так как я применил транзисторы IRFP150 то по показателям, схему можно питать напряжением до 30 вольт, благодаря этому мощность исчерпывается только данным моментом. Так что все таки рекомендую задействовать IRFP250.
На этом все! Ниже оставлю видео работы индукционного нагревателя и перечень деталей, которые можно приобрести на AliExpress по очень невысокой цене!
Рабочая схема индукционного нагревателя металла собственными руками
Когда перед человеком становится необходимость подогреть железный объект, ему на ум в первую очередь приходит огонь. Огонь – старомодный, малоэффективный и медлительный способ подогреть металл. Он тратит большую долю энергии на тепло, и от огня всегда идет дым. Как было бы классно, если бы всех таких проблем можно было избежать.
Сегодня я покажу вам как собрать индукционный нагреватель собственными руками с ZVS-драйвером. Это устройство нагревает большинство металлов при помощи ZVS-драйвера и силы электромагнетизма. Такой нагреватель высокоэффективен, не создает дыма, а нагрев подобных маленьких изделий из металла, как, допустим, скрепка — вопрос нескольких секунд. Видео показывает нагреватель в действии, но инструкция там предоставлена иная.
Шаг 1: Рабочий принцип
Большинство из вас в настоящий момент спрашивают себя – Что такое этот ZVS-драйвер? Это очень эффективный преобразователь электрической энергии, способный создавать мощное электромагнитное поле, нагревающее металл, база нашего нагревателя.
Чтобы стало ясно, как не прекращает работу наш прибор, я расскажу о главных нюансах. 2*R.
Особенно актуален металл, из которого состоит объект, который вы желаете подогреть. У сплавов на основе железа довольно высокая магнитная проницаемость, они могут применить больше энергии магнитного поля. Благодаря этому они быстрее греются. Алюминий имеет невысокую магнитную проницаемость и нагревается, естественно, длительнее. А предметы с высоким сопротивлением и невысокой магнитной проницаемостью, к примеру, палец, совсем не нагреются. Сопротивление материала принципиально важно. Чем выше сопротивление, тем слабее ток пройдёт по материалу, и тем, естественно, меньше выделится тепла. Чем ниже сопротивление, тем крепче будет ток, и по закону Ома, меньше потеря напряжения. Это чуть-чуть тяжело, однако из-за связи между сопротивлением и выдачей мощности, самая большая выдача мощности достигается, когда сопротивление равно 0.
Преобразователь электрической энергии ZVS очень сложная часть прибора, я объясню, как он функционирует. Когда ток включен, он идет через два индукционных дросселя к двоим концам спирали. Дроссели необходимы, чтобы удостовериться, что устройство не выдаст чрезмерно крепкий ток. Дальше ток идет через 2 резистора 470 Ом на затворы МДП-транзисторов.
Благодаря тому, что прекрасных элементов нет, один транзистор включаться будет раньше, чем другой. Когда это происходит, он на себя принимает весь входящий ток с другого транзистора. Он тоже будет коротить второй на землю. Благодаря этому не только ток потечет через катушку в землю, но и через быстрый диод будет разряжаться затвор второго транзистора, таким образом блокируя его. Благодаря тому, что параллельно катушке подключен конденсатор, формируется колебательный контур. Из-за возникшего резонанса, ток поменяет собственное направление, напряжение упадет до 0В. В данный момент затвор первого транзистора разряжается через диод на затвор второго транзистора, блокируя его. Этот цикл повторяется тысячи раз за секунду.
Резистор 10К призван сделать меньше лишний заряд затвора транзистора, действуя как конденсатор, а зенеровский диод должен хранить напряжение на затворах транзисторов 12В или ниже, чтобы они не взорвались. Этот преобразователь электрической энергии высокочастотный инвертор позволяет разогреваться железным объектам.
Настало время собрать нагреватель.
Шаг 2: Материалы
Для сборки нагревателя материалов необходимо чуть-чуть, и больше половины, на счастье, можно отыскать бесплатно. Если вы видели где нибудь валяющуюся просто так электронно-лучевую трубку, сходите и заберите ее. В ней есть значительная часть необходимых для нагревателя деталей. Если у вас есть желание более оригинальных комплектующих, приобретите их в магазине электрозапчастей.
Шаг 3: Инструменты
Для данного проекта вам потребуются:
Шаг 4: Охлаждение полевых транзисторов
В данном приборе транзисторы выключаются при напряжении 0 В, и греются не так сильно. Однако если вы хотите, чтобы нагреватель работал длительнее одной минуты, вам необходимо отводить тепло от транзисторов. Я сделал двоим транзисторам один общий поглотитель тепла. Удостоверьтесь, что железные затворы не затрагивают поглотителя, иначе МДП-транзисторы закоротит и они взорвутся. я применил компьютерный теплоотвод, и на нем уже была полоса герметика на основе силикона. Чтобы проверить изоляцию, коснитесь мультиметром средней ножки каждого МДП-транзистора (затвора), если мультиметр запищал, то транзисторы не изолированные.
