Холодное электричество своими руками: Холодное электричество своими руками — nehomesdeaf

Содержание

понятие, определение, схема, устройство динатрона, выполняемые функции, итоги, формула расчета и расчеты

Холодное электричество в наше время не представляет собой нечто удивительное, хотя раньше вызывало много споров и интересов одновременно. В 1875 году Уильям Крукс обнаружил свойства лучистого вещества. Его изобретение радиометра было доказательством того, что «Сияющая Материя» была составляющей солнечного света. Никола Тесла, следуя этим открытиям, обнаружил, что электростатические заряды могут также передаваться с помощью лучистого вещества. Он назвал его Radiant Energy. Когда эта энергия передавалась с места на место, она вела себя как «звуковые волны электрифицированного воздуха». К 1900 году Тесла разработал системы освещения и электродвигатели, работающие на той самой энергии.


Электрификация. История электрификации. Лампочка Ильича

Электрификация – это важная составляющаяжизни каждого современного человека. Трудно себе…

Развитие теории Теслы

К 1934 году Томас Генри Морей продемонстрировал небольшую коробку, которая производила 50000 ватт, работая на энергии излучения. В 1973 году Эдвин В. Грей начал демонстрировать свое произведение EMA, электрический двигатель мощностью 80 л. с., способный сохранять в рабочем положении свои заряженные батареи, обеспечивая при этом избыточную механическую энергию. Пол Бауманн построил в 1980 году многочисленные модели удивительной самонаводящейся машины под названием «Тестатика» в Швейцарии. Большая часть работы Джона Бедини также попадает в область энергии излучения. Эти разработки являются лишь верхушкой айсберга в нашем понимании того, что по ошибке принято называть «статическим электричеством». Но на самом деле это нечто гораздо более удивительное – холодное электричество – новое поколение энергетики во всех сферах жизнедеятельности, как альтернатива опасному источнику питания.


Модуль Пельтье: характеристики

Эффект Пельтье нашел применение в настоящее время в создании небольших холодильников, необходимых…

Бесплатная электрическая энергия

Ничто в этом не кажется слишком интересным, потому что общеизвестно, что индуктор в конвертере может увеличить напряжение. Однако многие еще стараются понять холодное электричество Теслы, чтобы получить выгоду из теории и практики:

  1. Эндотермические и экзотермические электрические разряды. Слуховая и визуальная волна – это два совершенно разных типа искр, вызванных одним и тем же потоком энергии, хотя в процессе рассеивания они ведут себя по-разному.
  2. Экзотермические средства излучают энергию. Они обычно генерируют тепло или способствуют отоплению. Эндотермические средства излучают энергию, которая обычно генерирует холод или охлаждение. Поэтому редко кто мог использовать ее для обогревания или работы отопительной системы. Представьте, что электрический ток в проводах будет холодным и не выдавать разряда.
  3. А вот искра на конце каждого провода – это энергия, с которой нужно работать. Преобразованная, она станет прекрасным источником питания.

Это заставило многих взглянуть на схему «свободной энергии» немного иначе:

  1. L = 800 оборотов бифилярной катушки вокруг ферритового сердечника, около 30 Ом. Это показатель разработок Теслы, который он упоминал о своем изобретении. Катушка является его патентным изобретением, а L – величина измерения скорости оборотов.
  2. C = 30 мкФ, 4000 В постоянного тока, где С – это скорость движения энергии.

В приведенном выше примере оба переключателя закрываются и открываются одновременно. Во время фазы заряда схема заряжала индуктор, создавая магнитное поле внутри ферритового сердечника. Когда переключатели отпускаются, холодное электричество Теслы теоретически должно появляться через конденсатор. Как напряжение появляется на C, когда нет замкнутого контура тока? Этот эффект, который возникает с электрическим потенциалом, сталкивается с сопротивлением до того, как текущее насыщает это сопротивление. В школе учат закрывать все траектории цепи, но это останавливает поток свободной энергии. Если этого не сделать, то появляется синдром открытого полярного пространства, где и возникает свободная энергия холодного напряжения.


Электростатическая коптильня сделать самому своими руками:. ..

Многие современные промышленные установки, которые предназначены для приготовления рыбы и мяса в…

Мы могли бы иметь дело с совершенно другим типом тока, генерируемым абсолютно иным типом магнетического поля. Существует две теории о том, как это может происходить:

  1. При внезапном открытии переключателя мы создаем сингулярность, потому что изменение тока должно оставаться непрерывным по индуктивности. Перед тем как магнитное поле разрушается, оно расширяется, и напряжение увеличивается через обмотку. Напряжение потенциала заряжает конденсатор, не вытягивая ток из батареи. Это в основном эффект феррорезонанса, когда ферритовый сердечник насыщается. Так же двигаются отрицательные частицы, положительные заряды реагировали на это, и генерировалось отрицательное энтропийное магнитное поле, которое было индуцировано в катушку, а она заряжала конденсатор.
  2. Когда наше общество стало использовать отрицательный заряд (электричество), это сделало возможным наладить образ жизни, получая электричество для всего.

При использовании катушки Теслы проводник действует как высоковольтный и низковольтный источник с широким спектром выходных частот. Человек может прикоснуться к проводам без вреда или угрозы здоровью, потому что течения, которые касаются тела, слишком малы. Конструкция катушки Теслы такова, что выходной импеданс является переменным, поэтому он может подавать питание на различные нагрузки: от высоковольтного малоточного (флуоресцентного) до низковольтного сильноточного (автомобильная лампочка). Вы заметите, что звук катушки Теслы изменяется при изменении нагрузки. Это часть «настройки» для разных мощностей.

Результаты проведенных опытов с водой не являются неожиданными; удельное сопротивление и диэлектрическая проницаемость воды такова, что лампы накаливания имеют гораздо более низкий импеданс, чем водная стихия. Вы заметите, что, когда флуоресцентная лампа и лампа накаливания последовательно работают, первая светится ярко, но вторая не работает. Это связано с тем, что свободная энергия холодного электричества находится в высоковольтном режиме с малым током, а тока недостаточно, чтобы полностью осветить лампочку. Поэтому востребованность такого типа питания меньше, хотя не исключено его применение в другой сфере.

Холодное электричество = свободная энергия?

Когда мы начинаем обсуждать события в холодной электроэнергии, поскольку Тесла впервые наткнулся на это явление, опровергнув некоторые из проделанной Герцем работы, становится ясно, что нет такой вещи, как свободная энергия. Мы все знаем, что материя не может быть создана или уничтожена, но эта материя может быть преобразована или изменена только из одного типа в другой. Говорят, что, когда вещество претерпевает трансформацию или изменение, тогда энергия выделяется в нескольких формах, в зависимости от трансформации. Этот процесс в этой области изучения и был назван холодным электричеством. Стоит просто под разным углом посмотреть на теорию в практике.

Мы сжигаем уголь, чтобы получить золу – выделяются тепло и CO2 с другими примесями. Важно отметить, что открытие Теслы о холодном электричестве заключается в том, что до конца 1800-х годов законы термодинамики были, по-видимому, приняты в качестве основных законов для всех методов преобразования энергии. Внезапно в конце 1890-х годов Тесла обнаружил, что можно получить увеличение энергии с помощью высоковольтного постоянного тока, и он должен был быть постоянным, не переменным, так как заряд просто уравновешивал бы себя – заряжал бы конденсатор, а затем разряжал и себя тоже.

Помните, что мы собираемся обсудить опровержения законов термодинамики, поэтому если вы собираетесь ограничить свое понимание соблюдением этих законов, тогда вы фактически ограничиваете себя новыми открытиями, что на самом деле не самый лучший способ приблизиться к истинной теории света и энергии, которая таится в секретах холодного электричества.

Существует естественная тенденция в том, чтобы опровергнуть такой материал, как не имеющий какой-либо научной основы, но те люди, которые пропагандируют эту точку зрения, имеют либо самостоятельный интерес, обычно связанный с денежной выгодой, либо они не смогли собрать достаточное количество фактов, чтобы сделать свой личный логический вывод.

Питер Линдеманн: секреты свободной энергии холодного электричества – новые теории света

Термин «свободная энергия» считается результатом выхода или разностью энергий между входом в электромагнитный блок или систему и выходом частиц им произведенных. Некоторые электромагнитные машины производят результат только немного выше единицы показателя, в то время как другие производят выходы примерно от трех до одного. Секреты свободной энергии холодного электричества Питера Линдеманна трактуются как продолжение теорий и основ от Теслы.

Понятие электромагнитной свободной энергии не следует рассматривать как то же, что и природные источники свободной энергии, такие как солнечная энергия, энергия ветра, гидро- или геотермальная энергия, поскольку эти новые машины обычно требуют входной энергии, чтобы получить увеличенную порцию, которую естественные источники не требуют.

Несколько лет назад было только несколько устройств свободной энергии, которые, как представляется, предлагали надежные возможности для развития холодного электричества своими руками, но сегодня существует по меньшей мере пять значительных индивидуальных проектов, которые работают в разной степени выхода за единицу. Хотя эти различные машины или устройства как во вращающихся, так и в твердотельных классах основаны на классических принципах Фарадея/Максвелла, они достигают своего избыточного выхода благодаря усиленной электромагнитной активности внутри устройства или системы.