Шаг 5: Конденсаторная батарея
Конденсаторы особенно сильно нагреваются из-за тока, регулярно проходящего через них. Нашему нагревателю необходима емкость конденсатора 0,47 мкФ. Благодаря этому нам необходимо соединить все конденсаторы в блок, аналогичным образом, мы получаем требуемую емкость, а площадь рассеивания тепла становится больше. Фактическое напряжение конденсаторов должно быть выше 400 В, чтобы взять во внимание пики индуктивного напряжения в резонансном контуре. Я сделал два кольца из проволоки из меди, к которым припаял 10 конденсаторов 0,047 мкФ параллельно один к одному. Аналогичным образом, я получил конденсаторную батарею совокупной емкостью 0,47 мкФ с прекрасным охлаждением воздуха. Я установлю ее параллельно рабочей спирали.
Шаг 6: Рабочая спираль
Это та часть прибора, в которой формируется магнитное поле. Спираль изготовлена из проволоки из меди – принципиально важно, чтобы была применена собственно медь. В первую очередь я применил для нагрева стальную спираль, и прибор работал довольно плохо. Без рабочей нагрузки он потреблял 14 А! Чтобы сравнить, после замены спирали на медную, прибор стал употреблять только 3 А. Я думаю, что в стальной спирали появлялись вихревые токи из-за содержания железа, и она тоже подверглась индукционному нагреву. Не уверен, что причина собственно в этом, однако это разъяснение кажется мне наиболее логичным.
Для спирали нужно взять медную проволоку большого сечения и сделайте 9 витков на отрезке Поливинилхлоридные трубы.
Шаг 7: Сборка цепи
Я сделал слишком много проб и сделал много ошибок, пока правильно собрал цепь. Более всего сложностей было с источником питания и со спиралью. Я взял 55А 12В импульсный блок питания. Я думаю, этот блок питания дал очень большой начальный ток на ZVS-драйвер, благодаря чему взорвались МДП-транзисторы. Может быть, это исправили бы добавочные индукторы, но я решил просто сменить блок питания на свинцово-кислотные аккумуляторы.
Потом я мучился с катушкой. Как я уже говорил, стальная катушка не подходила. Из-за высокого использования тока стальной спиралью взорвались еще пару транзисторов. В общей трудности у меня взорвались 6 транзисторов. Что ж, на ошибках учатся.
Я переделывал нагреватель много раз, однако тут я расскажу, как собрал его самую удачную версию.
Шаг 8: Собираем прибор
Чтобы собрать ZVS-драйвер, вам необходимо следовать приложенной схеме. В первую очередь я взял зенеровский диод и совместил с 10К резистором. Эту пару деталей можно сразу припаять между сливом и истоком МДП-транзистора. Удостоверьтесь, что зенеровский диод смотрит на слив. Потом припаяйте МДП-транзисторы к макетной плате с контактными дырочками. На нижней стороне макетной платы припаяйте два быстрых диода между затвором и сливом любого из транзисторов.
Удостоверьтесь, что белесая линия смотрит на затвор (рис. 2). Потом соедините плюс от вашего трансформатора со сливами двоих транзисторов через 2 220 Ом резистора. Заземлите оба истока. Припаяйте рабочую спираль и конденсаторную батарею параллельно один к одному, потом припаяйте любой из кончиков к самым разнообразным затворам. Наконец, подведите ток к затворам транзисторов через 2 50 мкгн дросселя. У них может быть тороидальный сердечник с 10 виточками проволки. Сейчас ваша схема готова к применению.
Шаг 9: Установка на основу
Чтобы все части вашего индукционного нагревателя удерживались вместе, им необходимо основание. Я взял для этого брусок из дерева 5*10 см. плата с электросхемой, конденсаторная батарея и рабочая спираль были приклеены на термоклей. Я думаю, аппарат смотрится круто.
Шаг 10: Проверка работоспособности
Чтобы ваш нагреватель включился, просто подсоедините его к источнику питания. Потом поместите предмет, который вам необходимо подогреть, внутрь рабочей спирали. Он должен начать разогреваться. Мой нагреватель раскалил скрепку до красного свечения за 10 секунд. Предметы крупнее, как гвозди, нагревались приблизительно за 30 секунд. В процессе нагревания употребление тока выросло примерно на 2 А. Этот нагреватель можно применять не только для развлечения.
После применения прибора не появляется сажи или дыма, он действует даже на изолированные железные объекты, к примеру, поглотитель газа в вакуумных трубках. Также прибор менее опасен для человека – с пальцем ничего не случится, если уместить его по центру рабочей спирали. Однако, можно обжечься о предмет, который был нагрет.