Следует отметить, что некоторые физики, пытаясь дискредитировать некоторые проекты исследователей свободных энергий, предлагают отказаться от математики Максвелла с его новыми теориями и операционными машинами. После тщательного анализа работы было обнаружено, что вместо отбрасывания принципов уравнения Максвелла эти различные машины фактически дополняют или усиливают электромагнитное функционирование в каждом случае на основе второй теории Максвелла:

  1. Одна из основных причин, по которым физики сопротивляются концепции свободной энергии, заключается в том, что концепция тахионного поля идет вразрез со специальной теорией относительности, которая ограничивает скорость частиц скоростью света.
  2. Тахионная концепция (быстрые частицы) была доказана на основании результатов профессора Джеральда Фейнберга в 1967 году. Некоторые из этих новых машин с избыточным выходом установили реальность тахионного поля, о чем свидетельствуют отдельные исследователи.
  3. В дополнение к выводам профессора Фейнберга о концепции быстрых частиц исследовательская группа ВМС США, которая проводила различные эксперименты в течение 1950-х годов, зафиксировала индикатор пятна, движущийся по экрану видимости ЭЛТ со скоростью 202 000 миль в секунду, что невозможно объяснить.
  4. Эти результаты испытаний были отмечены как взаимодействие частиц, движущихся со скоростью около 16000 миль в секунду. Осознавая постоянную скорость света (186 000 миль в секунду), эти экспериментаторы перепроверили свою тестовую настройку, но снова зафиксировали те же результаты – 202 000 м/с (скорость частиц).
  5. Поскольку никто не мог дать объяснения этим выводам, результаты испытаний просто впадали в неопределенность и были отмечены как необъяснимые явления. Результат эксперимента в 1913 году также никогда не был удовлетворительно объяснен современными физиками. В этом эксперименте два параллельных источника света были отправлены в противоположных направлениях вокруг замкнутого пути, а фотографические пластины регистрировали попадание источников света. Если бы основные убеждения относительности были правильными, оба световых сигнала могли бы пройти эти равные замкнутые круговые пути (равные расстоянию вокруг земной поверхности) в одинаковое время.

Поэтому многие физики и ученые отмечали, что теория относительности также требует модификаций.

Горячая и холодная энергия, или как работает охлаждение Пельтье

Эффект Пельтье – это теплообмен, который возникает, когда электричество проходит через соединение двух проводников и создает разность температур. Это явление путают с тем, когда холодная сварка проводит электричество. Последнее представляет собой проводник, который необходим для сварки неметаллических конструкций и непрочных металлов. В первом случае это просто проводник пространственного коллапса, который схож с эффектом Зеебека. То же самое происходит в обратном направлении. Это различие либо высвобождается как тепло, либо поглощается из окружающей среды.

Поэтому когда два проводника расположены в цепи, они образуют тепловой насос, способный переносить тепло от одного источника к другому. К сожалению, это не всегда так просто, поскольку эффект Пельтье всегда противоречит эффекту Джоуля — фрикционному нагреву, возникающему в результате отрыва электронов от атомов. В большинстве систем горячее и холодное электричество усиливает эффект Пельтье и означает, что все, что вы получаете, немного нагревается на одном перекрестке цепей и немного меньше нагревается на другом участке.

Такие проблемы препятствовали разработке практичных кулеров Пельтье, и для разработки технологии потребовалось определить подходящие материалы. В современных устройствах обычно используются полупроводники, причем многие парные. При их соединении появляется тонкая металлическая пленка, а керамика – для холодных и горячих пластин.

Зачем использовать охлаждение Пельтье в приборах для термической десорбции?

Наиболее очевидным преимуществом является то, что охладители Пельтье не используют жидкий криоген. Это является большим преимуществом для технологии термической десорбции, избавляя человека от затрат и проблем с хранением прибора, наполненного жидким криогеном, и упрощает автоматизацию циклов. Кроме того, единицы Пельтье небольшие, и поскольку у них нет движущихся частей, они также длительны в эксплуатации.

Так почему же они не используются более широко в потребительских продуктах, ведь отопление холодным электричеством – это очень выгодно для массового рынка? Основная причина заключается в их относительной неэффективности – как правило, только 0,5 Дж охлаждения достигается за каждые 1 Дж электроэнергии, что делает их примерно на восьмую часть эффективнее, чем современный холодильник. А холодное электричество своими руками – экономно ли это, если нужно было бы установить десятки таковых для обратной подачи энергии, чтобы отопить дом?

В случае теплового десорбера это не имеет большого значения, потому что мы охлаждаем только 6-сантиметровую фокусирующую ловушку для «поимки» электричества. Тем не менее потребление энергии становится значительным при охлаждении больших объектов, и именно поэтому охлаждение Пельтье еще не используется для холодильников или морозильников, не говоря о трансформации мощности и использовании питания на огромных территориях.

Возможно, что с дальнейшими достижениями эффективность кулеров Пельтье может приблизиться к эффективности современных холодильных систем, и этот интригующий аспект физики может начать проявляться больше в нашей повседневной жизни, как и интерес к получению холодного электричества. Но мы вернемся к настоящей энергии, которую практически невозможно получить в домашних условиях. Однако добыл холодное электричество Иван Копец, житель Белоруссии, который и делится своими опытами.

Строение динатрона и его роль

Основным и главным источником в получении холодного питания является динатрон. Холодное электричество Ивана Копеца было получено в домашних условиях. Для получения энергии нового качества, которую открыл Тесла, нужно было научиться работать с радиантом. В своих учениях еще Тесла писал о нем как о неорганической вакуумной энергии и питании электричеством. Житель Белоруссии решил воплотить в реальность схему получения такой энергии. Ниже представлена формула холодного электричества.

Эксперимент потребовал наличия катушки Теслы с контуром-конденсатором. Аккумуляторная батарея будет питать генератор высокого напряжения, а рядом – трансформатор энергии для ее преобразования. В выходе будет установлен амперметр, который фиксирует ток нагрузки на сеть питания. Вывод питания с одной стороны заземлен, а противоположный – высоковольтный. Он будет направлен на диодную вилку с диодами КЦ 106Г. Конденсатор, как на фото выше, имеет 0,25 мкФ. Секреты свободной энергии холодного электричества заключаются в том, что оно расплавляет металл, но не тело человека. То есть воздействует ток на проводник, а человек не получает ни ожогов, ни ударов током.

При выключенном питании оба конца катушки цокают и образуют сферический разряд. Важно осуществить кадуционную систему намотки катушки. Концы с другой стороны катушки замкнуты, иначе разрядник не получился бы. Таким образом, холодное электричество своими руками создается за счет второго слоя проводов из меди. Если поместить металлический предмет между трубами, он сильно нагревался, мог и расплавиться. После появления радианта, когда слышен хлопок, можно поднести металл, но безболезненно держать в руках. Никакого удара током, тем более ожога, не будет. Вот как получить холодное электричество в домашних условиях.

Добыча электричества – ток в воде

Энергия, обеспечиваемая топливом, распределяется четырьмя различными способами. Приблизительно 32 % преобразуются в работу (мощность оси), а оставшаяся энергия исключается в виде тепла. С помощью альтернативного двигателя, адаптированного к когенерации, часть этого тепла извлекается и переносится к концам, что очень важно особенно для производства горячей воды, а в некоторых случаях водяного пара или даже холодной воды. Некогда раскрывал секреты холодного электричества Питер Линдеманн, который смог преобразовать энергию в выходную материю для использования в своих целях. Позже эта идея была взята за основу другими физиками.

Источником наиболее важной восстанавливаемой теплоты является система охлаждения двигателя, то есть охлаждающая вода вакуума. Это тепло, составляющее около 30 % энергии, потребляемой топливом, может быть восстановлено практически до 100 %. В смазочном масле есть еще одна доля остаточного тепла, которая также может быть восстановлена практически во всей ее совокупности. Наконец, оставшаяся энергия топлива может быть найдена в выхлопных газах двигателя, и приблизительно 60 % из них экономически извлекаемы. Небольшая часть также теряется за счет излучения, и эти все моменты указывают на то, что холодное электричество в воде имеет место.

В вакууме значение 100 % представляет собой энергию, вводимую в систему (топливо). Отмечается, что 32 % этой энергии восстанавливается генератором в виде электричества, а 30 % восстанавливается с помощью охлаждения водяных рубашек двигателя. Другие 5 % можно также извлечь из смазочного масла двигателя. Еще одним важным моментом является энергия, доступная в выхлопных газах, составляющая примерно 20-25 %, из которых можно восстановить 80 % запасаемой энергии. Наблюдается, что только 8 % (5 % от двигателя и 3 % от генератора) первоначально введенной энергии не восстанавливаются.

Когенерационная система для одновременного производства электрической энергии, горячей и холодной воды строится и устанавливается в лабораториях, которые опираются в своей работе на секреты холодного электричества Линдеманна. Система проводников и вакуумов соединена с генератором электрической энергии для получения мощности вокруг 10-15 кВт. Для утилизации выхлопных газов был установлен газо-водяной теплообменник, и для устранения холодной воды был установлен водяной трансформатор энергии.

Наконец, стоимость производства холодной воды аналогична предыдущей, но с небольшими различиями в отношении цены оборудования, которая напрямую связана со стоимостью системы абсорбционной холодильной системы. Поскольку затраты должны распределяться по трем формам произведенной энергии, корректирующий коэффициент используется для разделения затрат на энергетические потоки. В этой работе был рассчитан энергетический и экономический анализ из системы когенерации, вырабатывающей электрическую энергию, горячую и холодную воду, с использованием газа в качестве топлива из малогабаритного водоотливного газификатора.

Производство энергии из холодной погоды

Если мы создали бы газовый контейнер на земле с теплообменными трубами для охлаждения газа холодным воздухом и в то же время создали бы искусственную теплую (горячую) зону в отдаленном месте от первой установки, то получили бы отопление за счет конвертации холодного воздуха в энергию. Затем мы можем производить электричество, используя вращающуюся часть, которая будет подключена к генератору. Речь идет об искусственной зоне, потому что вы не можете найти теплую зону в зимний сезон – разве что на экваторе. Итак, мы должны создать его сами.