Благодарю за чтение!
Рассказываю как выполнить какую-то вещицу с пошаговыми фото и видео руководствами.
Индукционный нагреватель 11.0 kW 380V
Индукционный нагреватель своими руками — Дневник садовода sadovichkov.ru
Рейтинг статьиЗагрузка…
Индукционный нагреватель своими руками
Индукционный нагреватель незаменимая вещь для кузнецов, токарей, слесарей и домашних мастеров. С его помощью всегда легко и быстро можно нагреть и даже расплавить металл, вам не нужны дорогие теплоносители, такие, как уголь и газ, достаточно подключить к прибору электричество. Происходит бесконтактный нагрев металла токами высокой частоты, по научному волнами радиочастотного диапазона. Прибор широко применяют для термообработки, закалки и гибки деталей, бесконтактной плавки, пайки и сварки, металлов. В ювелирном деле для термической обработки мелких деталей. В медицине для дезинфекции медицинского инструмента. В автосервисе слесаря нагревают заржавевшие гайки. Так же индуктор устанавливают в индукционных котлах, применяемых для отапливания жилых помещений.
На этом рисунке изображена рабочая схема индукционного нагревателя, который вы легко можете сделать своими руками.
Схема индукционного нагревателя
Устройство состоит из задающего генератора высокой частоты собранного на двух мощных полевых транзисторах. Рабочее напряжение генератора зависит от мощности установленных полевых транзисторов. С транзисторами IRFP250 устройство можно питать напряжением от 12 до 30 вольт. А если установить транзисторы IRFP260, тогда напряжение питания можно поднять от 12 до 60 вольт.
Мощность индуктора заметно возрастет, температура нагрева металла поднимется более 1000 градусов, что позволит плавить металлы. В процессе работы транзисторы будут очень сильно нагреваться, поэтому их надо установить на большие радиаторы и поставить мощный вентилятор. На холостом ходу индуктор потребляет не менее 10А, а в рабочем состоянии не менее 15А, соответственно требуется очень мощный блок питания минимум на 20А.
На этом рисунке изображена печатная плата индукционного нагревателя.
Так же вам понадобятся резисторы R1, R2 на 10К мощностью 0.25 Ватт. Резисторы R3, R4 с сопротивлением 470 Ом не менее 2 Ватт. Диоды D1, D2 ультрабыстрые UF4007 или другие аналогичные на максимальный ток до 1А. Стабилитроны VD1, VD2 мощностью не менее 5 Ватт с напряжением стабилизации 12В например 1N5349 и другие. Дроссели L1, L2 размером 27х14х11 мм желтого цвета с белой полосой я вытащил из компьютерных блоков питания. На каждый дроссель надо намотать 25 витков медного провода диаметром 1 мм желательно в лаковой изоляции, если не найдете, подойдет одножильный провод в полихлорвиниловой изоляции на скорость сильно не влияет.
Конденсаторы С1-С16 металлоплёночные 0.33 мкФ 630В, соединяются параллельно рядами 4х4, в блоке всего шестнадцать штук. С меньшим рабочим напряжением лучше не ставить, будут сильно греться. Между конденсаторами оставляйте небольшое расстояние для хорошего охлаждения потоком воздуха.
Дроссели решил приклеить силиконовым герметиком, чтобы не болтались.
Важную деталь нагревателя, индуктор я сделал из медной трубки диаметром 6 мм длинною 1 метр. Купить такую можно в любом автомагазине типа «Газовщик» и там где торгуют газо-балонным оборудованием для автомобилей. Медную трубку наматываем на кусок полипропиленовой трубы внешним диаметром 40 мм, такая труба используется в пластиковом отоплении. Делаем пять витков, расстояние между верхним краем первого витка и нижним краем пятого витка должно быть 40 мм. Концы трубы изгибаем, как на рисунке и прикрепляем к радиаторам с помощью двух клемных колодок для провода сечением 16 мм².
В процессе работы индуктор будет сильно нагреваться от раскаленной детали, что может привести к повреждению медной трубки, поэтому надо сделать охлаждение. На концы медной трубки я одел силиконовые трубки и подключил насос омывателя лобового стекла автомобиля. Насос от ВАЗ 2114 и силиконовые трубки купил в автомагазине. Получилась нормальная водяная система охлаждения.
Чтобы охлаждать радиаторы и блок конденсаторов поставил мощный вентилятор от процессора. Для питания от 12 вольт такого охлаждения вполне достаточно. Если захотите поднять напряжение от 12 до 60 вольт, чтобы получить максимальную мощность от индукционного нагревателя, поставьте более мощные радиаторы и более производительный вентилятор, например от отопителя салона ВАЗ 2107. Желательно сделать металлическую шторку оберегающую нагреваемую деталь и медный индуктор от потока нагнетаемого вентилятором холодного воздуха.