Наша земля считается фонтаном теплоснабжения. Температура внутреннего «сердечника» земли составляет приблизительно 6000 градусов. Определенно, эта температура может расплавить все камни на поверхности, но этого не происходит, потому что тепловая интенсивность и температура источника тепла уменьшаются, если мы удаляемся от центра Земли. Таким образом, поверхность почвы пригодна для жизни организмов, за исключением активных мест вулкана.

Если мы копаем длинное отверстие внутри слоя земной коры, литосферы, средний температурный градиент на глубину 1 км составляет 47-100 градусов. Таким образом, в зимний период мы можем создать длинную трубу внутри земли, и пусть холодный газ будет нагреваться геотермальной энергией, а затем теплый снова вернется в холодную зону (земную поверхность) для охлаждения, и цикл будет повторяться периодически.

В последнее время использование геотермальных энергетических технологий применяется в холодных странах для обеспечения теплого воздуха для жилых зданий и производства электроэнергии путем испарения холодной воды. Не следует это явление путать с тем процессом, когда используется турбина для производства электроэнергии. Его зависимость находится в тесной связи с энергией пара, превращая горячий пар в холодный. Это похоже на производство энергии с использованием больших вентиляторов (ветровых технологий) в нашей повседневной жизни. Он зависит от движения холодного воздуха в сторону теплой (горячей) воздушной зоны.

Есть два недостатка в использовании геотермальной энергии. Во-первых, высокая капитальная стоимость строительства, особенно для большой глубины. Во-вторых, низкая интенсивность тепла из отверстия. Если вспомнить секреты свободной энергии холодного электричества Линдеманна, то речь должна идти о натуральных методах генерации тепла.

Естественная солнечная энергетика, как искусственный «искуситель» в процессе получения тепла

Второй метод создания искусственной теплой зоны в холодную погоду – использование солнечной энергии. Хотя интенсивность излучения очень низкая зимой, все же может рассматриваться как источник теплоснабжения, увеличивая температуру холодного газа, как и процедуры геотермальной энергии, используя концентрированное зеркало. Использование солнечной энергии – это временный метод, который не может дать солнечную энергию в течение 24 часов, а интенсивность излучения отличается от местности работы, в отличие от геотермальной энергии, доступной в любое время и в любом месте на поверхности земного шара.

Существует также другой способ получения электроэнергии с помощью системы электростанции. Все, кроме паровых, транспортные средства, корабли и авиационные двигатели осуществляют три процесса для производства работ:

  1. Процесс сжатия используется для повышения температуры и давления газа (воздуха) с помощью компрессорного устройства. Поршень и цилиндр – это вид компрессоров.
  2. Процесс сгорания – это жизненно важный цикл, и без него результаты усилий равны нулю. Мы используем источник тепла (топливо) для повышения температуры либо для процессов с постоянным объемом, либо для давления.
  3. Процесс расширения используется для снижения температуры и давления газа (воздуха) с помощью устройства расширения, как турбина. Поршень и цилиндр – это устройство расширения.

Предположим, что мы не хотим использовать процесс горения для производства работ и пренебрежения всеми механическими и тепловыми потерями.

Традиционный компрессор будет сжимать газ от начального низкого давления. Атмосферное давление – (P1) до высокого давления (P2). Таким образом, температура будет повышаться от холодной температуры (T1) до (T2). Затем сжатый газ будет расширяться в турбине, а высокое давление (Р2) уменьшится до низкого давления (Р1). Таким образом, температура также снизится от высокой (Т2) до низкой (Т1).

Мы заметили, что не получили никакой мощности (чистая работа равна нулю), потому что нет никакой разницы между температурами при процессе сжатия и расширения. Компрессор и турбина аналогичны тому же поршню в цилиндре двигателя транспортных средств, но они выполняют обратное действие друг для друга.

Читать книгу «Холодное электричество. Электрический эфир» онлайн полностью📖 — Александра Александровича Шадрина — MyBook.

© Александр Александрович Шадрин, 2021

ISBN 978-5-4496-6071-8

Создано в интеллектуальной издательской системе Ridero

Скажите мне что такое электричество и я объясню Вам всё остальное.

В. Томсон (лорд Кельвин)

Это были не пустые слова одного из отцов классической физики, в них содержался глубокий смысл ещё непознанного до сих пор явления природы. Значимость электричества для хозяйства всей планеты трудно переоценить. Ещё 100 лет назад мы пользовались лишь паровозами и гужевым транспортом – сегодня кругом электрички и электромобили, даже помидоры и те выращивают под электрическим светом. Кругом одно электричество. Может ли искусственный свет заменить свет Солнца? А что мы знаем про природу и структуру электричества – ничего или почти ничего. Всё повторяется, как и с историей электромагнитных волн. Применение кругом, а о природе, структуре и заряде энергии самодвижения фотонов – ничего неизвестно. Также и с атомом, его ядром и электронами. Сколько массы в кластере вещества, столько и электричества производят его атомные ядра и атомы.

Электричество было величайшей проблемой фундаментальной физики ХIХ века, а стало еще большей проблемой не только физики ХХ века, но и начала ХХI века.

Как и в далёких 40-х прошлого века, когда Г. Колер получал обычное электричество резонансным взаимодействием центрального поля тяготения (гравитационный эфир) с атомно-молекулярным веществом своего магнитного генератора, также и Э, Грэй освоил преобразование вспышек «радиантного электричества» Н. Тесла в обычное электричество. А в реакторе Вачаева А. В. атомы воды, ионизированные микрошаровой молнией плазмоида, генерировали с помощью освободившихся и захваченных электронов во внешней цепи, тоже обычное электричество. Но вот механизм таких разных по природе преобразований, как и объяснение основного отличия этих двух видов электричества до сих пор неизвестен. Почему?

Отличия свойств холодного электричества от обычного. Во всех указанных устройствах использовались активизированные генераторы-осцилляторы, но разные по природе – магнитные генераторы Колера, электрический трансформатор Тесла или холодный плазмоид Вачаева. Одни использовали гравитационные поля, другие электрические поля атома, последние использовали освободившиеся электроны.

Первые определения электричества даны Б. Франклином, М. Фарадеем, Д. Кили и Н. Тесла – его элементы это электрон и эфир.

Суть механизма проявления эффекта массы1, электрического заряда, спина, магнитного момента и структуры электрона – это структурированные высокочастотные продукты из электрического, магнитного и гравитационного эфира, произведенные невидимым пульсирующим магнитным монополем2 в замкнутом вихроне (гравитационным монополем ГЭММ) с его вечной энергией относительно этого процесса и возраста нашей Вселенной.

При высокой концентрации замкнутых вихронов, например в точке столкновения в коллайдерах, их внешние поля понуждают к взаимному слиянию – фокусировке и концентрическому объединению в оболочечные структуры из мезонов типа протонов-антипротонов (фото 6), нейтронов-антинейтронов (фото 5), дейтронов-антидейтронов до антитрития. Это означает, что микроскопические вихревые магнитные потоки квантованы. Одинаковые по знаку вихревые монополи способны синхронно объединяться с соседними с помощью своих полей как по вертикали, так и по горизонтали, а с противоположными не соединяются никогда.

При этом спин является исполнителем закона сохранения энергии и характеризует состояние энергии в носителе заряда движения. Энергия магнитного (гравитационного) монополя в вихроне может быть положительной и отрицательной. Полное превращение энергии в заряде движения от положительного значения до отрицательного выполняется в системах с целым и нулевым значением спина, а с полуцелым – оно имеет только одно значение, что и порождает взаимные переходы между механическими и электромагнитными вихронами3.

Главный вывод для науки из этой работы – это создание определений элементарных электромагнитных и механических свободных и замкнутых микровихронов, как новой формы субстанции действующей энергии, объективно существующей в природе, отсутствующей в определениях системы СИ. Магнитный монополь, рождающийся при любых изменениях электрического или гравитационного поля, является материнским зарядом энергии, никогда не существует в виде отдельной частицы, а всегда входит в состав свободных или замкнутых вихронов.

Самодвижение свободных вихронов фотонов обусловлено перезарядкой по знаку магнитных монополей и переносом заряда энергии на длину волны через противодействующий этому процессу электрический монополь. Длина самодвижения фотона бесконечна по сравнению с размерами нашей Вселенной, а его заряд энергии – вечен с небольшим покраснением в конце пути. Магнитный монополь и его материя (сфера заряда энергии вибратора и магнитные зёрна-потенциалы) всегда движутся со сверхсветовой скоростью, а при квантовой конденсации через посредство торможения электрического монополя вихрона внешним полем, он делает квантовый переход в свой аналог – гравитационный монополь, существующий при скоростях ниже скорости света. Фотон, как элементарная частица, не имеет внешних полей кроме фиксированного в дискретном пространстве трека из противоположно заряженных электрических зёрен-потенциалов. Спин фотонов равен целой единице.

Замкнутые вихроны образуют элементарные частицы и другие корпускулярные квазичастицы с массой, обусловленной внешним излучением кластера гравитационных полей одного знака при разрядке гравитационного монополя ГЭММ, что мгновенно порождает магнитный монополь и монополь электрический. Такие частицы уже имеют внешнее поле излучение – магнитное, гравитационное и электрическое. Спин таких частиц полуцелый.