Поскольку индукционный нагреватель потребляет большой ток около 20А, все дорожки на печатной плате следует усилить медной проволокой, напаянной сверху.
А теперь самое интересное… Испытания индукционного нагревателя я проводил от двенадцати вольтового автомобильного аккумулятора. Другого источника питания способного выдавать большие токи у меня просто нет. Лезвие от канцелярского ножа нагрелось до красна за 10 секунд. А это хороший результат, если учесть, что индуктор запитан всего от двенадцати вольт!
Друзья! Если хотите собрать индукционный нагреватель своими руками. Мой вам совет… Сразу ставьте полевые транзисторы IRFP260, большие радиаторы и мощный вентилятор от отопителя салона ВАЗ 2107, для питания индуктора обязательно используйте мощный источник питания лучше всего начиная от 24В до 60В с силой тока минимум на 20А.
Радиодетали для сборки индукционного нагревателя
- Транзисторы Т1, Т2 IRFP250 лучше IRFP260 2 шт.
- Резисторы R1, R2 10K 0. 25W 2 шт. R3, R4 470R 2W 2 шт.
- Диоды D1, D2 ультрабыстрые UF4007 2 шт. или аналогичные
- Стабилитроны VD1, VD2 на 12V 1W 1N5349 или аналогичные 2 шт.
- Конденсаторы C1-C16 0.33mf 630V 16 шт.
- Дроссели от компьютерного БП желтые с белой полосой, размер 27х14х11 мм 2 шт.
- Колодка клемная для провода сечением 16 мм² 2 шт.
- Провод медный в лаковой изоляции d=1 мм длина 2 метра
- Трубка медная d=6 мм, длина 1 метр
- Радиатор чем больше, тем лучше 2 шт.
- Насос омывателя лобового стекла от ВАЗ 2114 1 шт.
- Трубка силиконовая 2 метра
- Вентилятор чем мощнее, тем лучше. Рекомендую от отопителя салона ВАЗ 2107 1 шт.
Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!
Рекомендую посмотреть видеоролик о том, как сделать индукционный нагреватель своими руками
Как сделать индукционный нагреватель своими руками?
Индукционные нагреватели работают по принципу “получение тока из магнетизма”. В специальной катушке генерируется переменное магнитное поле высокой мощности, которое порождает вихревые электрические токи в замкнутом проводнике.
Замкнутым проводником в индукционных плитах является металлическая посуда, которая разогревается вихревыми электрическими токами. В общем, принцип работы таких приборов не сложен, и при наличии небольших познаний в физике и электрике, собрать индукционный нагреватель своими руками не составит большого труда.
Самостоятельно могут быть изготовлены следующие приборы:
- Приборы для нагрева теплоносителя в котле отопления.
- Мини-печи для плавки металлов.
- Плиты для приготовления пищи.
Кроме этого большая сложность при конструировании плиты заключается в подборе материала для основания варочной поверхности, которое должно удовлетворять следующим требованиям:
- Идеально проводить электромагнитное излучение.
- Не являться токопроводящим материалом.
- Выдерживать высокую температурную нагрузку.
В бытовых варочных индукционных поверхностях используется дорогая керамика, при изготовлении в домашних условиях индукционной плиты, найти достойную альтернативу такому материалу – довольно сложно. Поэтому, для начала следует сконструировать что-нибудь попроще, например, индукционную печь для закалки металлов.
Инструкция по изготовлению
Чертежи
Рисунок 1. Электрическая схема индукционного нагревателя
Рисунок 2. Устройство.
Рисунок 3. Схема простого индукционного нагревателя
Для изготовления печи понадобятся следующие материалы и инструменты:
- паяльник;
- припой;
- текстолитовая плата.
- мини-дрель.
- радиоэлементы.
- термопаста.
- химические реагенты для травления платы.
Дополнительные материалы и их особенности:
- Для изготовления катушки, которая будет излучать необходимое для нагрева переменное магнитное поле, необходимо приготовить отрезок медной трубки диаметром 8 мм, и длиной 800 мм.
- Мощные силовые транзисторы являются самой дорогой частью самодельной индукционной установки. Для монтажа схемы частотного генератора необходимо приготовить 2 таких элемента. Для этих целей подойдут транзисторы марок: IRFP-150; IRFP-260; IRFP-460. При изготовлении схемы используются 2 одинаковых из перечисленных полевых транзисторов.
- Для изготовления колебательно контура понадобятся керамические конденсаторы ёмкостью 0,1 mF и рабочим напряжением 1600 В. Для того, чтобы в катушке образовался переменный ток высокой мощности, потребуется 7 таких конденсаторов.
- При работе такого индукционного прибора, полевые транзисторы будут сильно разогреваться и если к ним не будут присоединены радиаторы из алюминиевого сплава, то уже через несколько секунд работы на максимальной мощности, данные элементы выйдут из строя. Ставить транзисторы на теплоотводы следует через тонкий слой термопасты, иначе эффективность такого охлаждения будет минимальна.
- Диоды, которые используются в индукционном нагревателе, обязательно должны быть ультрабыстрого действия. Наиболее подходящими для данной схемы, диоды: MUR-460; UF-4007; HER – 307.
- Резисторы, которые используются в схеме 3: 10 кОм мощностью 0,25 Вт – 2 шт. и 440 Ом мощностью – 2 Вт. Стабилитроны: 2 шт. с рабочим напряжением 15 В. Мощность стабилитронов должна составлять не менее 2 Вт. Дроссель для подсоединения к силовым выводам катушки используется с индукцией.
- Для питания всего устройства понадобится блок питания мощностью до 500. Вт. и напряжением 12 – 40 В. Запитать данное устройство можно от автомобильного аккумулятора, но получить наивысшие показания мощности при таком напряжении не получится.
Сам процесс изготовления электронного генератора и катушки занимает немного времени и осуществляется в такой последовательности:
- Из медной трубы делается спираль диаметром 4 см. Для изготовления спирали следует медную трубку накрутить на стержень с ровной поверхностью диаметром 4 см. Спираль должна иметь 7 витков, которые не должны соприкасаться. На 2 конца трубки припаиваются крепёжные кольца для подключения к радиаторам транзистора.
- Печатная плата изготавливается по схеме. Если есть возможность поставить полипропиленовые конденсаторы, то благодаря тому, что такие элементы обладают минимальными потерями и устойчивой работой при больших амплитудах колебания напряжений, устройство будет работать намного стабильнее. Конденсаторы в схеме устанавливаются параллельно образуя с медной катушкой колебательный контур.
- Нагрев металла происходит внутри катушки, после того как схема будет подключена к блоку питания или аккумулятору. При нагреве металла необходимо следить за тем, чтобы не было короткого замыкания обмоток пружины. Если коснуться нагреваемым металлом 2 витка катушки одновременно, то транзисторы выходят из строя моментально.
Нюансы
- При проведении опытов по нагреву и закалке металлов, внутри индукционной спирали температура может быть значительна и составляет 100 градусов Цельсия. Этот теплонагревательный эффект можно использовать для нагрева воды для бытовых нужд или для отопления дома.
- Схема нагревателя рассмотренного выше (рисунок 3), при максимальной нагрузке способна обеспечить излучение магнитной энергии внутри катушки равное 500 Вт. Такой мощности недостаточно для нагрева большого объёма воды, а сооружение индукционной катушки высокой мощности потребует изготовление схемы, в которой необходимо будет использовать очень дорогие радиоэлементы.
- Бюджетным решением организации индукционного нагрева жидкости, является использование нескольких устройств описанных выше, расположенных последовательно. При этом, спирали должны находиться на одной линии и не иметь общего металлического проводника.
- В качестве теплообменникаиспользуется труба из нержавеющей стали диаметром 20 мм. На трубу «нанизываются» несколько индукционных спиралей, таким образом, чтобы теплообменник оказался в середине спирали и не соприкасался с её витками. При одновременном включении 4 таких устройств, мощность нагрева будет составлять порядка 2 Квт, что уже достаточно для проточного нагрева жидкости при небольшой циркуляции воды, до значений позволяющих использовать данную конструкцию в снабжении тёплой водой небольшого дома.
- Если соединить такой нагревательный элемент с хорошо изолированным баком, который будет расположен выше нагревателя, то в результате получится бойлерная система, в которой нагрев жидкости будет осуществляться внутри нержавеющей трубы, нагретая вода будет подниматься вверх, а её место будет занимать более холодная жидкость.
- Если площадь дома значительна, то количество индукционных спиралей может быть увеличено до 10 штук.
- Мощность такого котла можно легко регулировать путём отключения или включения спиралей. Чем больше одновременно включённых секций, тем больше будет мощность работающего таким образом отопительного устройства.
- Для питания такого модуля понадобится мощный блок питания. Если есть в наличии инверторный сварочный аппарат постоянного тока, то из него можно изготовить преобразователь напряжения необходимой мощности.
- Благодаря тому, что система работает на постоянном электрическом токе, который не превышает 40 В, эксплуатация такого устройства относительно безопасна, главное обеспечить в схеме питания генератора блок предохранителей, которые в случае короткого замыкания обесточат систему, там самым исключив возможность возникновения пожара.
- Можно таким образом организовать “бесплатное” отопление дома, при условии установки для питания индукционных устройств аккумуляторных батарей, зарядка которых будет осуществляться за счёт энергии солнца и ветра.
- Аккумуляторы следует объединить в секции по 2 шт., подключённые последовательно. В результате, напряжение питания при таком подключении будет не менее 24 В., что обеспечит работу котла на высокой мощности. Кроме этого, последовательное подключение позволит снизить силу тока в цепи и увеличить срок эксплуатации аккумуляторов.
Блиц-советы
- Эксплуатация самодельных устройств индукционного нагрева, не всегда позволяет исключить распространение вредного для человека электромагнитного излучения, поэтому индукционный котёл следует устанавливать в нежилом помещении и экранировать оцинкованной сталью.
- Обязательно при работе с электричествомследует соблюдать правила техники безопасности, особенно это касается сетей переменного тока напряжением 220 В.
- В качестве экспериментаможно изготовить варочную поверхность для приготовления пищи по схеме указанной в статье, но эксплуатировать данный прибор постоянно не рекомендуется по причине несовершенства самостоятельного изготовления экранирования данного устройства, из-за этого возможно воздействие на организм человека вредного электромагнитного излучения, способного негативно сказаться на здоровье.
Как сделать высокочастотный индукционный нагреватель своими руками – схема простого индуктивного горна для нагрева металла электричеством
Сейчас мы узнаем как сделать своими руками индукционный нагреватель, который можно использовать для разных проектов или просто для удовольствия. Вы сможете мгновенно плавить сталь, алюминий или медь. Вы можете использовать её для пайки, плавления и ковки металлов. Вы можете использовать самодельный индуктивный нагреватель и для литья.
Мое учебное пособие охватывает теорию, компоненты и сборку некоторых из важнейших компонентов.
Инструкция большая, в ней мы рассмотрим основные шаги, дающие вам представление о том, что входит в такой проект, и о том, как его спроектировать, чтобы ничего не взорвалось.
Для печи я собрал очень точный недорогой криогенный цифровой термометр. Кстати, в тестах с жидким азотом он неплохо себя показал против брендовых термометров.
Шаг 1: Компоненты
Основные компоненты высокочастотного индукционного нагревателя для нагрева металла электричеством — инвертор, драйвер, соединительный трансформатор и колебательный контур RLC. Вы увидите схему чуть позже. Начнем с инвертора. Это — электрическое устройство, которое изменяет постоянный ток на переменный. Для мощного модуля он должен работать стабильно. Сверху находится защита, которая используется, чтобы защитить привод логического элемента МОП-транзистора от любого случайного перепада напряжения. Случайные перепады вызывают шум, который приводит к переключению на высокие частоты. Это приводит к перегреву и отказу МОП-транзистора.
Линии с большой силой тока находятся внизу печатной платы. Много слоев меди используются, чтобы позволить им пропускать более 50А тока. Нам не нужен перегрев. Также обратите внимание на большие алюминиевые радиаторы с водяным охлаждением с обеих сторон. Это необходимо, чтобы рассеивать тепло, вырабатываемое МОП-транзисторами.
Изначально я использовал вентиляторы, но чтобы справиться с этой мощностью, я установил небольшие водяные насосы, благодаря которым вода циркулирует через алюминиевые теплоотводы. Пока вода чистая, трубки не проводят ток. У меня также установлены тонкие слюдяные пластины под МОП-транзисторами, чтобы гарантировать отсутствие проводимости через стоки.
Шаг 2: Схема инвертора
Это схема для инвертора. Схема на самом деле не такая сложная. Инвертированный и неинвертированный драйвер повышает или понижает напряжение 15В, чтобы настроить переменный сигнал в трансформаторе (GDT). Этот трансформатор изолирует чипы от мосфетов. Диод на выходе мосфета действует для ограничения пиков, а резистор минимизирует колебания.
Конденсатор C1 поглощает любые проявления постоянного тока. В идеале, вам нужны самые быстрые перепады напряжения на цепи, так как они уменьшают нагрев. Резистор замедляет их, что кажется нелогичным. Однако если сигнал не угасает, вы получаете перегрузки и колебания, которые разрушают мосфеты. Больше информации можно получить из схемы демпфера.
Диоды D3 и D4 помогают защитить МОП-транзисторы от обратных токов. C1 и C2 обеспечивают незамкнутые линии для проходящего тока во время переключения. T2 — это трансформатор тока, благодаря которому драйвер, о котором мы поговорим далее, получает обратный сигнал от тока на выходе.
Шаг 3: Драйвер
Эта схема действительно большая. Вообще, вы можете прочитать про простой маломощный инвертор. Если вам нужна большая мощность, вам нужен соответствующий драйвер. Этот драйвер будет останавливаться на резонансной частоте самостоятельно. После того, как ваш металл расплавится, он останется заблокированным на правильной частоте без необходимости какой-либо регулировки.
Если вы когда-либо строили простой индукционный нагреватель с чипом PLL, вы, вероятно, помните процесс настройки частоты, чтобы металл нагревался. Вы наблюдали за движением волны на осциллографе и корректировали частоту синхронизации, чтобы поддерживать эту идеальную точку. Больше не придется этого делать.
В этой схеме используется микропроцессор Arduino для отслеживания разности фаз между напряжением инвертора и емкостью конденсатора. Используя эту фазу, он вычисляет правильную частоту с использованием алгоритма «C».
Я проведу вас по цепи:
Сигнал емкости конденсатора находится слева от LM6172. Это высокоскоростной инвертор, который преобразует сигнал в красивую, чистую квадратную волну. Затем этот сигнал изолируется с помощью оптического изолятора FOD3180. Эти изоляторы являются ключевыми!
Далее сигнал поступает в PLL через вход PCAin. Он сравнивается с сигналом на PCBin, который управляет инвертором через VCOout. Ардуино тщательно контролирует тактовую частоту PLL, используя 1024-битный импульсно-модулированный сигнал. Двухступенчатый RC-фильтр преобразует сигнал PWM в простое аналоговое напряжение, которое входит в VCOin.
Как Ардуино знает, что делать? Магия? Догадки? Нет. Он получает информацию о разности фаз PCA и PCB от PC1out. R10 и R11 ограничивают напряжение в пределах 5 напряжений для Ардуино, а двухступенчатый RC-фильтр очищает сигнал от любого шума. Нам нужны сильные и чистые сигналы, потому что мы не хотим платить больше денег за дорогие мосфеты после того, как они взорвутся от шумных входов.
Шаг 4: Передохнём
Это был большой массив информации. Вы можете спросить себя, нужна ли вам такая причудливая схема? Зависит от вас. Если вы хотите автонастройку, тогда ответ будет «да». Если вы хотите настраивать частоту вручную, тогда ответ будет отрицательным. Вы можете создать очень простой драйвер всего лишь с таймером NE555 и использовать осциллограф. Можно немного усовершенствовать его, добавив PLL (петля фаза-ноль)
Тем не менее, давайте продолжим.
Шаг 5: LC-контур
К этой части есть несколько подходов. Если вам нужен мощный нагреватель, вам понадобится конденсаторный массив для управления током и напряжением.
Во-первых, вам нужно определить, какую рабочую частоту вы будете использовать. Более высокие частоты имеют больший скин-эффект (меньшее проникновение) и хороши для небольших объектов. Более низкие частоты лучше для больших объектов и имеют большее проникновение. Более высокие частоты имеют большие потери при переключении, но через бак пройдет меньше тока. Я выбрал частоту около 70 кГц и дошел до 66 кГц.
Мой конденсаторный массив имеет ёмкость 4,4 мкФ и может выдерживать более 300А. Моя катушка около 1мкГн. Также я использую импульсные пленочные конденсаторы. Они представляют собой осевой провод из самовосстанавливающегося металлизированного полипропилена и имеют высокое напряжение, высокий ток и высокую частоту (0.22 мкФ, 3000В). Номер модели 224PPA302KS.
Я использовал две медные шины, в которых просверлил соответствующие отверстия с каждой стороны. Паяльником я припаял конденсаторы к этим отверстиям. Затем я прикрепил медные трубки с каждой стороны для водного охлаждения.
Не берите дешевые конденсаторы. Они будут ломаться, и вы заплатите больше денег, чем если бы вы сразу купили хорошие.
Шаг 6: Сборка трансформатора
Оценка статьи:
Загрузка…
Adblock
detector
— где найти медные провода большого сечения для самодельного индукционного нагревателя?
спросил
Изменено 1 год, 7 месяцев назад
Просмотрено 471 раз
\$\начало группы\$
Ищу что-то похожее на эту катушку, но хоть убей, не могу найти «отдельно» от схемы, которую хочу сделать сам.
- катушка
- индукция
- нагреватель
\$\конечная группа\$
7
\$\начало группы\$
Трубки (трубы) используются для этих вещей.
Во-первых, вы запускаете эту штуку на частотах, когда ток течет тонким слоем, и вам все равно, является ли проводник полым (и он может также проходить внутри, уменьшая вдвое сопротивление).
Во-вторых, может оказаться практичным (или просто необходимым) запустить охлаждающую жидкость (обычно воду) внутрь.
Места, где можно недорого купить эти трубы:
Поставщики кондиционеров и мастерские. Вы даже можете получить более короткие детали (1 м или меньше) по цене металлолома или бесплатно. Широко используются 6 мм, 8 мм, 10 мм, 12 мм и соответствующие им имперские размеры.
Поставщики/мастерские по переоборудованию автомобилей сжиженного нефтяного газа. Преобразование LPG популярно здесь, может быть или не быть популярным там, где вы живете. Медные трубы несколько вышли из употребления, но все еще используются. Трубки поставляются с изоляцией из ПВХ (точно так же, как и кабель), что может быть полезным в вашем случае, а может и не быть. Обычны наружные диаметры 6 мм и 8 мм, также распространены обрезки.
Поставщики/мастерские гидравлики и пневматики (включая, помимо прочего, тормоза для легковых и грузовых автомобилей).
В некоторых из этих мест различают «мягкие» и «жесткие» трубы. Вам нужны «мягкие», «твердые» гораздо труднее безопасно согнуть.
Вы также можете взять инструменты для эстетического изгиба этих труб из тех же мест.
шт. сантехники используют 12 мм и больше, но это «жесткий» вариант (и вы не будете делать установку такой большой).
\$\конечная группа\$
4
\$\начало группы\$
Я знал парня, который строил экспериментальные индукционные нагреватели (под руководством специалиста по электромагнетизму) для полупроводниковой промышленности.
Они использовали медные трубки.
Получить стабильный резонанс было сложно, потому что мешала проводимость плазмы.
\$\конечная группа\$
\$\начало группы\$
Медная тормозная магистраль представляет собой медную трубку, легко доступную и дешевую. Любой гараж может просто дать вам немного этого бесплатно, так как иногда есть отрезанные метр или больше, которые они не будут использовать и выбрасывают.
\$\конечная группа\$
Зарегистрируйтесь или войдите в систему
Зарегистрируйтесь с помощью Google
Зарегистрироваться через Facebook
Зарегистрируйтесь, используя электронную почту и пароль
Опубликовать как гость
Электронная почта
Требуется, но не отображается
Опубликовать как гость
Электронная почта
Требуется, но не отображается
Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания, политикой конфиденциальности и политикой использования файлов cookie
Индукционный нагреватель из лома
Этот проект представляет собой не столько пошаговое руководство, сколько сборник практических заметок по сборке небольшого индукционного нагревателя для скамейки.
Дополнительную информацию об этом общем типе схемы можно найти, выполнив поиск «индукционный нагреватель ZVS» или «генератор Ройера».
Детали
Блок питания ATX должен иметь выходной ток при +12В, насколько это возможно. Вам нужно будет жестко связать Включите ATX, подключив «PS-ON» (зеленый провод) к земле. Все желтое провода должны быть связаны вместе, чтобы сформировать шину +12 В, и все они должны быть черными. провода, связанные вместе, чтобы сформировать землю. Все остальные силовые провода можно обрезан.
МОП-транзисторы, диоды и конденсаторы все должны выдерживать входное напряжение не менее чем в 3,14 раза. В данном случае это питание 12 В, поэтому достаточно скромных 40 В.
MOSFET Q1 и Q2 должны быть выбраны для максимально низкого сопротивления во включенном состоянии. Те, что найдены на Резервные копии материнских плат/ИБП работают отлично. Сливные контакты Q1 и Q2 НЕ часто, поэтому при установке их на радиатор убедитесь, что они утеплен термопрокладками и шайбами.
Диоды D1 и D2 должны быть быстрыми Тип Шоттки. Ничего особенного.
C1 представляет собой конденсаторную батарею, изготовленную конденсаторами переменного тока типа МКП. У них должно быть такое низкое СОЭ, как возможно и в идеале должны быть рассчитаны на работу при высокой температуре. Распределение общей емкости по нескольким физически большим, низким Емкостные единицы — хороший способ предотвратить перегрев. Обратите внимание, что поскольку этот обогреватель будет работать только от 12 В, необходимо понизьте частоту контура бака, добавив больше конденсаторов по порядку для получения полезного количества энергии в заготовке.
Счетчик М1 изготовлен с использованием аналогового счетчика любого типа. Небольшой отрезок тонкого многожильного провода протянут поперек два вывода счетчика. Провод действует как шунт низкого значения резистор, сбрасывающий небольшое количество напряжения при увеличении тока, отклонение счетчика. Методом проб и ошибок довольно легко найти какой длины провода вызовет полное отклонение счетчика при блок питания находится под максимальной нагрузкой.
Переключатель S1 используется для переключения питания на питание АТХ. Устанавливается между шнуром питания и сетью переменного тока. стороне источника питания ATX (обратите внимание, что для ясности только выход постоянного тока блок питания показан на схеме.)
Переключатель S2 представляет собой сильноточный переключатель постоянного тока. Тот, который я использовал, был выкраден из стартового ящика аварийной машины. Вам нужно будет найти тот, который использует контакты очень толстого калибра, обычные Выключатели переменного тока будут иметь слишком большое сопротивление и сгорят!
Катушка L1 — рабочая катушка, она должна быть около 12 витков толстого медного провода. Я использовал эмалированную проволоку, и покрытие держится даже при высокой температуре. Этот утеплитель хорош иметь, это предотвращает повреждение цепи, если вы случайно наткнетесь в катушку с заготовкой.
Проводка должна быть как можно короче. Эта схема должна иметь дело с большой мощностью, так что вам лучше построить его на медной оболочке вместо макетной платы.