Из обычного электрического тока Тесла сумел отделить электрический эфир (кластер облака электричества из электрических зёрен-потенциалов) от электронов и интегрировать его распределённым на длине своей катушке с получением очень высокого электрического потенциала до 200 000 вольт без тока в статике. Этот холодный эфир был захвачен из мощной импульсной дуги в разряднике, выведен из коллектива атомов-ионов поляризованного кластера вещества (с возможно большей массы атомно-молекулярного вещества) с помощью приложенного высоковольтного (2000 в) электрического импульса потенциала с одним крутым фронтом одного знака. Затем он сформировал из него безмассовое облако круглого электричества и оперировал им своими незащищёнными руками, как с надувным шаром, перекладывая его из коробки в коробку, или как с жидкостью, переливая его в бутылку. Тесла назвал этот шар холодным круглым электричеством. Затем он продемонстрировал экспериментально два разных свойства, присущих обычному току из электронов и холодному току из эфира – электроны предпочитают идти по толстым медным проводам с малым сопротивлениям, а электрический эфир способен переносить свой потенциал4 над поверхностью тонких проводников с большим сопротивлением или даже через разрыв в цепи. Эти эффекты хорошо демонстрируются светящейся электрической лампочкой с перегоревшей нитью накаливания Косиновым Н. В.5.

Электричество – это вторая основная характеристика после массы, которая является признаком якобы хорошо изученного (4,9%) всего видимого атомно-молекулярного вещества на фоне 95,1% еще неизученного и темного.

Главный вопрос – для чего нужно холодное электричество, ведь есть же обычное? Ответу на этот вопрос и посвящена эта книга.

Как генерировать холодное электричество

Вы здесь: Главная / Бесплатная энергия / Как генерировать холодное электричество

Искать на этом веб-сайте нетрадиционный принцип через отрицательную линию LC-сети, которая стимулирует поток положительного заряда в линии, вызывая развитие энтропийного отрицательного заряда на катушке индуктивности, который в конечном итоге передается в конденсатор в виде «холодного» электричества.

Называется «холодным», так как работает в разомкнутой цепи, не рассеивая при этом никакого тепла.

В следующем посте объясняется, как генерировать холодное электричество с помощью простой схемы, в которой конденсатор заряжается высоким напряжением без потребления энергии от подключенного источника питания.

Использование одного индуктора

Раньше на Youtube было видео, иллюстрирующее интересное явление генерации холодного электричества с использованием только индуктора, нескольких переключателей и источника напряжения питания.

Поначалу это выглядело не чем иным, как просто повышающе-понижающей конфигурацией, однако при ближайшем рассмотрении выяснилось что-то очень необычное в происходящем внутри схемы.

Анализ феномена холодного электричества

Давайте проанализируем и попытаемся понять ситуацию, которая указывает на генерацию интригующего холодного электричества. На приведенном ниже рисунке мы видим очень простую схему, состоящую из пары переключателей SPDT, высоковольтного конденсатора, катушки индуктивности и источника постоянного тока 24 В.

Здесь, как только оба переключателя быстро замыкаются и размыкаются вместе, можно увидеть, как конденсатор заряжается до напряжения, эквивалентного значению противоЭДС индуктивности.

  • L = 800 витков бифилярной катушки вокруг ферритового сердечника, около 30 Ом
  • C= 30 мкФ, 4000 В пост.

    В тот момент, когда переключатели замкнуты, согласно стандартным правилам, индуктор будет накапливать энергию в виде магнитной энергии, что приведет к высокому сопротивлению батареи, что позволит индуктору не потреблять ток.

    Но как только переключатели разомкнуты, можно будет увидеть, как конденсатор заряжается высоким напряжением от катушки индуктивности.

    Насыщение внутренней энергией индуктора

    Возникает вопрос: как разность потенциалов может достичь конденсатора при разомкнутых переключателях и цепи, не создающей замкнутого контура, чтобы конденсатор заряжался?

    По мнению автора, в этом примере эффект возникает за счет электрической энергии, которая вступает в контакт с сопротивлением (разомкнутый переключатель), при этом ток внутри индуктивности насыщает сопротивление.

    Другой источник объясняет это следующим образом:

    Создание ситуации сингулярности

    При быстром замыкании и размыкании переключателей в цепи создается сингулярная ситуация из-за того, что изменение тока не может быть прервано через индуктор.

    Перед тем, как магнитное поле на индукторе успевает ослабнуть, оно подвергается усилению напряжения на катушке.

    Это повышенное напряжение заряжает конденсатор, не потребляя ток от батареи.

    Эффект феррорезонанса

    Это можно объяснить как эффект феррорезонанса, при котором, когда сердечник индуктора насыщается, потенциал движется по нетрадиционному отрицательному пути, влияя на положительный заряд и вызывая отрицательное энтропийное поле, индуцируемое внутри индуктора. индуктор, который в конечном итоге становится ответственным за зарядку конденсатора.

    О компании Swagatam

    Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем/печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными схемами и учебными пособиями.
    Если у вас есть какие-либо вопросы, связанные со схемой, вы можете задать их через комментарии, я буду очень рад помочь!

    Системы микрогидроэнергетики | Министерство энергетики

    Энергосбережение

    Изображение

    Микрогидроэнергетика может быть одной из самых простых и последовательных форм возобновляемой энергии на вашем участке.

    Если через вашу собственность протекает вода, вы можете подумать о строительстве небольшой гидроэлектростанции для выработки электроэнергии. Микрогидроэлектростанции обычно вырабатывают до 100 киловатт электроэнергии. Большинство гидроэнергетических систем, используемых домовладельцами и владельцами малого бизнеса, включая фермеров и владельцев ранчо, можно квалифицировать как микрогидроэнергетические системы. Но 10-киловаттная микрогидроэлектростанция обычно может обеспечить достаточно энергии для большого дома, небольшого курорта или хобби-фермы.

    Микрогидроэнергетическая система нуждается в турбине, насосе или водяном колесе для преобразования энергии текущей воды в энергию вращения, которая преобразуется в электричество.

    На нашей странице о планировании системы микрогидроэнергетики есть дополнительная информация.

    Как работает система микрогидроэнергетики

    Компоненты системы микрогидроэнергетики

    Русловые микрогидроэлектростанции состоят из следующих основных компонентов:

    • Водопровод — канал, трубопровод или напорный трубопровод (водовод), который доставляет воду
    • Турбина, насос или водяное колесо — преобразует энергию текущей воды в энергию вращения
    • Генератор переменного тока или генератор — преобразует энергию вращения в электричество
    • Регулятор — управляет генератором
    • Электропроводка — подает электричество.

    Изображение

    Имеющиеся в продаже турбины и генераторы обычно продаются в комплекте. Системы «сделай сам» требуют тщательного согласования генератора с мощностью и частотой вращения турбины.

    Многие системы также используют инвертор для преобразования низковольтного электричества постоянного тока (DC), производимого системой, в 120 или 240 вольт переменного тока (AC). (В качестве альтернативы вы можете купить бытовые приборы, работающие от постоянного тока.)

    Будет ли микрогидроэнергетическая система подключена к сети или будет автономной, будет определяться баланс многих ее системных компонентов.

    Например, некоторые автономные системы используют батареи для хранения электроэнергии, вырабатываемой системой. Однако, поскольку гидроэнергетические ресурсы, как правило, носят более сезонный характер, чем ветряные или солнечные ресурсы, батареи не всегда могут быть практичными для микрогидроэнергетических систем. Если вы все же используете аккумуляторы, они должны располагаться как можно ближе к турбине, потому что трудно передавать низковольтную энергию на большие расстояния.

    Типы турбин

    Импульсные турбины

    Импульсные турбины, имеющие наименее сложную конструкцию, чаще всего используются в высоконапорных микрогидросистемах. Они полагаются на скорость воды, чтобы двигать турбинное колесо, которое называется бегунком. Наиболее распространенные типы импульсных турбин включают колесо Пелтона и колесо Турго.

    • Колесо Пелтона — использует концепцию реактивной силы для создания энергии. Вода подается в напорный трубопровод с узким соплом на одном конце. Вода струей брызжет из сопла, ударяя в двухчашечные ведра, прикрепленные к колесу. Воздействие струйной струи на изогнутые ковши создает силу, которая вращает колесо с высоким коэффициентом полезного действия 70–9.0%. Колесные турбины Пелтона доступны в различных размерах и лучше всего работают в условиях низкого расхода и высокого напора.
    • Импульсное колесо Turgo — улучшенная версия Pelton. В нем используется та же концепция струйного распыления, но струя Turgo, которая в два раза меньше Pelton, расположена под таким углом, что струя попадает сразу в три ведра. В результате колесо Turgo вращается в два раза быстрее. Он также менее громоздкий, требует мало передач или вообще не нуждается в них, и имеет хорошую репутацию благодаря безотказной работе. Turgo может работать в условиях низкого расхода, но требует среднего или высокого напора.
    • Турбина Кролика Джека — турбина типа «капля в ручье», которая может генерировать энергию из ручья с глубиной воды всего 13 дюймов и без напора. Выходная мощность кролика Джека составляет максимум 100 Вт, поэтому в среднем дневная мощность составляет 1,5–2,4 киловатт-часа, в зависимости от вашего объекта. Иногда его называют погружным гидрогенератором Aquair UW.

    Реакционные турбины

    Реактивные турбины, которые обладают высокой эффективностью, зависят от давления, а не скорости для производства энергии. Все лопасти реактивной турбины постоянно контактируют с водой. Эти турбины часто используются на крупных гидроэлектростанциях.

    Из-за своей сложности и высокой стоимости реактивные турбины обычно не используются в проектах микрогидроэнергетики. Исключением является пропеллерная турбина, которая имеет множество различных конструкций и работает так же, как гребной винт на лодке.

    Пропеллерные турбины имеют от трех до шести обычно неподвижных лопастей, установленных под разными углами на рабочем колесе. Бульбовая, трубчатая и трубчатая Каплана являются вариантами пропеллерной турбины. Турбина Каплана, представляющая собой легко адаптируемую пропеллерную систему, может использоваться для микрогидроэлектростанций.

    Насосы и водяные колеса

    Обычные насосы могут использоваться вместо гидравлических турбин. Когда действие насоса меняется на противоположное, он работает как турбина. Поскольку насосы выпускаются серийно, вы найдете их легче, чем турбины.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *