Формула расчета емкости конденсатора для трехфазного двигателя: Расчёт ёмкости конденсатора онлайн / Калькулятор / Элек.ру

Содержание

Формула расчета емкости конденсатора для трехфазного двигателя

Расчет емкости фазосдвигающего конденсатора

для трехфазного асинхронного двигателя в бытовой однофазной сети

Рабочий и пусковой конденсаторы включаются в цепь параллельно, во время пуска работают одновременно, затем пусковой отключают. В момент пуска асинхронных двигателей (особенно, с нагрузкой на валу) в сети 220 В требуется повышенная емкость фазосдвигающего конденсатора (в 2-3 раза выше емкости рабочего).

Двигатель, имеющий маркировку 220/380 и Δ/Y включается в однофазную сеть 220В по схеме треугольник, по схеме звезда в сети 220В такой двигатель будет терять в мощности троекратно и сильно греться.

При соединении конденсаторов параллельно их емкость суммируется. При соединении конденсаторов последовательно, рабочее напряжение в цепи будет равняться сумме напряжений всех конденсаторов, а емкость вычисляется по формуле: 1/C = 1/C1 + 1/C2 + . + 1/Cn. Рабочее напряжение в цепи конденсаторов должно быть минимум в полтора раза выше напряжения сети (то есть не менее 330В в сети 220В).

Таким образом, два конденсатора на 200 мкф с рабочим напряжением 200В дадут при последовательном соединении емкость 100 мкф и допустимое рабочее напряжение 400В. При параллельном соединении емкость будет 400 мкф и рабочее напряжение 200В (самое низкое значение допустимого напряжения из всего набора конденсаторов в цепи). Необходимые конденсаторы представлены в сетевых магазинах в разделе пусковых конденсаторов (не ищите по старинке бумажные — их практически перестали выпускать).

Видеопримеры работы двигателя 2.2 кВт и 1.1 кВт с одной и той же нагрузкой и правильно подобранными рабочими и пусковыми конденсаторами, разница в скорости пуска 3 и 20 секунд. И сборка на 3.3 кВт весело крутится (пильный диск 350 мм в диаметре).

Схема включения в однофазную сеть трёхфазного асинхронного двигателя с обмотками статора, соединёнными по схеме «звезда» (а) или «треугольник» (б): B1 — Переключатель направления вращения (реверс), В2 — Выключатель пусковой ёмкости; Ср — рабочий конденсатор; Cп — пусковой конденсатор; АД — асинхронный электродвигатель.

На схеме представлено последовательное (сверху) и параллельное (снизу) соединение кон­ден­саторов.

На рисунке представлена схема соединения обмоток двигателя «Звезда».

На рисунке представлена схема соединения обмоток двигателя «Треугольник».

Источник: cielab.xyz

Сайт для электриков

Для включения трехфазного электродвигателя (что такое электродвигатель ➠) в однофазную сеть обмотки статора могут быть соединены в звезду или треугольник.

Напряжение сети подводят к началам двух фаз. К началу третьей фазы и одному из зажимов сети присоединяют рабочий конденсатор 1 и отключаемый (пусковой) конденсатор 2, который необходим для увеличения пускового момента.

Пусковая емкость конденсаторов

После пуска двигателя конденсатор 2 отключают.

Рабочую емкость конденсаторного двигателя для частоты 50 Гц определяют по формулам:

где Ср — рабочая емкость при номинальной нагрузке, мкФ;
Iном — номинальный ток фазы двигателя, А;
U — напряжение сети, В.

Нагрузка двигателя с конденсатором не должна превышать 65—85% номинальной мощности, указанной на щитке трехфазного двигателя.

Если пуск двигателя происходит без нагрузки, то пусковая емкость не требуется — рабочая емкость будет в то же время пусковой. В этом случае схема включения упрощается.

При пуске двигателя под нагрузкой, близкой к номинальному моменту необходимо иметь пусковую емкость Сп = (2,5 ÷ 3) Ср.

Выбор конденсаторов по номинальному напряжению производят по соотношениям:

где Uк и U — напряжения на конденсаторе и в сети.

Основные технические данные некоторых конденсаторов приведены в таблице.

Если трехфазный электродвигатель, включенный в однофазную сеть, не достигает номинальной частоты вращения, а застревает на малой скорости, следует увеличить сопротивление клетки ротора проточкой короткозамыкающих колец или увеличить воздушный зазор шлифовкой ротора на 15—20%.

В том случае, если конденсаторы отсутствуют, можно использовать резисторы, которые включаются по тем же схемам, что и при конденсаторном пуске. Резисторы включаются вместо пусковых конденсаторов (рабочие конденсаторы отсутствуют).

Сопротивление (Ом) резистора может быть определено по формуле

,

где R — сопротивление резистора;
κ и I— кратность пускового тока и линейный ток в трехфазном режиме.

Пример расчета рабочей емкости конденсатора для двигателя

Определить рабочую емкость для двигателя АО 31/2, 0.6 кВт, 127/220 В, 4.2/2.4 А, если двигатель включен по схеме, изображенной на рис. а, а напряжение сети равно 220 В. Пуск двигателя без нагрузки.

1. Рабочая емкость С

р = 2800 x 2.4 / 220 ≈ 30 мкФ.

2. Напряжение на конденсаторе при выбранной схеме Uк = 1,15 x U = 1,15 x 220 = 253 В.

По таблице выбираем три конденсатора МБГО-2 по 10 мкФ каждый с рабочим напряжением 300 В. Конденсаторы включать параллельно.

Источник: В.И. Дьяков. Типовые расчеты по электрооборудованию.

Видео о том, как подключить электродвигатель на 220 вольт:

    Подобные расчеты

Источник: electrichelp.ru

Расчет емкости конденсатора для трехфазного двигателя

При подключении асинхронного трехфазного электродвигателя на 380 В в однофазную сеть на 220 В необходимо рассчитать емкость фазосдвигающего конденсатора, точнее двух конденсаторов — рабочего и пускового конденсатора. Онлайн калькулятор для расчета емкости конденсатора для трехфазного двигателя в конце статьи.

Как подключить асинхронный двигатель?

Подключение асинхронного двигателя осуществляется по двум схемам: треугольник (эффективнее для 220 В) и звезда (эффективнее для 380 В).

На картинке внизу статьи вы увидите обе эти схемы подключения. Здесь, я думаю, описывать подключение не стоит, т.к. это описано уже тысячу раз в Интернете.

Во основном, у многих возникает вопрос, какие нужны емкости рабочего и пускового конденсаторов.

Пусковой конденсатор

Стоит отметить, что на небольших электродвигателях, используемых для бытовых нужд, например, для электроточила на 200-400 Вт, можно не использовать пусковой конденсатор, а обойтись одним рабочим конденсатором, я так делал уже не раз — рабочего конденсатора вполне хватает. Другое дело, если электродвигатель стартует со значительной нагрузкой, то тогда лучше использовать и пусковой конденсатор, который подключается параллельно рабочему конденсатору нажатием и удержанием кнопки на время разгона электродвигателя, либо с помощью специального реле. Расчет емкости пускового конденсатора осуществляется путем умножения емкостей рабочего конденсатора на 2-2.5, в данном калькуляторе используется 2.5.

При этом стоит помнить, что по мере разгона асинхронному двигателю требуется меньшая емкость конденсатора, т.е. не стоит оставлять подключенным пусковой конденсатор на все время работы, т.к. большая емкость на высоких оборотах вызовет перегрев и выход из строя электродвигателя.

Как подобрать конденсатор для трехфазного двигателя?

Конденсатор используется неполярный, на напряжение не менее 400 В. Либо современный, специально на это рассчитанный (3-й рисунок), либо советский типа МБГЧ, МБГО и т.п. (рис.4).

Итак, для расчета емкостей пускового и рабочего конденсаторов для асинхронного электродвигателя введите данные в форму ниже, эти данные вы найдете на шильдике электродвигателя, если данные неизвестны, то для расчета конденсатора можно использовать средние данные, которые подставлены в форму по умолчанию, но мощность электродвигателя нужно указать обязательно.

Источник: evmaster.net

Подбор конденсатора для трехфазного двигателя

Наши сети электропитания созданы трехфазными. Потому что генераторы, работающие на электростанциях, имеют трехфазные обмотки и вырабатывают три синусоидальных напряжения, сдвинутых по фазе относительно друг друга на 120°.

Но мы чаще всего пользуемся всего одной фазой — проводим себе один фазный провод из трех и все к нему подключаем. Только в технике нашей часто встречаются электродвигатели, и они по природе своей трехфазны. Ну а фаза от фазы чем отличается? Только сдвигом во времени. Сдвига такого очень просто добиться, включив в цепь питания реактивные элементы: емкости или индуктивности.

Но ведь обмотка на статоре сама и является индуктивностью. Поэтому остается добавить к двигателю снаружи только емкость, конденсатор, а обмотки подключить так, чтобы одна из них в другой сдвигала фазу в одну сторону, а конденсатор в третьей делал то же самое, только в другую. И получатся те же самые три фазы, только «вынутые» из одной фазы питающих проводов.

Последнее обстоятельство означает, что мы нагружаем трехфазным двигателем только одну из фаз приходящего питания. Разумеется, это вносит дисбаланс в потребление энергии. Поэтому все-таки лучше, когда трехфазный двигатель питается трехфазным напряжением, а построить цепь его питания от одной приходящей фазы хорошо, только если мощность двигателя не особо велика.

Включение трехфазного электродвигателя в однофазную сеть питания

Обмотки электродвигателя соединяют двумя способами: звезда (Y) или треугольник (Δ).

При подключении трехфазного двигателя к однофазной сети предпочтительнее соединение типа треугольник. На шильдике двигателя об этом есть информация, и когда там обозначено Y — звезда, самым лучшим вариантом было бы открыть его кожух, найти концы обмоток и правильно переключить обмотки в треугольник. Иначе потери мощности будут слишком большими.

Включение двигателя на одну фазу питающей сети требует создания из нее и двух остальных. Это можно сделать по следующей схеме

При запуске двигателя в работу в самом начале требуется высокий стартовый ток, поэтому емкости рабочего конденсатора обычно не хватает. Чтобы «ему помочь», используют специальный стартовый конденсатор, который подключается к рабочему конденсатору параллельно. В самом простом случае (невысокая мощность двигателя) его выбирают точно таким же, как и рабочий. Но для этой цели выпускаются и специально стартовые конденсаторы, на которых так и написано: starting.

Стартовый конденсатор должен быть включен в работу только во время пуска и разгона двигателя до рабочей мощности. После этого его отключают. Используется кнопочный выключатель. Или двойной: одной клавишей включается сам двигатель и кнопка фиксируется во включенном положении, кнопка же, замыкающая цепь рабочего конденсатора, каждый раз размыкается.

Как подобрать конденсатор

Конденсаторы для трехфазного двигателя нужны достаточно большой емкости — речь идет о десятках и сотнях микрофарад. Однако конденсаторы электролитические для этой цели не годятся. Они требуют подключения однополярного, то есть специально для них придется городить выпрямитель из диодов и сопротивлений. Кроме того, со временем в электролитических конденсаторах высыхает электролит и они теряют емкость. Поэтому если будете ставить такой на двигатель, необходимо делать на это скидку, а не верить тому, что на них написано. Ну и еще одно за ними числится: электролитические конденсаторы имеют свойство иногда взрываться.

Поэтому задачу, как выбрать конденсатор под трехфазный двигатель, часто решают в несколько этапов

Сначала подбираем приблизительно. Надо рассчитать емкость конденсатора по простейшему соотношению как 7 мкФ на каждые 100 ватт мощности. То есть 700 ватт дает нам 49 мкФ первоначально. Емкость выбираемого пускового конденсатора берется в диапазоне 1–3-кратного превышения емкости рабочего конденсатора. Выберите 2*50 = 100 мкФ — будет само то. Ну, для начала можно взять побольше, потом подобрать конденсаторы, ориентируясь на работу двигателя. От емкости конденсаторов зависит реальная мощность движка. Если ее мало, двигатель при тех же оборотах потеряет мощность (обороты не зависят от мощности, а только от частоты напряжения), так как ему будет не хватать тока. При чрезмерной емкости конденсаторов у него будет перегрев от избытка тока.

Нормальная работа двигателя, без шума и рывков — это неплохой критерий правильно выбранного конденсатора. Но для большей точности можно сделать расчет конденсаторов по формулам, а такую проверку оставить на потом в качестве окончательного подтверждения успешности результатов подбора конденсаторов.

Однако надо все-таки подключить конденсаторы.

Подключение пускового и рабочего конденсаторов для трехфазного электромотора

Вот оно соответствие всех нужных приборов элементам схемы

Теперь выполним подключение, внимательно разобравшись с проводами

Так можно подключить двигатель и предварительно, используя неточную прикидку, и окончательно, когда будут подобраны оптимальные значения.

Подбор можно сделать и экспериментально, имея несколько конденсаторов разных емкостей. Если их присоединять параллельно друг другу, то суммарная емкость будет увеличиваться, при этом нужно смотреть, как ведет себя двигатель. Как только он станет работать ровно и без перенагрузки, значит, емкость находится где-то в районе оптимума. После этого приобретается конденсатор, по емкости равный этой сумме емкостей испытываемых конденсаторов, включенных параллельно. Однако можно при таком подборе измерять фактический потребляемый ток, используя измерительные токовые клещи, а провести расчет емкости конденсатора по формулам.

Как рассчитать емкость рабочего конденсатора

Для двух соединений обмоток берутся несколько разные соотношения.

В формуле введен коэффициент соединения Кс, который для треугольника равен 4800, а для звезды — 2800.

Где значения Р (мощность), U (напряжение 220 В), η (КПД двигателя, в процентном значении деленном на 100) и cosϕ (коэффициент мощности) берутся с шильдика двигателя.

Вычислить значение можно с помощью обычного калькулятора или воспользовавшись чем-то вроде подобной вычислительной таблицы. В ней нужно подставить значения параметров двигателя (желтые поля), результат получается в зеленых полях в микрофарадах

Однако не всегда есть уверенность, что параметры работы двигателя соответствуют тому, что написано на шильдике. В этом случае нужно измерить реальный ток измерительными клещами и воспользоваться формулой Cр = Кс*I/U.

Источник: domelectrik.ru

Онлайн расчет емкости конденсатора для электродвигателя

Здесь вы можете рассчитать необходимую емкость конденсатора для подключения трехфазного электродвигателя в однофазную сеть.

Расчет конденсатора для электродвигателя необходимо производить только по току, т.к. данный способ является наиболее точным и исключает возможность неправильного выбора емкости конденсатора, а так же сводит к минимуму потери мощности трехфазного электродвигателя при подключении его в однофазную сеть.

Номинальный ток электродвигателя берется из паспортных данных, а при их отсутствии его можно определить расчетным путем.

Как подключить трехфазный электродвигатель в однофазную сеть через конденсатор смотрите здесь.

Инструкция по использованию калькулятора:

Для расчета конденсаторной емкости для двигателя с помощью данного калькулятора Вам необходимо выполнить всего 3 простых действия:

  1. Выбор схемы соединения обмоток. Обычно для подключения электродвигателя 380В на 220В должна применяться схема соединения обмоток «треугольник». Посмотреть это можно в паспортных данных электродвигателя на прикрепленном к нему шильдике.

Ниже представлен пример паспортных данных электродвигателя:

В вышеприведенных паспортных данных можно увидеть следующую запись:

«Δ/ Y 220/380 V 2,8/1,8 А» — это значит, что при схеме соединения «треугольник» Δ — электродвигатель подключается на напряжение 220 Вольт и потребляет из сети 2,8 Ампера, а при схеме соединения «звезда» Y- подключается на напряжение 380 Вольт и потребляет из сети 1,8 Ампера.

Подробнее про схемы соединения обмоток трехфазных электродвигателей вы можете прочитать в здесь.

2. Указываем номинальный ток в Амперах величину которого так же берем из паспортных данных электродвигателя в зависимости от способа соединения его обмоток. Например, в соответствии с приведенным примером для треугольника необходимо было бы вписывать 2.8, а для звезды — 1.8.

3. Выбираем напряжение на которое будет подключен электродвигатель, 220 Вольт — для треугольника или 380 Вольт — для звезды согласно приведенному примеру.

На этом всё. Нажимаем кнопку «Рассчитать» и получаем готовый ответ

Оказался ли полезен для Вас данный онлайн калькулятор? Или может быть у Вас остались вопросы? Напишите нам в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Источник: elektroshkola.ru

Как рассчитать емкость конденсатора для трехфазного двигателя

Расчет емкости фазосдвигающего конденсатора

для трехфазного асинхронного двигателя в бытовой однофазной сети

Рабочий и пусковой конденсаторы включаются в цепь параллельно, во время пуска работают одновременно, затем пусковой отключают. В момент пуска асинхронных двигателей (особенно, с нагрузкой на валу) в сети 220 В требуется повышенная емкость фазосдвигающего конденсатора (в 2-3 раза выше емкости рабочего).

Двигатель, имеющий маркировку 220/380 и Δ/Y включается в однофазную сеть 220В по схеме треугольник, по схеме звезда в сети 220В такой двигатель будет терять в мощности троекратно и сильно греться.

При соединении конденсаторов параллельно их емкость суммируется. При соединении конденсаторов последовательно, рабочее напряжение в цепи будет равняться сумме напряжений всех конденсаторов, а емкость вычисляется по формуле: 1/C = 1/C1 + 1/C2 + . + 1/Cn. Рабочее напряжение в цепи конденсаторов должно быть минимум в полтора раза выше напряжения сети (то есть не менее 330В в сети 220В). Таким образом, два конденсатора на 200 мкф с рабочим напряжением 200В дадут при последовательном соединении емкость 100 мкф и допустимое рабочее напряжение 400В. При параллельном соединении емкость будет 400 мкф и рабочее напряжение 200В (самое низкое значение допустимого напряжения из всего набора конденсаторов в цепи). Необходимые конденсаторы представлены в сетевых магазинах в разделе пусковых конденсаторов (не ищите по старинке бумажные — их практически перестали выпускать).

Видеопримеры работы двигателя 2.2 кВт и 1.1 кВт с одной и той же нагрузкой и правильно подобранными рабочими и пусковыми конденсаторами, разница в скорости пуска 3 и 20 секунд. И сборка на 3.3 кВт весело крутится (пильный диск 350 мм в диаметре).

Схема включения в однофазную сеть трёхфазного асинхронного двигателя с обмотками статора, соединёнными по схеме «звезда» (а) или «треугольник» (б): B1 — Переключатель направления вращения (реверс), В2 — Выключатель пусковой ёмкости; Ср — рабочий конденсатор; Cп — пусковой конденсатор; АД — асинхронный электродвигатель.

На схеме представлено последовательное (сверху) и параллельное (снизу) соединение кон­ден­саторов.

На рисунке представлена схема соединения обмоток двигателя «Звезда».

На рисунке представлена схема соединения обмоток двигателя «Треугольник».

Источник: cielab.xyz

Сайт для электриков

Для включения трехфазного электродвигателя (что такое электродвигатель ➠) в однофазную сеть обмотки статора могут быть соединены в звезду или треугольник.

Напряжение сети подводят к началам двух фаз. К началу третьей фазы и одному из зажимов сети присоединяют рабочий конденсатор 1 и отключаемый (пусковой) конденсатор 2, который необходим для увеличения пускового момента.

Пусковая емкость конденсаторов

После пуска двигателя конденсатор 2 отключают.

Рабочую емкость конденсаторного двигателя для частоты 50 Гц определяют по формулам:

где Ср — рабочая емкость при номинальной нагрузке, мкФ;
Iном — номинальный ток фазы двигателя, А;
U — напряжение сети, В.

Нагрузка двигателя с конденсатором не должна превышать 65—85% номинальной мощности, указанной на щитке трехфазного двигателя.

Если пуск двигателя происходит без нагрузки, то пусковая емкость не требуется — рабочая емкость будет в то же время пусковой. В этом случае схема включения упрощается.

При пуске двигателя под нагрузкой, близкой к номинальному моменту необходимо иметь пусковую емкость Сп = (2,5 ÷ 3) Ср.

Выбор конденсаторов по номинальному напряжению производят по соотношениям:

где Uк и U — напряжения на конденсаторе и в сети.

Основные технические данные некоторых конденсаторов приведены в таблице.

Если трехфазный электродвигатель, включенный в однофазную сеть, не достигает номинальной частоты вращения, а застревает на малой скорости, следует увеличить сопротивление клетки ротора проточкой короткозамыкающих колец или увеличить воздушный зазор шлифовкой ротора на 15—20%.

В том случае, если конденсаторы отсутствуют, можно использовать резисторы, которые включаются по тем же схемам, что и при конденсаторном пуске. Резисторы включаются вместо пусковых конденсаторов (рабочие конденсаторы отсутствуют).

Сопротивление (Ом) резистора может быть определено по формуле

,

где R — сопротивление резистора;
κ и I— кратность пускового тока и линейный ток в трехфазном режиме.

Пример расчета рабочей емкости конденсатора для двигателя

Определить рабочую емкость для двигателя АО 31/2, 0.6 кВт, 127/220 В, 4.2/2.4 А, если двигатель включен по схеме, изображенной на рис. а, а напряжение сети равно 220 В. Пуск двигателя без нагрузки.

1. Рабочая емкость Ср = 2800 x 2.4 / 220 ≈ 30 мкФ.

2. Напряжение на конденсаторе при выбранной схеме Uк = 1,15 x U = 1,15 x 220 = 253 В.

По таблице выбираем три конденсатора МБГО-2 по 10 мкФ каждый с рабочим напряжением 300 В. Конденсаторы включать параллельно.

Источник: В.И. Дьяков. Типовые расчеты по электрооборудованию.

Видео о том, как подключить электродвигатель на 220 вольт:

    Подобные расчеты

Источник: electrichelp.ru

Расчет конденсатора для двигателя

Как подобрать конденсатор для трехфазного электродвигателя

Задаваясь вопросом: как подобрать конденсатор для трехфазного электродвигателя, нужно принять во внимание ряд параметров.

Чтобы подобрать емкость для рабочего конденсатора, необходимо применить следующую расчетную формулу: Сраб.=k*Iф / U сети, где:

  • k – специальный коэффициент, равный 4800 для подключения «треугольник» и 2800 для «звезды»;
  • Iф – номинальное значение тока статора, это значение обычно указывается на самом электродвигателе, если же оно затерто или неразборчиво, то его измеряют специальными клещами;
  • U сети – напряжение питания сети, т.е. 220 вольт.

Таким образом вы рассчитаете емкость рабочего конденсатора в мкФ.

Еще один вариант расчета – принять во внимание значение мощности двигателя. 100 Ватт мощности соответствуют примерно 7 мкФ емкости конденсатора. Осуществляя расчеты, не забывайте следить за значением тока, поступающего на фазную обмотку статора. Он не должен иметь большего значения, чем номинальный показатель.

В случае, когда пуск двигателя производится под нагрузкой, т.е. его пусковые характеристики достигают максимальных величин, к рабочему конденсатору добавляется пусковой. Его особенность заключается в том, что он работает примерно в течение трех секунд в период пуска агрегата и отключается, когда ротор выходит на уровень номинальной частоты вращения. Рабочее напряжение пускового конденсатора должно быть в полтора раза выше сетевого, а его емкость – в 2,5-3 раза больше рабочего конденсатора. Чтобы создать необходимую емкость, вы можете подключить конденсаторы как последовательно, так и параллельно.

Итак, как подобрать конденсатор для однофазного электродвигателя?

Чаще всего значение общей емкости Сраб+Спуск (не отдельного конденсатора) таково: 1 мкФ на каждые 100 ватт.

Есть несколько режимов работы двигателей подобного типа:

  • Пусковой конденсатор + дополнительная обмотка (подключаются на время запуска). Емкость конденсатора: 70 мкФ на 1 кВт мощности двигателя.
  • Рабочий конденсатор (емкость 23-35 мкФ) + дополнительная обмотка, которая находится в подключенном состоянии в течение всего времени работы.
  • Рабочий конденсатор + пусковой конденсатор (подключены параллельно).

Если вы размышляете: как подобрать конденсатор к электродвигателю 220в, стоит исходить из пропорций, приведенных выше. Тем не менее, нужно обязательно проследить за работой и нагревом двигателя после его подключения. Например, при заметном нагревании агрегата в режиме с рабочим конденсатором, следует уменьшить емкость последнего. В целом, рекомендуется выбирать конденсаторы с рабочим напряжением от 450 В.

Как выбрать конденсатор для электродвигателя – вопрос непростой. Для обеспечения эффективной работы агрегата нужно чрезвычайно внимательно рассчитать все параметры и исходить из конкретных условий его работы и нагрузки.

Пусковой конденсатор

Ознакомьтесь также с этими статьями

  • Напыляемый пенополиуретан (ППУ)
  • Складной стол своими руками
  • Расчет сечения кабеля по мощности
  • Силиконовый герметик

Стоит отметить, что на небольших электродвигателях, используемых для бытовых нужд, например, для электроточила на 200-400 Вт, можно не использовать пусковой конденсатор, а обойтись одним рабочим конденсатором, я так делал уже не раз — рабочего конденсатора вполне хватает. Другое дело, если электродвигатель стартует со значительной нагрузкой, то тогда лучше использовать и пусковой конденсатор, который подключается параллельно рабочему конденсатору нажатием и удержанием кнопки на время разгона электродвигателя, либо с помощью специального реле. Расчет емкости пускового конденсатора осуществляется путем умножения емкостей рабочего конденсатора на 2-2.5, в данном калькуляторе используется 2.5.

При этом стоит помнить, что по мере разгона асинхронному двигателю требуется меньшая емкость конденсатора, т.е. не стоит оставлять подключенным пусковой конденсатор на все время работы, т.к. большая емкость на высоких оборотах вызовет перегрев и выход из строя электродвигателя.

Соединение конденсаторов

В электрических цепях нередко производят подключения, состоящие из нескольких конденсаторов, имеющих разные типы соединений.

Последовательное соединение

Если левая пластина первого конденсатора несет заряд со знаком «плюс», правая из-за электростатической индукции получит его со знаком «минус». При этом он будет смещен от левой обкладки второго конденсатора, что, в свою очередь, положительно зарядит ее и т. д.

Последовательное соединение конденсаторных элементов

Напряжение, приложенное к общей емкости конденсаторов, будет складываться из напряжений на каждом из них:

а для всей батареи последовательных элементов:

то q/С = q/С1 + q/С2 + q/С3.

Количество электричества в последовательной цепи одинаково, значит допустимо разделить обе части уравнения на q.

Рассчитать емкость элементов, собранных в последовательную цепь, можно по формуле:

1/С = 1/С1 + 1/С2 + 1/С3 + …

Важно! Величина, обратная суммарной емкости конденсаторных элементов, соединенных в последовательную цепь, составляет сумму обратных величин емкостей отдельных компонентов.

Параллельное соединение

Когда емкость конденсаторов мала, они включаются параллельно. Как рассчитать общую емкость такой цепи, определяется теми же зависимостями, но с учетом того, что напряжение на конденсаторных пластинах будет одинаковым:

Параллельное соединение конденсаторных элементов

Количество электричества на каждом конденсаторе составит:

q1 = V x C1, q2 = V x C2, q3 = V x C3.

Общий заряд конденсаторной батареи:

q = q1 + q2 + q3 = V/C1 + V/C2 + V/C3 = V x (C1 + C2 + C3), а С = С1 + С2 + С3.

Важно! При параллельном соединении конденсаторных элементов каждый из них подключен на полное напряжение электроцепи, а общая емкость суммируется.

В сети есть сайты, имеющие калькулятор для расчета конденсатора при разных конфигурациях электросхемы, а также позволяющих определить емкость, задавая свои структурные параметры, как для плоских, так и для цилиндрических элементов.

Расчет конденсатора для электродвигателя

Трехфазный электромотор можно подключить к однофазной линии, которая позволит управлять им с помощью конденсатора. При этом надо произвести расчет емкости конденсатора.

Чтобы узнать значение в микрофарадах, которое нужно получить от конденсаторного элемента, и найти оптимальный пусковой момент в однофазной линии, надо знать технические характеристики мотора.

Схемы включения электромотора с конденсатором

  1. Активная мощность определяется:

Р = √3 x V x I x соsφ.

Она может быть указана на таблице, прикрепленной к мотору. Напряжение – 220 В в однофазном режиме. Величина соsφ также указывается производителем (обычно для электродвигателей соsφ = 0,8-0,85).

  1. Отсюда можно найти силу тока:

I = P/(√3 x V x соsφ).

  1. Емкость конденсатора для соединенных звездой двигательных обмоток Сраб = 4800 x I /V, для соединенных в Δ – Сраб = 2800 x I/V;
  2. Для пускового конденсаторного элемента Спуск = 2,5 С.

Сетевой калькулятор онлайн производит и такой тип расчетов. Для этого вводятся параметры электромотора и питающей сети, в результате получается емкостное значение.

Расчет параметров конденсатора онлайн

Не знаю как Вам, а мне никогда не нравилось работать и вычислять ёмкости конденсаторов. Больше всего раздражало наличие в исходных данных, ёмкостей в разных номиналах, в пикофарадах, в нанофарадах, микрофарадах. Их приходилось переводить в Фарады, что влекло за собой глупейшие ошибки в расчетах.

Конденсатор — в принципе это любая конструкция, которая может сохранять накопленный электрический потенциал. Если же эта конструкция, не только хранит электроэнергию, но и генерирует её, то это уже источник электропитания и никак не конденсатор.

Конструкция конденсаторов может быть любой, но чаще всего в практике используется плоский конденсатор, состоящий из двух проводящих пластин, между которыми находится какой либо диэлектрик. Это связано с тем, что расчет ёмкости такого конденсатора ведется по известной формуле и простотой его создания. Свернув такой плоский конденсатор в рулон, мы получаем, что при фактическом скромном размере «рулона», там находится плоский конденсатор, длиной в десятки сантиметров и обладающий повышенной ёмкостью.

Емкости конденсаторов некоторых форм известны, и мы дальше их рассмотрим.

Но хотелось бы заметить, что на наш взгляд, потенциал развития конденсаторов до конца не завершен. Ведь форма конструкции какого либо конденсатора может быть любая, материалы из которого сделаны обкладки или диэлектрический слой тоже могут быть любыми в пределах таблицы Менделеева. Единственная сложность, это невозможность теоретически просчитать потенциальную ёмкость, новосозданного (другой конструкции) конденсатора. Это усложняет нахождение самой лучшей конструкции конденсатора.

Есть хорошая книга по рассмотрению электрической ёмкости различных фигур. Для любопытных рекомендую поискать на просторах Интернета: Расчет электрической ёмкости в авторстве Ю.Я.Иоселль 1981 года

Данный бот рассчитывает параметры типовых форм конденсаторов. Отличие от других калькуляторов, присутствующих в интернете, это возможность задавать параметры, которые Вам известны, для того что бы рассчитать остальные.

И последнее нововведение, которое вы можете использовать. Вам не обязательно придется переводить заданные данные в метры, фарады и т.д. Достаточно обозначить размерность данных.

Например, если ёмкость известна и равно 100 пикофарад, то боту можно так и написать c=100пикофарад или с=100пФ, бот сам переведет в Фарады.

Результат, тоже будет выдан оптимально визуальному восприятию пользователя.

Это стало возможно с созданием бота Система единиц измерения онлайн

Плоский конденсатор. Параметры

Ёмкость плоского конденсатора

Относительная диэлектрическая проницаемость

Источник: ottodixforum.ru

Как выбрать конденсатор для электродвигателя

Что делать, если требуется подключить двигатель к источнику, рассчитанному на другой тип напряжения (например, трехфазный двигатель к однофазной сети)? Такая необходимость может возникнуть, в частности, если нужно подключить двигатель к какому-либо оборудованию (сверлильному или наждачному станку и пр.). В этом случае используются конденсаторы, которые, однако, могут быть разного типа. Соответственно, надо иметь представление о том, какой емкости нужен конденсатор для электродвигателя, и как ее правильно рассчитать.

Что такое конденсатор

Конденсатор состоит из двух пластин, расположенных друг напротив друга. Между ними помещается диэлектрик. Его задача – снимать поляризацию, т.е. заряд близкорасположенных проводников.

Существует три вида конденсаторов:

  • Полярные. Не рекомендуется использовать их в системах, подключенных к сети переменного тока, т.к. вследствие разрушения слоя диэлектрика происходит нагрев аппарата, вызывающий короткое замыкание.
  • Неполярные. Работают в любом включении, т.к. их обкладки одинаково взаимодействуют с диэлектриком и с источником.
  • Электролитические (оксидные). В роли электродов выступает тонкая оксидная пленка. Считаются идеальным вариантом для электродвигателей с низкой частотой, т.к. имеют максимально возможную емкость (до 100000 мкФ).

Как подобрать конденсатор для трехфазного электродвигателя

Задаваясь вопросом: как подобрать конденсатор для трехфазного электродвигателя, нужно принять во внимание ряд параметров.

Чтобы подобрать емкость для рабочего конденсатора, необходимо применить следующую расчетную формулу: Сраб.=k*Iф / U сети, где:

  • k – специальный коэффициент, равный 4800 для подключения «треугольник» и 2800 для «звезды»;
  • Iф – номинальное значение тока статора, это значение обычно указывается на самом электродвигателе, если же оно затерто или неразборчиво, то его измеряют специальными клещами;
  • U сети – напряжение питания сети, т.е. 220 вольт.

Таким образом вы рассчитаете емкость рабочего конденсатора в мкФ.

Еще один вариант расчета – принять во внимание значение мощности двигателя. 100 Ватт мощности соответствуют примерно 7 мкФ емкости конденсатора. Осуществляя расчеты, не забывайте следить за значением тока, поступающего на фазную обмотку статора. Он не должен иметь большего значения, чем номинальный показатель.

В случае, когда пуск двигателя производится под нагрузкой, т.е. его пусковые характеристики достигают максимальных величин, к рабочему конденсатору добавляется пусковой. Его особенность заключается в том, что он работает примерно в течение трех секунд в период пуска агрегата и отключается, когда ротор выходит на уровень номинальной частоты вращения. Рабочее напряжение пускового конденсатора должно быть в полтора раза выше сетевого, а его емкость – в 2,5-3 раза больше рабочего конденсатора. Чтобы создать необходимую емкость, вы можете подключить конденсаторы как последовательно, так и параллельно.

Как подобрать конденсатор для однофазного электродвигателя

Асинхронные двигатели, рассчитанные на работу в однофазной сети, обычно подключаются на 220 вольт. Однако если в трехфазном двигателе момент подключения задается конструктивно (расположение обмоток, смещение фаз трехфазной сети), то в однофазном необходимо создать вращательный момент смещения ротора, для чего при запуске применяется дополнительная пусковая обмотка. Смещение ее фазы тока осуществляется при помощи конденсатора.

Итак, как подобрать конденсатор для однофазного электродвигателя?

Чаще всего значение общей емкости Сраб+Спуск (не отдельного конденсатора) таково: 1 мкФ на каждые 100 ватт.

Есть несколько режимов работы двигателей подобного типа:

  • Пусковой конденсатор + дополнительная обмотка (подключаются на время запуска). Емкость конденсатора: 70 мкФ на 1 кВт мощности двигателя.
  • Рабочий конденсатор (емкость 23-35 мкФ) + дополнительная обмотка, которая находится в подключенном состоянии в течение всего времени работы.
  • Рабочий конденсатор + пусковой конденсатор (подключены параллельно).

Если вы размышляете: как подобрать конденсатор к электродвигателю 220в, стоит исходить из пропорций, приведенных выше. Тем не менее, нужно обязательно проследить за работой и нагревом двигателя после его подключения. Например, при заметном нагревании агрегата в режиме с рабочим конденсатором, следует уменьшить емкость последнего. В целом, рекомендуется выбирать конденсаторы с рабочим напряжением от 450 В.

Как выбрать конденсатор для электродвигателя – вопрос непростой. Для обеспечения эффективной работы агрегата нужно чрезвычайно внимательно рассчитать все параметры и исходить из конкретных условий его работы и нагрузки.

Источник: www.szemo.ru

Как подобрать и подключить конденсатор для трехфазного двигателя

К каждому объекту изначально подается трехфазный ток. Основная причина заключается в использовании на электростанциях генераторов с трехфазными обмотками, сдвинутыми по фазе между собой на 120 градусов и вырабатывающими три синусоидальных напряжения. Однако при дальнейшем распределении тока потребителю подводится только одна фаза, к которой и подключается все имеющееся электрооборудование.

Иногда возникает необходимость в использовании нестандартных устройств, поэтому приходится решать задачу, как подобрать конденсатор для трехфазного двигателя. Как правило, требуется рассчитать емкость данного элемента, обеспечивающего устойчивую работу агрегата.

Принцип подключения трехфазного устройства к одной фазе

Во всех квартирах и большинстве частных домов все внутреннее энергоснабжение осуществляется по однофазным сетям. В этих условиях иногда необходимо выполнить подключение трехфазного двигателя к однофазной сети. Эта операция вполне возможна с физической точки зрения, поскольку отдельно взятые фазы различаются между собой лишь сдвигом по времени. Подобный сдвиг легко организовать путем включения в цепь любых реактивных элементов – емкостных или индуктивных. Именно они выполняют функцию фазосдвигающих устройств когда используются рабочего и пускового элементов.

Следует учитывать то обстоятельство, что обмотка статора сама по себе обладает индуктивностью. В связи с этим, вполне достаточно снаружи двигателя подключить конденсатор с определенной емкостью. Одновременно, обмотки статора соединяются таким образом, чтобы первая из них сдвигала фазу другой обмотки в одну сторону, а в третьей обмотке конденсатор выполняет эту же процедуру, только в другом направлении. В итоге образуются требуемые фазы в количестве трех, добытые из однофазного питающего провода.

Таким образом, трехфазный двигатель выступает в качестве нагрузки лишь для одной фазы подключенного питания. В результате, в потребляемой энергии образуется дисбаланс, отрицательно влияющий на общую работу сети. Поэтому такой режим рекомендуется использовать в течение непродолжительного времени для электродвигателей небольшой мощности. Подключение обмоток в однофазную сеть может быть выполнено двумя способами – звездой или треугольником.

Схемы подключения трехфазного двигателя к однофазной сети

Когда трехфазный электродвигатель планируется включать в однофазную сеть, рекомендуется отдавать предпочтение соединению треугольником. Об этом предупреждает информационная табличка, закрепленная на корпусе. В некоторых случаях здесь стоит обозначение «Y», что означает соединение звездой. Рекомендуется переподключить обмотки по схеме треугольника, чтобы избежать больших потерь мощности.

Электродвигатель включается в одну из фаз однофазной сети, а две другие фазы создаются искусственным путем. Для этого используется рабочий (Ср) и пусковой конденсатор (Сп). В самом начале запуска двигателя необходим высокий уровень стартового тока, который не может быть обеспечен одним лишь рабочим конденсатором. На помощь приходит стартовый или пусковой конденсатор, подключаемый параллельно с рабочим конденсатором. При незначительной мощности двигателя их показатели равны между собой. Специально выпускаемые стартовые конденсаторы имеют маркировку «Starting».

Эти устройства работают только в периоды пуска, для того чтобы разогнать двигатель до нужной мощности. В дальнейшем он выключается с помощью кнопочного или двойного выключателя.

Виды пусковых конденсаторов

Небольшие электродвигатели, мощность которых не превышает 200-400 ватт, могут работать без пускового устройства. Для них вполне достаточно одного рабочего конденсатора. Однако при наличии значительных нагрузок на старте, обязательно используются дополнительные пусковые конденсаторы. Он подключается параллельно с рабочим конденсатором и в период разгона удерживается во включенном положении с помощью специальной кнопки или реле.

Для расчета емкости пускового элемента необходимо умножить емкость рабочего конденсатора на коэффициент, равный 2 или 2,5. В процессе разгона двигатель требует емкость все меньше и меньше. В связи с этим, не стоит держать пусковой конденсатор постоянно включенным. Высокая емкость при больших оборотах приведет к перегреву и выходу из строя агрегата.

В стандартную конструкцию конденсатора входят две пластины, расположенные напротив друг друга и разделенные слоем диэлектрика. При выборе того или иного элемента, необходимо учитывать его параметры и технические характеристики.

Все конденсаторы представлены тремя основными видами:

  • Полярные. Не могут работать с электродвигателями, подключенными к переменному току. Разрушающийся слой диэлектрика может привести к нагреву агрегата и последующему короткому замыканию.
  • Неполярные. Получили наибольшее распространение. Могут работать в любых вариантах включения за счет одинакового взаимодействия обкладок с диэлектриком и источником тока.
  • Электролитические. В этом случае электроды представляют собой тонкую оксидную пленку. Они могут достигать максимально возможной емкости до 100 тыс. мкФ, идеально подходят к двигателям с низкой частотой.

Выбор конденсатора для трехфазного двигателя

Конденсаторы, предназначенные для трехфазного мотора, должны иметь достаточно высокую емкость – от десятков до сотен микрофарад. Электролитические конденсаторы не годятся для этих целей, поскольку для них требуется однополярное подключение. То есть, специально для этих устройств потребуется создание выпрямителя с диодами и сопротивлениями.

Постепенно в таких конденсаторах происходит высыхание электролита, что приводит к потере емкости. Кроме того, в процессе эксплуатации данные элементы иногда взрываются. Если все же решено использовать электролитические устройства, нужно обязательно учитывать эти особенности.

Классическим примеров служат элементы, представленные на рисунке. Слева изображен рабочий конденсатор, а справа – пусковой.

Подбор конденсатора для трехфазного двигателя выполняется опытным путем. Емкость рабочего устройства выбирается из расчета 7 мкФ на 100 Вт мощности. Следовательно, 600 Вт будет соответствовать 42 мкФ. Пусковой конденсатор как минимум в 2 раза превышает емкость рабочего. Таким образом 2 х 45 = 90 мкФ будет наиболее подходящим показателем.

Выбор осуществляется постепенно, исходя из работы двигателя, поскольку его реальная мощность напрямую зависит от емкости используемых конденсаторов. Кроме того, это можно сделать по специальной таблице. При недостатке емкости двигатель будет терять свою мощность, а при ее избытке наступит перегрев от чрезмерного тока. Если конденсатор выбран правильно, то двигатель будет работать нормально, без рывков и посторонних шумов. Более точно подбираем устройство путем расчетов, выполняемых по специальным формулам.

Расчет емкости

Емкость конденсатора для электродвигателя рассчитывается исходя из схемы соединения обмоток – звездой или треугольником.

В обоих случаях применяется общая расчетная формула: Сраб = к х Iф/Uсети, к которой все параметры имеют следующие обозначения:

  • к – является специальным коэффициентом. Его значение составляет 2800 для схемы «звезда» и 4800 для схемы «треугольник».
  • Iф – номинальный ток статора, указанный на информационной табличке. При невозможности прочтения, выполняются измерения с помощью специальных измерительных клещей.
  • Uсети – напряжение питающей сети, величиной в 220 вольт.

Подставив все необходимые значения, можно легко рассчитать, какая емкость будет у рабочего конденсатора (мкФ). Во время расчетов необходимо учитывать ток, поступающий к фазной обмотке статора. Он не должен превышать номинальное значение, точно так же, как нагрузка двигателя с конденсатором должна быть не выше 60-80% номинальной мощности, обозначенной на информационной табличке.

Как подключить пусковой и рабочий конденсаторы

На рисунке указана простейшая схема подключения пускового и рабочего элементов. Первый из них устанавливается сверху, а второй – снизу. Одновременно к двигателю подключается кнопка включения и выключения. Самое главное – внимательно разобраться с проводами, чтобы не перепутать концы.

Данная схема позволяет выполнить предварительную проверку с неточной прикидкой. Она же используется и после окончательного выбора наиболее оптимального значения.

Такой подбор осуществляется экспериментальным путем с использованием нескольких конденсаторов разной емкости. При параллельном подключении их суммарная мощность будет увеличиваться. В это время нужно контролировать работу двигателя. Если работа устойчивая и ровная, в этом случае можно покупать конденсатор с емкостью, равной сумме емкостей проверочных элементов.

Источник: electric-220.ru

Емкость конденсатора для запуска трехфазного двигателя

Для включения трехфазного электродвигателя (что такое электродвигатель ➠) в однофазную сеть обмотки статора могут быть соединены в звезду или треугольник.

Напряжение сети подводят к началам двух фаз. К началу третьей фазы и одному из зажимов сети присоединяют рабочий конденсатор 1 и отключаемый (пусковой) конденсатор 2, который необходим для увеличения пускового момента.

Пусковая емкость конденсаторов

После пуска двигателя конденсатор 2 отключают.

Рабочую емкость конденсаторного двигателя для частоты 50 Гц определяют по формулам:

где Ср — рабочая емкость при номинальной нагрузке, мкФ;
Iном — номинальный ток фазы двигателя, А;
U — напряжение сети, В.

Нагрузка двигателя с конденсатором не должна превышать 65—85% номинальной мощности, указанной на щитке трехфазного двигателя.

Если пуск двигателя происходит без нагрузки, то пусковая емкость не требуется — рабочая емкость будет в то же время пусковой. В этом случае схема включения упрощается.

При пуске двигателя под нагрузкой, близкой к номинальному моменту необходимо иметь пусковую емкость Сп = (2,5 ÷ 3) Ср.

Выбор конденсаторов по номинальному напряжению производят по соотношениям:

где Uк и U — напряжения на конденсаторе и в сети.

Основные технические данные некоторых конденсаторов приведены в таблице.

Если трехфазный электродвигатель, включенный в однофазную сеть, не достигает номинальной частоты вращения, а застревает на малой скорости, следует увеличить сопротивление клетки ротора проточкой короткозамыкающих колец или увеличить воздушный зазор шлифовкой ротора на 15—20%.

В том случае, если конденсаторы отсутствуют, можно использовать резисторы, которые включаются по тем же схемам, что и при конденсаторном пуске. Резисторы включаются вместо пусковых конденсаторов (рабочие конденсаторы отсутствуют).

Сопротивление (Ом) резистора может быть определено по формуле

,

где R — сопротивление резистора;
κ и I— кратность пускового тока и линейный ток в трехфазном режиме.

Пример расчета рабочей емкости конденсатора для двигателя

Определить рабочую емкость для двигателя АО 31/2, 0.6 кВт, 127/220 В, 4.2/2.4 А, если двигатель включен по схеме, изображенной на рис. а, а напряжение сети равно 220 В. Пуск двигателя без нагрузки.

1. Рабочая емкость Ср = 2800 x 2.4 / 220 ≈ 30 мкФ.

2. Напряжение на конденсаторе при выбранной схеме Uк = 1,15 x U = 1,15 x 220 = 253 В.

По таблице выбираем три конденсатора МБГО-2 по 10 мкФ каждый с рабочим напряжением 300 В. Конденсаторы включать параллельно.

Источник: В.И. Дьяков. Типовые расчеты по электрооборудованию.

Видео о том, как подключить электродвигатель на 220 вольт:

    Подобные расчеты

Что делать, если требуется подключить двигатель к источнику, рассчитанному на другой тип напряжения (например, трехфазный двигатель к однофазной сети)? Такая необходимость может возникнуть, в частности, если нужно подключить двигатель к какому-либо оборудованию (сверлильному или наждачному станку и пр.). В этом случае используются конденсаторы, которые, однако, могут быть разного типа. Соответственно, надо иметь представление о том, какой емкости нужен конденсатор для электродвигателя, и как ее правильно рассчитать.

Что такое конденсатор

Конденсатор состоит из двух пластин, расположенных друг напротив друга. Между ними помещается диэлектрик. Его задача – снимать поляризацию, т.е. заряд близкорасположенных проводников.

Существует три вида конденсаторов:

  • Полярные. Не рекомендуется использовать их в системах, подключенных к сети переменного тока, т.к. вследствие разрушения слоя диэлектрика происходит нагрев аппарата, вызывающий короткое замыкание.
  • Неполярные. Работают в любом включении, т.к. их обкладки одинаково взаимодействуют с диэлектриком и с источником.
  • Электролитические (оксидные). В роли электродов выступает тонкая оксидная пленка. Считаются идеальным вариантом для электродвигателей с низкой частотой, т.к. имеют максимально возможную емкость (до 100000 мкФ).

Как подобрать конденсатор для трехфазного электродвигателя

Задаваясь вопросом: как подобрать конденсатор для трехфазного электродвигателя, нужно принять во внимание ряд параметров.

Чтобы подобрать емкость для рабочего конденсатора, необходимо применить следующую расчетную формулу: Сраб.=k*Iф / U сети, где:

  • k – специальный коэффициент, равный 4800 для подключения «треугольник» и 2800 для «звезды»;
  • Iф – номинальное значение тока статора, это значение обычно указывается на самом электродвигателе, если же оно затерто или неразборчиво, то его измеряют специальными клещами;
  • U сети – напряжение питания сети, т.е. 220 вольт.

Таким образом вы рассчитаете емкость рабочего конденсатора в мкФ.

Еще один вариант расчета – принять во внимание значение мощности двигателя. 100 Ватт мощности соответствуют примерно 7 мкФ емкости конденсатора. Осуществляя расчеты, не забывайте следить за значением тока, поступающего на фазную обмотку статора. Он не должен иметь большего значения, чем номинальный показатель.

В случае, когда пуск двигателя производится под нагрузкой, т.е. его пусковые характеристики достигают максимальных величин, к рабочему конденсатору добавляется пусковой. Его особенность заключается в том, что он работает примерно в течение трех секунд в период пуска агрегата и отключается, когда ротор выходит на уровень номинальной частоты вращения. Рабочее напряжение пускового конденсатора должно быть в полтора раза выше сетевого, а его емкость – в 2,5-3 раза больше рабочего конденсатора. Чтобы создать необходимую емкость, вы можете подключить конденсаторы как последовательно, так и параллельно.

Как подобрать конденсатор для однофазного электродвигателя

Асинхронные двигатели, рассчитанные на работу в однофазной сети, обычно подключаются на 220 вольт. Однако если в трехфазном двигателе момент подключения задается конструктивно (расположение обмоток, смещение фаз трехфазной сети), то в однофазном необходимо создать вращательный момент смещения ротора, для чего при запуске применяется дополнительная пусковая обмотка. Смещение ее фазы тока осуществляется при помощи конденсатора.

Итак, как подобрать конденсатор для однофазного электродвигателя?

Чаще всего значение общей емкости Сраб+Спуск (не отдельного конденсатора) таково: 1 мкФ на каждые 100 ватт.

Есть несколько режимов работы двигателей подобного типа:

  • Пусковой конденсатор + дополнительная обмотка (подключаются на время запуска). Емкость конденсатора: 70 мкФ на 1 кВт мощности двигателя.
  • Рабочий конденсатор (емкость 23-35 мкФ) + дополнительная обмотка, которая находится в подключенном состоянии в течение всего времени работы.
  • Рабочий конденсатор + пусковой конденсатор (подключены параллельно).

Если вы размышляете: как подобрать конденсатор к электродвигателю 220в, стоит исходить из пропорций, приведенных выше. Тем не менее, нужно обязательно проследить за работой и нагревом двигателя после его подключения. Например, при заметном нагревании агрегата в режиме с рабочим конденсатором, следует уменьшить емкость последнего. В целом, рекомендуется выбирать конденсаторы с рабочим напряжением от 450 В.

Как выбрать конденсатор для электродвигателя – вопрос непростой. Для обеспечения эффективной работы агрегата нужно чрезвычайно внимательно рассчитать все параметры и исходить из конкретных условий его работы и нагрузки.

К каждому объекту изначально подается трехфазный ток. Основная причина заключается в использовании на электростанциях генераторов с трехфазными обмотками, сдвинутыми по фазе между собой на 120 градусов и вырабатывающими три синусоидальных напряжения. Однако при дальнейшем распределении тока потребителю подводится только одна фаза, к которой и подключается все имеющееся электрооборудование.

Иногда возникает необходимость в использовании нестандартных устройств, поэтому приходится решать задачу, как подобрать конденсатор для трехфазного двигателя. Как правило, требуется рассчитать емкость данного элемента, обеспечивающего устойчивую работу агрегата.

Принцип подключения трехфазного устройства к одной фазе

Во всех квартирах и большинстве частных домов все внутреннее энергоснабжение осуществляется по однофазным сетям. В этих условиях иногда необходимо выполнить подключение трехфазного двигателя к однофазной сети. Эта операция вполне возможна с физической точки зрения, поскольку отдельно взятые фазы различаются между собой лишь сдвигом по времени. Подобный сдвиг легко организовать путем включения в цепь любых реактивных элементов – емкостных или индуктивных. Именно они выполняют функцию фазосдвигающих устройств когда используются рабочего и пускового элементов.

Следует учитывать то обстоятельство, что обмотка статора сама по себе обладает индуктивностью. В связи с этим, вполне достаточно снаружи двигателя подключить конденсатор с определенной емкостью. Одновременно, обмотки статора соединяются таким образом, чтобы первая из них сдвигала фазу другой обмотки в одну сторону, а в третьей обмотке конденсатор выполняет эту же процедуру, только в другом направлении. В итоге образуются требуемые фазы в количестве трех, добытые из однофазного питающего провода.

Таким образом, трехфазный двигатель выступает в качестве нагрузки лишь для одной фазы подключенного питания. В результате, в потребляемой энергии образуется дисбаланс, отрицательно влияющий на общую работу сети. Поэтому такой режим рекомендуется использовать в течение непродолжительного времени для электродвигателей небольшой мощности. Подключение обмоток в однофазную сеть может быть выполнено двумя способами – звездой или треугольником.

Схемы подключения трехфазного двигателя к однофазной сети

Когда трехфазный электродвигатель планируется включать в однофазную сеть, рекомендуется отдавать предпочтение соединению треугольником. Об этом предупреждает информационная табличка, закрепленная на корпусе. В некоторых случаях здесь стоит обозначение «Y», что означает соединение звездой. Рекомендуется переподключить обмотки по схеме треугольника, чтобы избежать больших потерь мощности.

Электродвигатель включается в одну из фаз однофазной сети, а две другие фазы создаются искусственным путем. Для этого используется рабочий (Ср) и пусковой конденсатор (Сп). В самом начале запуска двигателя необходим высокий уровень стартового тока, который не может быть обеспечен одним лишь рабочим конденсатором. На помощь приходит стартовый или пусковой конденсатор, подключаемый параллельно с рабочим конденсатором. При незначительной мощности двигателя их показатели равны между собой. Специально выпускаемые стартовые конденсаторы имеют маркировку «Starting».

Эти устройства работают только в периоды пуска, для того чтобы разогнать двигатель до нужной мощности. В дальнейшем он выключается с помощью кнопочного или двойного выключателя.

Виды пусковых конденсаторов

Небольшие электродвигатели, мощность которых не превышает 200-400 ватт, могут работать без пускового устройства. Для них вполне достаточно одного рабочего конденсатора. Однако при наличии значительных нагрузок на старте, обязательно используются дополнительные пусковые конденсаторы. Он подключается параллельно с рабочим конденсатором и в период разгона удерживается во включенном положении с помощью специальной кнопки или реле.

Для расчета емкости пускового элемента необходимо умножить емкость рабочего конденсатора на коэффициент, равный 2 или 2,5. В процессе разгона двигатель требует емкость все меньше и меньше. В связи с этим, не стоит держать пусковой конденсатор постоянно включенным. Высокая емкость при больших оборотах приведет к перегреву и выходу из строя агрегата.

В стандартную конструкцию конденсатора входят две пластины, расположенные напротив друг друга и разделенные слоем диэлектрика. При выборе того или иного элемента, необходимо учитывать его параметры и технические характеристики.

Все конденсаторы представлены тремя основными видами:

  • Полярные. Не могут работать с электродвигателями, подключенными к переменному току. Разрушающийся слой диэлектрика может привести к нагреву агрегата и последующему короткому замыканию.
  • Неполярные. Получили наибольшее распространение. Могут работать в любых вариантах включения за счет одинакового взаимодействия обкладок с диэлектриком и источником тока.
  • Электролитические. В этом случае электроды представляют собой тонкую оксидную пленку. Они могут достигать максимально возможной емкости до 100 тыс. мкФ, идеально подходят к двигателям с низкой частотой.

Выбор конденсатора для трехфазного двигателя

Конденсаторы, предназначенные для трехфазного мотора, должны иметь достаточно высокую емкость – от десятков до сотен микрофарад. Электролитические конденсаторы не годятся для этих целей, поскольку для них требуется однополярное подключение. То есть, специально для этих устройств потребуется создание выпрямителя с диодами и сопротивлениями.

Постепенно в таких конденсаторах происходит высыхание электролита, что приводит к потере емкости. Кроме того, в процессе эксплуатации данные элементы иногда взрываются. Если все же решено использовать электролитические устройства, нужно обязательно учитывать эти особенности.

Классическим примеров служат элементы, представленные на рисунке. Слева изображен рабочий конденсатор, а справа – пусковой.

Подбор конденсатора для трехфазного двигателя выполняется опытным путем. Емкость рабочего устройства выбирается из расчета 7 мкФ на 100 Вт мощности. Следовательно, 600 Вт будет соответствовать 42 мкФ. Пусковой конденсатор как минимум в 2 раза превышает емкость рабочего. Таким образом 2 х 45 = 90 мкФ будет наиболее подходящим показателем.

Выбор осуществляется постепенно, исходя из работы двигателя, поскольку его реальная мощность напрямую зависит от емкости используемых конденсаторов. Кроме того, это можно сделать по специальной таблице. При недостатке емкости двигатель будет терять свою мощность, а при ее избытке наступит перегрев от чрезмерного тока. Если конденсатор выбран правильно, то двигатель будет работать нормально, без рывков и посторонних шумов. Более точно подбираем устройство путем расчетов, выполняемых по специальным формулам.

Расчет емкости

Емкость конденсатора для электродвигателя рассчитывается исходя из схемы соединения обмоток – звездой или треугольником.

В обоих случаях применяется общая расчетная формула: Сраб = к х Iф/Uсети, к которой все параметры имеют следующие обозначения:

  • к – является специальным коэффициентом. Его значение составляет 2800 для схемы «звезда» и 4800 для схемы «треугольник».
  • Iф – номинальный ток статора, указанный на информационной табличке. При невозможности прочтения, выполняются измерения с помощью специальных измерительных клещей.
  • Uсети – напряжение питающей сети, величиной в 220 вольт.

Подставив все необходимые значения, можно легко рассчитать, какая емкость будет у рабочего конденсатора (мкФ). Во время расчетов необходимо учитывать ток, поступающий к фазной обмотке статора. Он не должен превышать номинальное значение, точно так же, как нагрузка двигателя с конденсатором должна быть не выше 60-80% номинальной мощности, обозначенной на информационной табличке.

Как подключить пусковой и рабочий конденсаторы

На рисунке указана простейшая схема подключения пускового и рабочего элементов. Первый из них устанавливается сверху, а второй – снизу. Одновременно к двигателю подключается кнопка включения и выключения. Самое главное – внимательно разобраться с проводами, чтобы не перепутать концы.

Данная схема позволяет выполнить предварительную проверку с неточной прикидкой. Она же используется и после окончательного выбора наиболее оптимального значения.

Такой подбор осуществляется экспериментальным путем с использованием нескольких конденсаторов разной емкости. При параллельном подключении их суммарная мощность будет увеличиваться. В это время нужно контролировать работу двигателя. Если работа устойчивая и ровная, в этом случае можно покупать конденсатор с емкостью, равной сумме емкостей проверочных элементов.

Емкость рабочего конденсатора для трехфазного двигателя таблица

Чтобы подключить асинхронный электродвигатель трехфазного типа к однофазной сети на напряжение 220 В, необходимо создать условия для сдвига фаз на обмотках статора двигателя. Сдвиг фаз сформирует имитацию кругового вращающегося магнитного поля, заставляющего вращаться вал ротора двигателя. Конденсатор даёт току «запас» в π/2=90° относительно напряжения, и это создаёт дополнительный момент вращения ротора.

При подключении двигателя к сети используют два подключенных параллельно конденсатора — пусковой и рабочий. Данный калькулятор позволяет рассчитать ёмкость этих конденсаторов, ёмкость пускового конденсатора берется из расчёта 2,5 емкости рабочего конденсатора.

Для получения необходимых значений ёмкости, заполните поля формы ниже. Тип соединения обмоток двигателя, мощность двигателя, КПД и коэффициент мощности обозначены на шильдике электродвигателя. Способ соединения обмоток зависит от напряжения сети, к которой выполняется подключение: 220 В — «треугольник», когда концы обмоток соединены между собой, к их началам подводится питающее напряжение; 380 В — «звезда», при котором концы одной обмотки соединены с началом другой.

Наши сети электропитания созданы трехфазными. Потому что генераторы, работающие на электростанциях, имеют трехфазные обмотки и вырабатывают три синусоидальных напряжения, сдвинутых по фазе относительно друг друга на 120°.

Но мы чаще всего пользуемся всего одной фазой — проводим себе один фазный провод из трех и все к нему подключаем. Только в технике нашей часто встречаются электродвигатели, и они по природе своей трехфазны. Ну а фаза от фазы чем отличается? Только сдвигом во времени. Сдвига такого очень просто добиться, включив в цепь питания реактивные элементы: емкости или индуктивности.

Но ведь обмотка на статоре сама и является индуктивностью. Поэтому остается добавить к двигателю снаружи только емкость, конденсатор, а обмотки подключить так, чтобы одна из них в другой сдвигала фазу в одну сторону, а конденсатор в третьей делал то же самое, только в другую. И получатся те же самые три фазы, только «вынутые» из одной фазы питающих проводов.

Последнее обстоятельство означает, что мы нагружаем трехфазным двигателем только одну из фаз приходящего питания. Разумеется, это вносит дисбаланс в потребление энергии. Поэтому все-таки лучше, когда трехфазный двигатель питается трехфазным напряжением, а построить цепь его питания от одной приходящей фазы хорошо, только если мощность двигателя не особо велика.

Включение трехфазного электродвигателя в однофазную сеть питания

Обмотки электродвигателя соединяют двумя способами: звезда (Y) или треугольник (Δ).

При подключении трехфазного двигателя к однофазной сети предпочтительнее соединение типа треугольник. На шильдике двигателя об этом есть информация, и когда там обозначено Y — звезда, самым лучшим вариантом было бы открыть его кожух, найти концы обмоток и правильно переключить обмотки в треугольник. Иначе потери мощности будут слишком большими.

Включение двигателя на одну фазу питающей сети требует создания из нее и двух остальных. Это можно сделать по следующей схеме

При запуске двигателя в работу в самом начале требуется высокий стартовый ток, поэтому емкости рабочего конденсатора обычно не хватает. Чтобы «ему помочь», используют специальный стартовый конденсатор, который подключается к рабочему конденсатору параллельно. В самом простом случае (невысокая мощность двигателя) его выбирают точно таким же, как и рабочий. Но для этой цели выпускаются и специально стартовые конденсаторы, на которых так и написано: starting.

Стартовый конденсатор должен быть включен в работу только во время пуска и разгона двигателя до рабочей мощности. После этого его отключают. Используется кнопочный выключатель. Или двойной: одной клавишей включается сам двигатель и кнопка фиксируется во включенном положении, кнопка же, замыкающая цепь рабочего конденсатора, каждый раз размыкается.

Как подобрать конденсатор

Конденсаторы для трехфазного двигателя нужны достаточно большой емкости — речь идет о десятках и сотнях микрофарад. Однако конденсаторы электролитические для этой цели не годятся. Они требуют подключения однополярного, то есть специально для них придется городить выпрямитель из диодов и сопротивлений. Кроме того, со временем в электролитических конденсаторах высыхает электролит и они теряют емкость. Поэтому если будете ставить такой на двигатель, необходимо делать на это скидку, а не верить тому, что на них написано. Ну и еще одно за ними числится: электролитические конденсаторы имеют свойство иногда взрываться.

Поэтому задачу, как выбрать конденсатор под трехфазный двигатель, часто решают в несколько этапов

Сначала подбираем приблизительно. Надо рассчитать емкость конденсатора по простейшему соотношению как 7 мкФ на каждые 100 ватт мощности. То есть 700 ватт дает нам 49 мкФ первоначально. Емкость выбираемого пускового конденсатора берется в диапазоне 1–3-кратного превышения емкости рабочего конденсатора. Выберите 2*50 = 100 мкФ — будет само то. Ну, для начала можно взять побольше, потом подобрать конденсаторы, ориентируясь на работу двигателя. От емкости конденсаторов зависит реальная мощность движка. Если ее мало, двигатель при тех же оборотах потеряет мощность (обороты не зависят от мощности, а только от частоты напряжения), так как ему будет не хватать тока. При чрезмерной емкости конденсаторов у него будет перегрев от избытка тока.

Нормальная работа двигателя, без шума и рывков — это неплохой критерий правильно выбранного конденсатора. Но для большей точности можно сделать расчет конденсаторов по формулам, а такую проверку оставить на потом в качестве окончательного подтверждения успешности результатов подбора конденсаторов.

Однако надо все-таки подключить конденсаторы.

Подключение пускового и рабочего конденсаторов для трехфазного электромотора

Вот оно соответствие всех нужных приборов элементам схемы

Теперь выполним подключение, внимательно разобравшись с проводами

Так можно подключить двигатель и предварительно, используя неточную прикидку, и окончательно, когда будут подобраны оптимальные значения.

Подбор можно сделать и экспериментально, имея несколько конденсаторов разных емкостей. Если их присоединять параллельно друг другу, то суммарная емкость будет увеличиваться, при этом нужно смотреть, как ведет себя двигатель. Как только он станет работать ровно и без перенагрузки, значит, емкость находится где-то в районе оптимума. После этого приобретается конденсатор, по емкости равный этой сумме емкостей испытываемых конденсаторов, включенных параллельно. Однако можно при таком подборе измерять фактический потребляемый ток, используя измерительные токовые клещи, а провести расчет емкости конденсатора по формулам.

Как рассчитать емкость рабочего конденсатора

Для двух соединений обмоток берутся несколько разные соотношения.

В формуле введен коэффициент соединения Кс, который для треугольника равен 4800, а для звезды — 2800.

Где значения Р (мощность), U (напряжение 220 В), η (КПД двигателя, в процентном значении деленном на 100) и cosϕ (коэффициент мощности) берутся с шильдика двигателя.

Вычислить значение можно с помощью обычного калькулятора или воспользовавшись чем-то вроде подобной вычислительной таблицы. В ней нужно подставить значения параметров двигателя (желтые поля), результат получается в зеленых полях в микрофарадах

Однако не всегда есть уверенность, что параметры работы двигателя соответствуют тому, что написано на шильдике. В этом случае нужно измерить реальный ток измерительными клещами и воспользоваться формулой Cр = Кс*I/U.

Расчет емкости фазосдвигающего конденсатора

для трехфазного асинхронного двигателя в бытовой однофазной сети

Рабочий и пусковой конденсаторы включаются в цепь параллельно, во время пуска работают одновременно, затем пусковой отключают. В момент пуска асинхронных двигателей (особенно, с нагрузкой на валу) в сети 220 В требуется повышенная емкость фазосдвигающего конденсатора (в 2-3 раза выше емкости рабочего).

Двигатель, имеющий маркировку 220/380 и Δ/Y включается в однофазную сеть 220В по схеме треугольник, по схеме звезда в сети 220В такой двигатель будет терять в мощности троекратно и сильно греться.

При соединении конденсаторов параллельно их емкость суммируется. При соединении конденсаторов последовательно, рабочее напряжение в цепи будет равняться сумме напряжений всех конденсаторов, а емкость вычисляется по формуле: 1/C = 1/C1 + 1/C2 + . + 1/Cn. Рабочее напряжение в цепи конденсаторов должно быть минимум в полтора раза выше напряжения сети (то есть не менее 330В в сети 220В). Таким образом, два конденсатора на 200 мкф с рабочим напряжением 200В дадут при последовательном соединении емкость 100 мкф и допустимое рабочее напряжение 400В. При параллельном соединении емкость будет 400 мкф и рабочее напряжение 200В (самое низкое значение допустимого напряжения из всего набора конденсаторов в цепи). Необходимые конденсаторы представлены в сетевых магазинах в разделе пусковых конденсаторов (не ищите по старинке бумажные — их практически перестали выпускать).

Видеопримеры работы двигателя 2.2 кВт и 1.1 кВт с одной и той же нагрузкой и правильно подобранными рабочими и пусковыми конденсаторами, разница в скорости пуска 3 и 20 секунд. И сборка на 3.3 кВт весело крутится (пильный диск 350 мм в диаметре).

Схема включения в однофазную сеть трёхфазного асинхронного двигателя с обмотками статора, соединёнными по схеме «звезда» (а) или «треугольник» (б): B1 — Переключатель направления вращения (реверс), В2 — Выключатель пусковой ёмкости; Ср — рабочий конденсатор; Cп — пусковой конденсатор; АД — асинхронный электродвигатель.

На схеме представлено последовательное (сверху) и параллельное (снизу) соединение кон­ден­саторов.

На рисунке представлена схема соединения обмоток двигателя «Звезда».

На рисунке представлена схема соединения обмоток двигателя «Треугольник».

Как подобрать конденсаторы на трехфазный двигатель (формула, видео)

Подключение силового оборудования в однофазную сеть (220В) чаще всего производят емкостным методом. При этом нужно знать, как подобрать конденсаторы на трехфазный двигатель, от которого осуществляется привод. Из них собирается пусковая цепь, создающая необходимый момент и перекос фаз. В этой статье мы постараемся вкратце рассмотреть вопросы расчета и подбора емкости, а также возможные схемы подключения асинхронного электромотора.

Что такое трехфазный двигатель?

Большинство силовых агрегатов, преобразующих электрическую энергию с тепловую, представляют собой асинхронные машины. Если разобрать любой такой двигатель, то станет понятно, что он имеет два ключевых компонента, на взаимодействии которых строится вся его работа.

Статор

Это неподвижная часть мотора, имеющая кольцевидную форму – полый цилиндр. Сразу следует уточнить, что он не является цельным, грубо говоря изготовленным через точение круглой стальной болванки. Статор набирается из кольцевых пластин (магнитопровода), что позволяет избежать образования так называемых поверхностных токов Фуко, которые могут сильно разогревать металл. На внутреннем диаметре имеются продольные пазы, в которые укладывается обмотка из проволоки. Большинство стандартных двигателей являются трехфазными, то есть имеют три обмотки статора (по одной на каждую фазу). Геометрически каждая обмотка/фаза является смещенной относительно других на 120°. Такой расчет позволяет при подаче на фазные клеммы напряжения 380В возбудить в обмотках вращающееся магнитное поле.

Ротор

Это подвижная (вращающаяся) часть, конструктивно объединенная с приводным валом. Он также имеет наборный пластинчатый сердечник (магнитопровод), но в отличии от статора, пазы для обмоток располагаются на внешнем диаметре. Более того, называть их обмотками можно только с функциональной точки зрения, поскольку реально они представляют собой медные прутки определенного диаметра, а не пучки (катушки) проволоки.

С обоих сторон прутки соединяются на кольцевые ограничивающие пластины, образуя некоторое подобие беличьей клетки. Такая компоновка наиболее распространена и называется «коротко замкнутый ротор». При подаче напряжения здесь также магнитное поле, но оно имеет несколько меньшую частоту вращения (асинхронную), нежели у статора. Эта разница называется скольжением и составляет порядка 2…10%. Благодаря ей, между полями наводится ЭДС (электродвижущая сила), которая и заставляет вал вращаться с рабочей частотой.

Как подключить 3ех фазный двигатель в однофазную сеть?

Запуск двигателя с тремя рабочими обмотками возможет потому, что он по умолчанию имеет сдвинутые на 120° фазы. Если подать напряжение всего на одну фазу, то не произойдет ровным счетом ничего по аналогии с однофазным двигателем на 220В, где в таком случае возникают эквивалентные разнонаправленные магнитные поля. Формально для этого нужно включить в работу хотя бы еще одну фазу, чтобы создать сдвиг и набрать необходимый момент. Подключение в сеть с напряжением 220В чаще всего производят через дополнительный контур – цепь из рабочих и пусковых конденсаторов.

Общая пусковая схема при подключении звездой (слева) и треугольником (справа) будет иметь следующий вид:

Как можно видеть, и в первом, и во втором случае две из трех обмоток подключаются напрямую к однофазной сети на 220В. Третья фаза закольцовывается на одну из двух предыдущих посредством промежуточной цепи конденсаторов: Сраб – основной/рабочий и Сп–для запуска. Второй подключен параллельно через ключ SA. Последний имеет нормально разомкнутые контакты, а крайнее положение кнопки не фиксируется – для того, чтобы через пусковой конденсатор пошел ток, ее нужно удерживать нажатой.

Почему используются параллельные емкости?

Любой человек, в свое время не зевавший на уроках физики, должен помнить, что максимальное потребление энергии 3ех фазным двигателем наблюдается именно в момент его запуска, когда происходит рост частоты вращения от 0 до номинала. Чем больше мощность, тем это пиковое потребление электричества выше. Из чего следует логический вывод – емкости, которая будет поддерживать работу на 220В скорее всего не хватит для старта. Поэтому, для вывода мотора на режим ее по расчету нужно увеличить примерно вдвое относительно рабочей.

После запуска, когда будут достигнуты оптимальные обороты (не менее 70% от номинальных), пусковые конденсаторы отключают, отпуская кнопку SA. Сделать это нужно обязательно, иначе большая суммарная емкость вызовет серьезный перекос фаз и перегрев обмоток.

Если же мощность мотора невелика или он не работает под серьезной нагрузкой, то скорее всего можно будет обойтись пуском через рабочий контур.

Как рассчитать емкость и подобрать конденсатор

Очевидно то, что вопрос выбора емкостей для запуска и работы трехфазного двигателя в однофазной сети, зависит от его мощности, номинального (фазного) тока и напряжения. Расчет обычно ведется через следующие формулы:

В данном уравнении присутствуют две величины:

  • U – напряжение в однофазной сети (220В),
  • IН– номинальный или фазный ток, А.

Обе схемы подключений дают разные значения линейных и фазных характеристик, что видно на следующих иллюстрациях:

Вычислить необходимый ток между обмотками можно с помощью клещей либо используя формулы. Если же и тот, и другой вариант видятся сложными, то можно провести расчет и подобрать конденсатор через эмпирическую зависимость: 7 мкФ на 100 Вт мощности.

Что касается пусковых конденсаторов, то их подбор ведется с расчетом, что емкость должна быть выше, нежели у рабочих, чтобы покрыть пиковое потребление при запуске. Разные источники указывают на разные значения пропорционального коэффициента: от 1,5 до 3. На практике же чаще всего используют рекомендацию по двукратному увеличению.

Далее можно подобрать конденсаторы и приступить к компоновке. Для организации запуска двигателя используются бумажные (МБГП, КБП, МБГО), электролитические или металлизированные полипропиленовые (СВВ) модели. Первые, как правило, массовые и дешевые, но имеют сравнительно большие габариты при малой емкости, что вынуждает набирать целые батареи. Электролитические модели требуют использования в схеме управления диодных элементов и сопротивления, повреждение или выход из строя которых приведет к разрушению конденсатора. СВВ модели более современные, а посему в них нет практически тех недостатков, которые присутствуют в аналогах. По форме емкостные блоки могут выпускаться либо квадратными, либо круглыми (бочонками).

Также следует подобрать рабочее напряжение конденсатора, которое по расчету должно быть примерно в 1,15 раза выше чем в однофазной сети на 220В. Меньшие значения негативно сказываются на долговечности блоков, а большие – на габаритах сборки.

Расчет емкости конденсатора асинхронного двухфазного двигателя (конденсаторный двигатель) — Help for engineer

Расчет емкости конденсатора асинхронного двухфазного двигателя (конденсаторный двигатель)

Однофазный асинхронный двигатель

Обмотка статора однофазного асинхронного двигателя занимает приблизительно 2/3 окружности, именно по этой причине его мощность на 1/3 меньше мощности трехфазного двигателя таких же габаритов.

Ток, протекая по обмотке статора, создает пульсирующее магнитное поле, которое можно представить как два поля, вращающиеся в разных направлениях. Поле, которое вращается в направлении ротора называется прямым полем, а второе – обратным. Они воздействуют на ротор и создают соответствующие моменты (Мпр и Мобр).

По причине разных направлений вращения эти электрические машины не могут самостоятельно совершить пуск, так как при неподвижном роторе, то есть при S=1, пусковой момент, он же Мрез, равен нолю (смотри Рисунок 1). Однако, если придать движение ротору, то прямой и обратный моменты не будут равны и двигатель продолжит вращение в том же направлении (ток, протекающий по обмотке ротора будет оказывать размагничивающее действие и при этом будет ослабляться обратное поле).

Рисунок 1 — Зависимость механических характеристик от прямого и обратного вращающих полей

Пуск двигателя с помощью пусковых устройств

Для того чтоб запустить однофазный асинхронный двигатель применяют устройства для пуска двигателя:

— Конденсатор – C;

— Резистор – R.

Пуск трехфазных асинхронных двигателей осуществляется более простым способом из-за уже имеющегося в сети сдвига фаз на 120 электрических градусов

Для получения пускового момента используют пусковую обмотку статора, которая по отношению к рабочей обмотке сдвинута на 90 электрических градусов. Применяют фазосдвигающие элементы, которые подключают к пусковой обмотке. Эта обмотка работает, обычно, около 3 первых секунд, после чего принудительно отключается вручную или с помощью автоматов. По этой причине ее изготовляют из провода меньшего сечения и с меньшим количеством витков по сравнению с рабочей обмоткой.

Пуск при помощи резистора производится при малых необходимых пусковых моментах, то есть если нагрузка на валу незначительна. Рисунок 2 иллюстрирует применение пускового а) конденсатора и б) резистора; где Р – рабочая обмотка, П – пусковая обмотка.

Рисунок 2 – Схема подключения однофазного асинхронного двигателя

Двухфазные асинхронные двигатели

Наличие конденсатора значительно улучшает характеристики двигателя, по этой причине используются двухфазные асинхронные двигатели. В них две обмотки являются рабочими, в одну из них вводится конденсатор для смещения угла между фазами на 90 градусов и создания кругового магнитного поля. Такие двигатели называют конденсаторными.

Расчет емкости конденсатора для двигателя:

Емкость такого конденсатора определяется по формуле:

,

где – ток, протекающий в обмотке статора,

sinφ1 – сдвиг фаз между напряжение и током без конденсатора,

f– частота питающей сети,

U – напряжение сети,

n – коэффициент трансформации.

,

Где и kоб1,kоб2 — обмоточные коэффициенты,

W1, W2, — количество витков обмоток статора и ротора.

Напряжение на зажимах конденсатора выше чем напряжение сети и определяется следующей формулой:

Для повышения пусковых характеристик Существуют двигатели в одну обмотку которых ставятся два конденсатора, один из которых пусковой, второй – рабочий. Пусковой конденсатор обычно имеет емкость в разы большую чем рабочий. При этом пусковой отключается при достижении 70-80% номинальной скорости электрической машины.

Рисунок 3 – Пример подключения пары конденсаторов (конденсаторный двигатель)

Преимущества и недостатки конденсаторных двигателей

Недостатки по сравнению с трехфазным двигателем:

— Меньшая мощность;

— Увеличенное скольжение при номинальном режиме;

— Скорость вращения вала при холостом ходу ниже;

— Пониженная кратность пускового момента;

— Повышенная кратность пускового тока.

Преимущества:

— Имеют высокую эксплуатационную надежность;

— Не требуют трехфазного источника тока.

Недостаточно прав для комментирования

Как выбрать конденсатор для электродвигателя 380 на 220В, 12В и т.д.

Имея собственный дом, дачу или гараж иногда возникает необходимость изготовления электроприборов, где применяется электродвигатель. Конструкторы применяют для этих целей имеющийся под рукой двигатель, очень часто трехфазный. Для подключения таких устройств к однофазной сети применяются фазосдвигающие конденсаторы. Для мощных устройств требуется подобрать рабочий конденсатор и пусковой. Для электродвигателя небольшой мощности можно использовать один рабочий. В этой статье мы расскажем читателям сайта Сам Электрик, как выбрать конденсатор для электродвигателя.

Важно знать

Конструктор должен знать, что для разгона мощного электродвигателя в первый момент требуется большая емкость конденсатора. По мере набора оборотов, она должна уменьшаться. Т.е. номинал пускового конденсатора должен быть больше рабочего.

Важно! Нельзя использовать электролитические конденсаторы как рабочие. Для этих целей применяют неполярные емкости на рабочее напряжение, превышающее сетевое в 1,5-2 раза. Для этих целей применяют старые советские типа МБГЧ, МГБО и т.п. или специально сконструированные пленочные комплектующие типа СВВ с металлическим напылением. 

Существуют специальные емкости, в корпусе которых совмещены два конденсатора – пусковой и рабочий, как показано на фото:

Они имеют два конденсатора разного номинала, конструктивно размещенные в одном корпусе.

Для чего предназначены конденсаторы

В трехфазной сети переменного тока фазы смещены относительно друг друга на 1200. Что позволяет создать вращающийся электромагнитный поток внутри двигателя.

При подключении к однофазной сети вращающийся поток отсутствует. Для его создания применяют фазосдвигающую емкость. Она позволяет создать вращающийся поток электрического поля.

Подбор конденсатора для асинхронного двигателя

Для подключения асинхронного трехфазного двигателя 380 вольт к однофазной сети необходим конденсатор. Электродвигатель имеет два вида соединения обмоток – звездой или треугольником. Соединение треугольником будет эффективнее работать в сети 220 вольт.

Для расчета конденсатора существуют специальные программы. Достаточно ввести данные двигателя и программа сама произведет расчет. Она выдаст рекомендации для подключения рабочего конденсатора и пускового. Таких программ в интернете существует множество. Они получили название калькулятор.

Существует формула, согласно которой производят расчет:

Cраб.=K*Iф/Uсети

По вышеприведенной схеме рассчитывается рабочая емкость конденсатора, где в формуле:

  • U – Напряжение питающей сети. В нашем случае это 220 вольт.
  • Iф – номинальный ток статора. Можно посмотреть на шильдике электродвигателя, или замерить токоизмерительными клещами.
  • К – коэффициент, который зависит от схемы соединения обмоток. Для соединения треугольником он равен 4800, а для соединения звездой 2800.

Если все параметры известны, то правильно рассчитать конденсатор несложно. Результат получаем в мкФ. Эта формула справедлива для выбора рабочей емкости.

Сложнее обстоит дело с пусковым конденсатором. Он подключается к обмоткам на небольшое время. Не более 3 сек в момент запуска двигателя.

Как показано подключение двигателя 380 на 220 Вольт на рисунке снизу:

Подбирают пусковую емкость исходя из условий, что она должна превышать рабочую в 2 -3 раза. Однако есть более простой способ подбора.

В интернете существуют таблицы, согласно которым можно определить необходимую емкость. На рисунке снизу представлена такая таблица. В ней указывают рабочий и пусковой конденсатор.

Таблица выбора емкости конденсатора

Существуют рекомендации, согласно которых легко определить необходимый параметр. На каждые 100 Вт устанавливают емкость, равною 7 мкФ. Пусковая будет составлять 14 мкФ. Рабочее напряжение конденсаторов должно быть не менее 1,5 U сети.

Подбор конденсатора для однофазного двигателя

Наибольшее распространение в быту получили однофазные электродвигатели с пусковой обмоткой. Они устанавливаются в большинстве бытовых приборах. Отсюда их распространение.

Они имеют две обмотки – рабочую и пусковую. Если в трехфазном двигателе конструкцией предусмотрен вращающийся поток, то в однофазном для этого применяется пусковая обмотка, а смещение фазы задается конденсатором. В некоторых схемах вместо емкости применяют резистор или индуктивность, но это скорее исключение.

Наиболее распространенная схема представлена ниже:

Для лучших пусковых характеристик применяется дополнительный конденсатор, подключенный параллельно рабочему. Его подключают кратковременно, не более трех секунд.

Применение электролитических конденсатора в сети переменного тока недопустимо. Т.к. включение полярного конденсатора в сеть переменного тока приводит к закипанию электролита внутри корпуса, что в конечном результате приведет к его взрыву.

Редко применяют схему с электролитическим, но при этом последовательно ему ставят диод. Такая схема оправдана, если необходимо сэкономить место, а двигатель работает кратковременно.

Выбор конденсатора для двигателя производят согласно схеме подключения:

  • Пусковая обмотка, и конденсатор подключаются кратковременно на время запуска. В этом случае на каждый 1 кВт мощности устанавливают 70 мкФ. Можно использовать электролитические с диодом.
  • Пусковая катушка и конденсатор постоянно подключены на все время работы мотора. В этом случае используют не полярные детали емкостью 23-35 мкФ на 1 кВт.
  • Параллельно рабочему конденсатору подключают кратковременно пусковой. В этом случае в качестве пусковой можно применить электролитическую емкость с диодом. Она должна быть в 2-3 раза больше рабочей. Однако, схема должна быть построена таким образом, чтобы пусковой кондер был подключен не более 3 секунд.

Несмотря на рекомендации по подбору, следует контролировать состояние электродвигателя.

Если мотор в процессе работы греется, стоит уменьшить номинал рабочего конденсатора. Если этого не сделать, двигатель перегреется и выйдет из строя.

Устанавливая электродвигатели на другое оборудование, применяйте родные детали, демонтированные вместе с ним с бытовой техникой, например, от стиральной машины. Если это невозможно, придерживайтесь изложенной рекомендации.

Двигатели постоянного тока

Конструктору попадаются маломощные двигатели постоянного тока. Обычно используются на напряжение 12 Вольт. На их корпусе смонтированы небольшие конденсаторы. Пример на фото:

Двигатель на 12В с конденсатором

Возникает вопрос, для чего они предназначены, если без него моторчик работает. Из схемы видно, что он подключается параллельно двигателю.

Это обеспечивает:

  • Защиту сети от высокочастотной составляющей, наводящей помехи на радиоаппаратуру.
  • Выполняет функцию искрогасящего элемента. Он обеспечивает нормальный режим работы, и не позволяет пригорать щеткам к коллектору. Без него коллектор двигателя постоянного тока быстро выйдет из строя. Таким образом, продлевается срок службы коллектора и щеток.

Мы рассмотрели основные нюансы выбора конденсатора для электродвигателя и рассказали, для чего вообще нужен конденсатор в схеме. Надеемся, предоставленная информация была для Вас полезной и интересной!

1,8 Как рассчитать конденсатор для схемы Штейнмеца? | 1. Алюминиевые электродвигатели переменного тока | Часто задаваемые вопросы

Схема Штейнмеца — это метод использования трехфазных двигателей, соединенных звездой или треугольником, с однофазным переменным током; это соединение должно соответствовать сетевому напряжению, т.е. обычно 230 В. в Европе. Рабочий конденсатор может быть металлическим бумажным конденсатором согласно DIN EN 60252-1 (VDE 0560-8: 2011-10), который подключается к третьему выводу двигателя и к фазному проводу или к нейтральному проводу в зависимости от направления вращения. желанный.Если конденсатор подключен к фазному проводу, двигатель будет вращаться по часовой стрелке; подключение конденсатора к нейтральному проводу заставит двигатель вращаться против часовой стрелки. В различных профессиональных учебниках и форумах, ссылающихся на стандарт DIN 48501, который был отменен несколько лет назад, рекомендуется использовать емкость примерно 70 мФ на кВт номинальной выходной мощности двигателя при рабочем напряжении 230 В. Формула для расчета рабочего конденсатора выглядит следующим образом, где C — емкость, P — номинальная мощность, U — номинальное напряжение двигателя, где — угловая частота, а

— угловая частота.

    • Соединение треугольником — направление вращения реверсивное

    • Пусковой конденсатор двигателя

генерирует третий конденсатор фаза. Однако это даст сдвиг фазы менее 90 ° вместо 120 ° на второй обмотке двигателя.Это означает, что конденсатор создает только эллиптическое вращающееся магнитное поле, которого, однако, достаточно для создания пускового момента, чтобы двигатель мог запускаться самостоятельно. [2] Недостатком является то, что двигатель работает в эллиптическом режиме. В схеме Штейнмеца двигатель может быть подключен по схеме треугольник или Y, в зависимости от напряжения на клеммах катушки. В схеме Штейнмеца предпочтительно использовать соединение треугольником. Конденсатор и катушка вместе образуют последовательный резонансный контур.Во время работы на конденсаторе создается пиковое напряжение до 330 В, когда линейное напряжение составляет 230 В. Чтобы предотвратить разрушение конденсатора, он должен быть рассчитан на максимальное пиковое напряжение. Поскольку конденсаторы из металлической бумаги со временем стареют, добавляется запас прочности от 70 до 80 В. Следовательно, когда напряжение в сети составляет 230 В, используется конденсатор с выдерживаемым диэлектрическим напряжением не менее 400 В. Из-за конденсатора сила тока в каждой катушке будет разной.Пусковой ток зависит от требуемого крутящего момента и во много раз превышает номинальный ток. Поскольку при работе мощных двигателей, подключенных к однофазной сети, существует высокая однофазная нагрузка, максимально допустимая мощность подключенного двигателя Steinmetz составляет от 1,5 до 2 кВт в зависимости от энергокомпании.

Как измерить емкость с помощью цифрового мультиметра

Мультиметр определяет емкость, заряжая конденсатор известным током, измеряя результирующее напряжение и затем вычисляя емкость.

Предупреждение: Хороший конденсатор сохраняет электрический заряд и может оставаться под напряжением после отключения питания. Перед тем, как дотронуться до него или произвести измерение: а) выключите все питание, б) используйте мультиметр, чтобы убедиться, что питание отключено, и в) осторожно разрядите конденсатор, подключив резистор к его проводам (как указано в следующем абзаце). Обязательно используйте соответствующие средства индивидуальной защиты.

Для безопасной разрядки конденсатора: После отключения питания подключите 5-ваттный резистор 20 000 Ом к клеммам конденсатора на пять секунд.Используйте мультиметр, чтобы убедиться, что конденсатор полностью разряжен.

  1. Используйте цифровой мультиметр (DMM), чтобы убедиться, что питание цепи отключено. Если конденсатор используется в цепи переменного тока, настройте мультиметр на измерение переменного напряжения. Если он используется в цепи постоянного тока, установите цифровой мультиметр на измерение постоянного напряжения.
  2. Осмотрите конденсатор. Если утечки, трещины, вздутия или другие признаки износа очевидны, замените конденсатор.
  3. Переведите шкалу в режим измерения емкости.Символ часто разделяет точку на циферблате с другой функцией. В дополнение к регулировке шкалы обычно необходимо нажать функциональную кнопку, чтобы активировать измерение. За инструкциями обратитесь к руководству пользователя мультиметра.
  4. 4. Для правильного измерения необходимо удалить конденсатор из цепи. Разрядите конденсатор, как описано в предупреждении выше.

    Примечание: Некоторые мультиметры поддерживают относительный (REL) режим. При измерении малых значений емкости можно использовать относительный режим для удаления емкости измерительных проводов.Чтобы перевести мультиметр в относительный режим измерения емкости, оставьте измерительные провода открытыми и нажмите кнопку REL. Это удаляет значение остаточной емкости измерительных проводов.

  5. Подключите измерительные провода к клеммам конденсатора. Оставьте измерительные провода подключенными в течение нескольких секунд, чтобы мультиметр автоматически выбрал правильный диапазон.
  6. Прочтите отображаемое измерение. Если значение емкости находится в пределах диапазона измерения, мультиметр отобразит значение конденсатора.Он будет отображать OL, если а) значение емкости выше диапазона измерения или б) конденсатор неисправен.

Обзор измерения емкости

Устранение неисправностей однофазных двигателей — одно из наиболее практичных применений функции емкости цифрового мультиметра.

Однофазный двигатель с конденсаторным пуском, который не запускается, является признаком неисправного конденсатора. Такие двигатели будут продолжать работать после запуска, что затрудняет поиск и устранение неисправностей. Отказ конденсатора жесткого пуска компрессоров HVAC — хороший пример этой проблемы.Двигатель компрессора может запуститься, но вскоре перегреется, что приведет к срабатыванию прерывателя.

Однофазные двигатели с такими проблемами и шумные однофазные двигатели с конденсаторами нуждаются в мультиметре для проверки правильного функционирования конденсаторов. Почти все моторные конденсаторы имеют значение в микрофарадах, указанное на конденсаторе.

Трехфазные конденсаторы коррекции коэффициента мощности обычно защищены плавкими предохранителями. Если один или несколько из этих конденсаторов выйдут из строя, это приведет к неэффективности системы, скорее всего, увеличатся счета за коммунальные услуги и могут произойти непреднамеренные отключения оборудования.Если предохранитель конденсатора перегорел, необходимо измерить предполагаемое значение микрофарад конденсатора и убедиться, что оно находится в пределах диапазона, указанного на конденсаторе.

Стоит знать о некоторых дополнительных факторах, связанных с емкостью:

  • Конденсаторы имеют ограниченный срок службы и часто являются причиной неисправности.
  • Неисправные конденсаторы могут иметь короткое замыкание, разрыв цепи или могут физически выйти из строя до точки отказа.
  • При коротком замыкании конденсатора может перегореть предохранитель или повредить другие компоненты.
  • Когда конденсатор размыкается или выходит из строя, цепь или ее компоненты могут не работать.
  • Износ может также изменить значение емкости конденсатора, что может вызвать проблемы.

Ссылка: Принципы цифрового мультиметра Глена А. Мазура, American Technical Publishers.

Связанные ресурсы

На пути к экономичному однофазному двигателю

Энергетика и энергетика
Vol.5 No 9 (2013), Идентификатор статьи: 39781,13 страниц DOI: 10.4236 / epe.2013.59058

На пути к экономичному однофазному двигателю

Махди Альшамасин

Факультет инженерных технологий, Прикладной университет Аль-Балка, Амман, Иордания

Электронная почта: [email protected]

Авторские права © 2013 Махди Альшамасин. Это статья в открытом доступе, распространяемая под лицензией Creative Commons Attribution License, которая разрешает неограниченное использование, распространение и воспроизведение на любом носителе при условии правильного цитирования оригинальной работы.

Поступило 06.09.2013 г .; отредактировано 6 октября 2013 г .; принято 13 октября 2013 г.

Ключевые слова: Характеристики конденсаторного двигателя; Основная фаза; сбалансированная работа; симметрия; схемы подключения; контроль параметров балансировки; реактивные элементы; фактор силы; КПД

РЕФЕРАТ

Изучение баланса работы однофазных асинхронных двигателей представляет интерес в связи с необходимостью снижения энергопотребления и увеличения срока службы двигателей.В статье основное внимание уделяется повышению производительности двигателя путем балансировки работы фазы статора для наиболее часто используемых схем подключения однофазных асинхронных двигателей с конденсаторным питанием (SPCRIM) и трехфазных асинхронных двигателей (TPIM), работающих от однофазного источника питания ( СПС). Поэтому используется математическая модель для балансировки работы двигателя путем изменения напряжения питания частоты. Исследованы характеристики параметров балансировки, представлены различные методы балансировки двигателя и проведено сравнение этих методов балансировки.

1. Введение

Экономичные однофазные двигатели необходимы в настоящее время, поскольку потребляется огромное количество энергии из-за широкого использования этих двигателей в таких областях жизни, как: домашнее хозяйство, сельское хозяйство, промышленность и т. Д. [1-3 ].

За счет повышения производительности однофазных двигателей, ферм, нефтяных скважин, домов и удаленных мастерских, имеющих только однофазную линию, не нужно устанавливать дорогие трехфазные линии или прибегать к дорогостоящим инверторам или дизельным насосам.Кроме того, во многих приложениях может потребоваться использование трехфазного асинхронного двигателя в однофазной системе питания. Например, были обнаружены технические и экономические преимущества первоначальной установки однопроводной системы заземления (SWER) для электрификации сельских районов в отдаленных и холмистых регионах [4].

Для однофазного асинхронного двигателя с конденсаторным питанием (SPCRIM) и трехфазного асинхронного двигателя (TPIM), работающих от однофазного источника питания (SPS), ток полной нагрузки может иметь почти единичный коэффициент мощности, что снижает трансформаторы энергокомпании и потери при распределении.При сбалансированной работе двигателя КПД однофазных двигателей может превышать 90 процентов. Таким образом, характеристики однофазного двигателя могут быть улучшены и стать конкурентоспособными по сравнению с трехфазным двигателем в трехфазной сети. Использование SPCRIM — лучший выбор для конкуренции с трехфазными двигателями; в то время как рабочий конденсатор может улучшить КПД двигателя, пусковой крутящий момент и коэффициент мощности. Кроме того, использование дополнительных реактивных элементов приводит к надежной балансировке двигателя, чтобы гарантировать отличную производительность двигателя [5].

Фактически, SPCRIM и TPIM, питаемые от SPS, страдают от нагрева из-за эллиптического поля, вызванного асимметрией фазовых нагрузок [6]. Неравномерная работа фаз статора этих двигателей отрицательно отражается на температуре обмотки, коэффициенте мощности и КПД двигателя [7,8]. Поэтому устранение асимметричного действия имеет большое теоретическое и практическое значение.

Обычные схемы подключения SPCRIM и TPIM, работающих от SPS [9,10] с использованием постоянного значения емкости в цепи статора, питаемой напряжением постоянной частоты, не способны обеспечить сбалансированную работу фазы статора во всем диапазоне скольжения двигателя. [11].Это связано с эллиптичностью вращающегося поля, которое принимает круговую форму только при определенных условиях. В этом случае балансировка возможна только при определенном значении скольжения, а колебания нагрузки вызовут разбалансировку двигателя и вызовут нагрев обмоток двигателя [12]. Устранить асимметрию фазных нагрузок можно следующими способами:

1) Использование однофазного фазосдвигающего конденсатора и регулировка частоты источника питания.

2) Добавление внешнего реактивного сопротивления в цепь SPCRIM или TPIM, питающуюся от SPS.Это наиболее подходящий метод для обеспечения требуемых значений фазных токов и соответствующих углов между ними (строгая симметрия).

3) Переключение количества витков обмотки статора и регулировка величины фазосдвигающей емкости [13,14], что считается наиболее экономичным методом с точки зрения использования электроэнергии и нагрева двигателя. В этой статье разрабатывается математическая модель для балансировки работы двигателя путем изменения частоты напряжения питания и исследования характеристик параметров балансировки.Кроме того, в статье представлен расширенный обзор используемых методов балансировки, сравнение между ними посредством исследования поведения и ограничений каждого метода для наиболее часто используемых схем подключения асинхронных двигателей, питаемых от однофазного источника питания в практических приложениях.

2. Балансировка работы двигателя путем управления частотой питания

Создаваемое поле в SPCRIM и TPIM, работающих от SPS, может иметь прямолинейную, эллиптическую или круглую форму, в зависимости от реактивного сопротивления фазовращающего конденсатора.Конечно, машина будет иметь лучший КПД и коэффициент мощности, когда поле имеет круглую форму. Таким образом, фазные токи равны по величине, а фазовый угол между ними составляет 90 электрических градусов для SPCRIM или 120 электрических градусов для TPIM, работающего от SPS. Реактивным сопротивлением можно управлять, изменяя частоту напряжения питания, и при определенных условиях, при которых ток обратной последовательности становится равным нулю, работа двигателя сбалансирована [15]. Значение реактивного сопротивления конденсатора, которое удовлетворяет первому условию балансировки, может быть вычислено из следующего соотношения:

(1)

второе условие балансировки:

(2)

, где A и B — коэффициенты балансировки

2.1. Условия балансировки SPCRM с двумя обмотками, соединенными параллельно

Принципиальная схема SPCRIM с двумя обмотками, соединенными параллельно, показана на рисунке 1. Используя методы симметричных компонентов, несимметричные переменные двигателя можно разложить на прямую (прямую) последовательность и компоненты обратной (обратной) последовательности [16,17]. На рис. 2 показана эквивалентная схема этих компонентов [18].

Согласно методу симметричных компонент, фазные токи могут быть записаны как [16,19]

(3)

Рисунок 1.Принципиальная схема СПКРМ с двумя параллельно включенными обмотками.

(а) (б)

Рисунок 2. Пофазная эквивалентная схема; (а) Положительная последовательность, (б) Отрицательная последовательность.

(4)

Согласно закону Кирхгофа, напряжения, моделирующие SPCRM, равны

(5)

(6)

, где

Из уравнений (5) и (6) уравнение баланса (при который становится равным нулю) составляет

(7)

Подстановка действительной и мнимой частей импедансов дает

(8)

Решение этого уравнения дает

(9)

(10)

Из уравнений (9) и (10) получаем

и

Таким образом, коэффициенты баланса равны

и

2.2. Условия балансировки трехфазного асинхронного двигателя с однофазным питанием

Принципиальная схема TPIM, подключенного по схеме треугольника и работающего от SPS, показана на рисунке 3.

Согласно законам Кирхгофа, напряжения и токи равны

( 11)

(12)

(13)

Подстановка симметричных составляющих для напряжений и токов в уравнения (11) и (12) дает [20]:

(14)

(15)

с сбалансированное состояние

(16)

следовательно,

(17)

это означает

(18)

(19)

Решая уравнения (18) и (19), мы получаем

В результате коэффициенты балансировки равны

и

. Используя те же процедуры анализа, можно получить коэффициенты балансировки для наименьших схем SPCRIM и TPIM, подаваемых из SPS.Коэффициенты балансировки указаны в таблице 1.

Кроме того, когда частота остается постоянной, уравнение (2) удовлетворяется при определенном значении скольжения. Изменение скольжения (S) приводит к изменению токов статора, в то время как для определенных значений скольжения, а именно S = S sym , токи статора будут равны друг другу [21]. Фазовый угол между фазными токами, требующий установления баланса, может быть получен с помощью сдвигающего конденсатора. Другими словами, для любого скольжения (S) существует определенная частота (f sym ), на которой двигатель будет сбалансирован.Чтобы найти

Рисунок 3. Принципиальная схема трехфазного электродвигателя с Δ-соединением, питаемого от однофазной сети.

Таблица 1. Коэффициенты балансировки для часто используемых схем подключения.

частота, при которой достигается сбалансированная работа двигателя для различных значений скольжения, значения R 1 и X 1 должны быть найдены из эквивалентной схемы однофазного двигателя на рисунке 2 (a) как

(20)

(21)

Подставляя R 1 и X 1 из уравнения (20) и уравнения (21) в уравнение (2) и преобразовывая полученное уравнение, пренебрегая активным сопротивлением статора, Частота балансировки на единицу может быть найдена как:

(22)

Для двигателей малой и средней мощности можно рассмотреть, а затем частоту балансировки на единицу можно рассчитать как:

(23)

, когда Если задано значение частоты, скольжение, при котором работа двигателя уравновешивается, может быть получено как:

(24)

Критическое скольжение (скольжение при максимальном крутящем моменте) является функцией частоты и может быть вычислено из выражения [22]

(25)

3.Балансировка SPCRIM путем введения индуктивного реактивного сопротивления в цепь статора

Значения балансировочного импеданса (индуктивного и емкостного) для наиболее распространенных схем подключения SPCRIM и TPIM, питаемых от SPS, можно определить с помощью следующей группы уравнений [5] :

(26)

(27)

где коэффициенты уравнений (26) и (27) можно получить из таблицы 2.

4. Балансировка работы двигателя путем управления значением емкости

В этом методе частота постоянна и часто равна номинальной частоте, в то время как емкость изменяется для обеспечения балансировки при изменении нагрузки.Номинал балансировочного конденсатора можно регулировать электронным способом [4,23]. 7 ) и (6), приравняв абсолютные значения и как [10,24].

(28)

где

5. Моделирование и результаты

Кривые параметров балансировки X K , S sym и S cr в зависимости от частоты, в зависимости от уравнений (1), (24 ) и (25), были исследованы с помощью программного обеспечения labVIEW для SPCRIM и TIM, работающих от SPS, со следующими данными:

На рисунках 5-8 показаны полученные кривые для наиболее часто используемых схем подключения.

Из этих рисунков видно, что S sym обратно пропорционален частоте, где его значение на низких частотах приближается к 1. Это означает, что двигатель может быть запущен в сбалансированном состоянии, и это считается очень важным аспектом. в прерывистых, периодически работающих двигателях. Однако в установившемся режиме низкая частота может вызвать большие потери энергии из-за высокого значения балансировочного скольжения, и этого следует избегать. Пунктирные кривые показывают изменение критического скольжения в зависимости от частоты.Следует отметить, что до тех пор, пока S cr > S sym , двигатель будет стабильным, а стабильность будет зависеть от разницы между S cr и S sym , где чем больше разница, тем стабильнее мотор. Следовательно, установившаяся область определяется, когда f> 0,2 f n .

Характеристики импеданса балансировочных элементов также строятся с помощью программного обеспечения labVIEW.

На рисунке 9 показано соотношение между балансирующим сопротивлением и скольжением на разных частотах для описанных выше двигателей с прилагаемыми схемами подключения:

Значения реактивного сопротивления рассчитываются с использованием уравнений (26) и (27) для рисунков 9 ( а) и (б) соответственно.На рисунке 9 (a) показано, что индуктивное реактивное сопротивление X L высокое в состоянии холостого хода и уменьшается при увеличении нагрузки до тех пор, пока не достигнет минимального значения без пересечения оси X (только индуктивное поведение.

Рисунок 4. Однофазный асинхронный двигатель с двумя параллельно включенными обмотками и конденсатором с электронным управлением

Рисунок 5. Баланс СПКРИМ с двумя параллельными обмотками

Таблица 2.Коэффициенты уравновешивающих уравнений для общих типов принципиальных схем.

Рисунок 6. Баланс СПКРИМ с двумя последовательно включенными обмотками.

Рисунок 7. Баланс Δ — подключенного трехфазного асинхронного двигателя, питаемого от однофазной сети.

Рисунок 8. Баланс Ү-подключенного трехфазного асинхронного двигателя TPIM, питающегося от однофазной сети.

частоты питающих напряжений. Уравновешивающее емкостное реактивное сопротивление X K высокое в состоянии холостого хода и уменьшается с увеличением нагрузки одинаково для всех частот питающих напряжений.

На рисунке 9 (b) показано, что уравновешивающее реактивное сопротивление X L и реактивное сопротивление X K имеют одинаковое поведение. Сначала они увеличиваются за счет увеличения нагрузки до достижения максимальных значений, затем снова начинают уменьшаться. Балансировочное индуктивное реактивное сопротивление X L пересекает ось X (емкостное поведение) с частотой f = 40 Гц (F = 0,8) и высоким значением скольжения. При увеличении частоты напряжения питания точка пересечения X L с осью X будет происходить при более низких значениях скольжения.Понятно, что на высоких частотах сбалансированная работа будет достигнута

за счет регулирования только значения емкости, другими словами, оба элемента балансировки должны быть конденсаторами.

Такое же индуктивное и емкостное поведение наблюдается для наименьшей из схем подключения, перечисленных в таблице 2, на основе группы уравнений (26) и (27).

Уравновешивающая емкостная характеристика была построена с использованием уравнения (28) также для двигателя мощностью P n = 2.8 кВт, как показано на рисунке 10.

На этом рисунке показано, что для постоянной частоты f = f n значение уравновешивающей емкости пропорционально скольжению до заданного значения, тогда соотношение становится нелинейным, и балансировочная емкость почти не имеет существенного значения. изменяются по мере увеличения скольжения по сравнению с критическим скольжением. Возникающая емкость bal-

для условий запуска намного больше, чем для условий работы. Хотя увеличение емкости сверх номинального значения помогает в балансировке, оно сопровождается увеличением токов, особенно во вспомогательной обмотке.Следовательно, этот метод является многообещающим для изменения нагрузки около номинального значения, если двигатель работает непрерывно.

6. Выводы

В исследовании обсуждаются различные методы повышения производительности SPCRIM и TPIM, работающих от SPS. Однофазный асинхронный двигатель широко используется в инженерной практике и ежегодно расходует много электроэнергии. Повышение эффективности асинхронного двигателя имеет большое значение для потребления энергии, поэтому необходима оптимизация конструкции однофазного асинхронного двигателя.Математическая модель в порядке.

Математическая модель используется для балансировки работы двигателя путем изменения частоты напряжения питания и исследования характеристик параметров балансировки. Правильный выбор реактивного элемента улучшит характеристики однофазного асинхронного двигателя, чтобы конкурировать с трехфазным двигателем.

1) Широкий диапазон регулирования скорости.

2) Плавное регулирование скорости и улучшение пусковых характеристик.

3) Этот метод может использоваться для двигателей различной мощности с любым подключением цепи статора.

5) Выражения балансировки частоты, скольжения и емкостного реактивного сопротивления неудобны и имеют высокий порядок.

Балансировка путем изменения значения емкости конденсатора при постоянной частоте является наиболее экономичной, особенно если она осуществляется электронным способом, но этот метод нечестен, поскольку скольжение уходит далеко от номинального значения.

Для обеспечения надежной балансировки, помимо сдвигающего фазового конденсатора, в цепь статора должен быть включен реактивный элемент. Этот метод уменьшит тепло, выделяемое в двигателе в установившемся режиме работы для всего диапазона регулирования скорости.Таким образом, преимущества этого метода включают улучшенный коэффициент мощности, экономию энергии и устранение необходимости в дополнительных отводах обмотки для изменения скорости.

Согласно обобщенным расчетным уравнениям для импеданса уравновешивающего элемента, схемы балансировки соединений можно сгруппировать в две группы. Для первой группы схем соединений поведение балансировочного элемента является индуктивным на всем скольжении независимо от значения частоты напряжения. В то время как для второй группы схем подключения поведение балансировочного импеданса X L станет емкостным в зависимости от нагрузки и частоты напряжения.

7. Выражение признательности

Эта работа была выполнена во время творческого отпуска, предоставленного автору Махди Альшамасин из Прикладного университета Аль-Балка (BAU) в Иордании в течение 2012/2013 учебного года. Я хотел бы поблагодарить Al-Balqa ’Applied University за поддержку и Najran University-KSA за их материально-техническую помощь.

: напряжение питания.

R s , X s : сопротивление и реактивное сопротивление утечки обмотки статора.

,: сопротивление и реактивное сопротивление утечки ротора относительно статора.

R м , X м : сопротивление намагничивания и реактивное сопротивление намагничивания.

X K : реактивное сопротивление емкостного элемента.

N м , N A : количество витков основной и вспомогательной обмоток.

: токи прямой, обратной последовательности.

R 1 , X 1 : сопротивление и реактивность прямой последовательности.

R 2 , X 2 : сопротивление и реактивность обратной последовательности.

S: скольжение двигателя.

F, f: на единицу и частоту статора двигателя.

: напряжение прямой, обратной последовательности.

Spectre Engineering — Выбор конденсатора промежуточного контура инвертора

Из уравнения (10) также видно, что емкость обратно пропорциональна частоте коммутации. По мере увеличения fsw требуемая емкость уменьшается. Объем конденсатора пропорционален емкости, поэтому, если вы увеличите частоту коммутации, можно достичь более высокой плотности мощности.

Это одна из причин, по которой преобразователи на основе SiC и GaN могут достигать более высокой плотности мощности, чем преобразователи на основе IGBT.

Переключайтесь быстрее -> требуется меньшая емкость -> уменьшается объем -> выше кВт / л и кВт / кг.

Определение размеров конденсатора

Номинальный ток пульсации

Номинальный ток пульсации конденсатора определяется на основе его термических характеристик. Это зависит от ESR (механизма потерь) и теплового сопротивления.Поскольку конденсаторы проходят циклы заряда-разряда с высокой частотой, проводники внутри нагреваются и повышают внутреннюю температуру конденсатора. Необходимо ограничить рост температуры, чтобы конденсатор не испортился. Изготовитель обычно указывает максимальный номинальный ток пульсаций RMS при температуре окружающей среды, который нельзя превышать, чтобы гарантировать срок службы конденсатора.

Хорошо быть консервативным, поэтому выберите конденсатор с номинальным током пульсации, равным 1.В 1 раз или больше, чем пульсирующий ток в худшем случае. С учетом сказанного … поскольку это тепловой рейтинг, вы можете оценить его на основе среднего по времени фазового тока на основе вашего цикла нагрузки … если вы действительно пытаетесь оптимизировать плотность мощности.

Номинальное напряжение постоянного тока

Обычно номинальное напряжение постоянного тока конденсатора должно быть рассчитано на основе среднего максимального напряжения шины x 1,1 (запас прочности). Например. если ваше 100% напряжение батареи SOC составляет 400 В, номинальное напряжение конденсатора должно быть 450 В или выше.

Коэффициент безопасности может быть относительно низким для номинального напряжения, поскольку пленочные конденсаторы могут выдерживать постоянный потенциал 1,3 x номинальное напряжение в течение одной минуты без повреждений или пробоя. Таким образом, конденсатор на 450 В может выдержать 585 В в течение минуты.

Если вы управляете двигателем с постоянными магнитами, который может работать в области ослабления магнитного потока, вам нужно будет оценить напряжение конденсатора звена постоянного тока на основе обратной ЭДС, которая может генерироваться при максимальной скорости двигателя. Для решения этой задачи можно использовать уравнение баланса энергии.

Номинальная частота резонанса

Поскольку конденсатор имеет ESL, существует частота, на которой конденсатор саморезонирует. За пределами этой точки конденсатор, конденсатор ведет себя как катушка индуктивности и не приносит никакой пользы. С учетом сказанного, выбранный вами конденсатор должен иметь резонансную частоту в 2 раза выше, чем ваша частота переключения [5]. Поэтому, если вы переключаетесь на 100 кГц, у вас должно быть не менее 200 кГц номинальных конденсаторов. Это требует расследования с использованием конденсаторов MLCC для монтажа на печатной плате, но это уже другая статья.Это очень важно иметь в виду для инверторов на основе SiC или Gan, но если вы переключаетесь на частоте 20 кГц, это не вызывает беспокойства.

Номинальная емкость

Как указано выше, это требование обычно имеет некоторую слабость. То есть емкость, необходимая для приложений с силовыми инверторами, обычно невелика. У большинства современных инверторов не более 2000 мкФ. Это потому, что вы получаете убывающую отдачу от производительности после определенного момента, как показано на рисунке 3.

—————————————————————-

С учетом сказанного, выберите свой конденсатор (ы) на основе тока пульсаций, напряжения на шине, резонансной частоты, упаковки, и ограничения по стоимости. Проверьте аналитически и запустите моделирование, чтобы убедиться, что емкость соответствует требованиям к пульсации напряжения на шине постоянного тока.

Емкость, ESR (номинальный ток пульсации), сопротивление изоляции и номинальное напряжение являются параметрами, зависящими от температуры, поэтому обязательно учитывайте это при выборе размеров конденсатора.

Убедитесь, что вы можете разместить конденсатор как можно ближе к выводам ваших полупроводников. Если существует значительная индуктивность контура между конденсаторами звена постоянного тока и полупроводниковыми переключателями из-за упаковки, вы можете рассмотреть возможность добавления демпфирующего конденсатора с низким мкФ для фильтрации высокочастотных токов.

Моделирование

После выполнения аналитических расчетов мне нравится запускать моделирование схем, чтобы дважды проверить свою работу. Схема моей электрической трансмиссии показана ниже.

  • Параметры моделирования показаны на вкладке слева

  • Моделирование выполнялось для наихудших условий — базовая скорость, работа с полной нагрузкой.

  • Паразитные характеристики аккумулятора, кабеля и конденсатора промежуточного контура включены в модель.

  • Использование схемы ШИМ с полной центрированной пространственной векторной модуляцией

Я сопоставил реальные экспериментальные данные с моей имитационной моделью, так что я знаю, что она по большей части верна.

Какова емкость линии передачи? — Емкость двухпроводной линии и симметричной трехфазной линии

Проводники линии передачи образуют между собой конденсатор. Проводники линии передачи действуют как параллельная пластина конденсатора, а воздух между ними подобен диэлектрической среде. Емкость линии приводит к опережающему току между проводниками. Это зависит от длины проводника.

Емкость линии пропорциональна длине линии передачи.Их влияние незначительно на работоспособность коротких (протяженностью менее 80 км) и низковольтных линий электропередачи. В случае высокого напряжения и длинных линий это считается одним из наиболее важных параметров.

Емкость двухпроводной линии

Емкость линии передачи вместе с проводимостью формирует проводимость шунта. Проводимость в линии передачи возникает из-за утечки по поверхности проводника. Рассмотрена линия, состоящая из двух проводников a и b радиуса r каждый.Расстояние между проводниками D показано на схеме ниже: —

Разность потенциалов между проводниками a и b составляет

Где, q a — заряд на проводнике a
q b — заряд на проводе b
В ab — разность потенциалов между проводниками a и b
ε- абсолютная диэлектрическая проницаемость

так что,

Подставляя эти значения в уравнение напряжения, получаем

Емкость между проводниками

C ab называется межфазной емкостью.

Если два проводника a и b заряжены противоположно, и разность потенциалов между ними равна нулю, то потенциал каждого проводника равен 1/2 V ab .

Емкость между каждым проводником и точкой нулевого потенциала n равна

.

Емкость C n называется емкостью относительно нейтрали или емкостью относительно земли.

Емкость C ab — это комбинация двух последовательно соединенных равных емкостей a и b. Таким образом, емкость относительно нейтрали в два раза больше емкости между проводниками, т.е.е.,

Абсолютная диэлектрическая проницаемость ε определяется как

, где ε o — диэлектрическая проницаемость свободного пространства, а ε r — относительная диэлектрическая проницаемость среды.

Для воздуха

Реактивное сопротивление емкости между одним проводником и нейтралью

Емкость симметричной трехфазной линии

Пусть сбалансированная система напряжения приложена к симметричной трехфазной линии, показанной ниже

Векторная диаграмма трехфазной линии с равносторонним интервалом показана ниже: Возьмите напряжение проводника a относительно нейтрали в качестве эталонного вектора

Разность потенциалов между проводниками a и b можно записать как

Аналогично, разность потенциалов между проводниками a и c равна

.

Складывая уравнения (1) и (2), получаем

Также,

Объединение уравнений (3) и (4)

Из уравнений (6) и (7)

Емкость фаза-нейтраль

Емкость симметричной трехфазной линии такая же, как и у двухпроводной линии.

Учебное пособие по коррекции коэффициента мощности

(pfc)

Коррекция коэффициента мощности — это метод, в котором используются конденсаторы для уменьшения составляющей реактивной мощности в цепи переменного тока, чтобы повысить ее КПД и уменьшить ток.

При работе с цепями постоянного тока (DC) мощность, рассеиваемая подключенной нагрузкой, просто рассчитывается как произведение постоянного напряжения на постоянный ток, то есть V * I, выраженное в ваттах (Вт). Для фиксированной резистивной нагрузки ток пропорционален приложенному напряжению, поэтому электрическая мощность, рассеиваемая резистивной нагрузкой, будет линейной.Но в цепи переменного тока ситуация немного иная, поскольку реактивное сопротивление влияет на поведение цепи.

Для цепи переменного тока мощность, рассеиваемая в ваттах в любой момент времени, равна произведению вольт и ампер в тот же самый момент, это связано с тем, что переменное напряжение (и ток) синусоидальны, поэтому непрерывно изменяется по обеим величине. и направление во времени со скоростью, определяемой частотой источника .

В цепи постоянного тока средняя мощность равна просто V * I, но средняя мощность цепи переменного тока отличается от того же значения, поскольку многие нагрузки переменного тока имеют индуктивные элементы, такие как катушки, обмотки, трансформаторы и т. Д.где ток не совпадает по фазе с напряжением на несколько градусов, в результате чего фактическая рассеиваемая мощность в ваттах меньше произведения напряжения и тока. Это связано с тем, что в схемах, содержащих как сопротивление, так и реактивное сопротивление, также необходимо учитывать фазовый угол () между ними.

В руководстве по синусоидальным сигналам мы видели, что фазовый угол (∠Θ) — это угол в электрических градусах, на который ток отстает от напряжения. Для чисто резистивной нагрузки напряжение и ток «синфазны», поскольку нет реактивного сопротивления.

Однако для цепи переменного тока, содержащей катушку индуктивности, катушку или соленоид или какой-либо другой вид индуктивной нагрузки, ее индуктивное реактивное сопротивление (X L ) создает фазовый угол, при котором ток отстает от напряжения на 90 o . Таким образом, существует как сопротивление (R), так и индуктивное реактивное сопротивление (X L ), оба даны в Ом, с комбинированным эффектом, называемым Импеданс . Таким образом, импеданс, представленный заглавной буквой Z, представляет собой результирующее значение, выраженное в Омах, из-за комбинированного влияния сопротивления цепи и реактивного сопротивления.

Рассмотрим последовательную схему RL ниже.

Цепь серии RL

Поскольку это последовательная цепь, ток должен быть общим как для резистора, так и для катушки индуктивности, чтобы напряжение на резисторе падало, V R «синфазно» с последовательным током, в то время как падение напряжения на катушке индуктивности. , V L «опережает» ток на 90 o (ELI). В результате падение напряжения на резисторе накладывается на вектор тока, потому что оба вектора синфазны, в то время как напряжение, возникающее на катушке индуктивности, тянется в вертикальном направлении из-за напряжения, опережающего ток, на 90 o .

Таким образом, векторная диаграмма, нарисованная для каждого компонента, будет иметь вектор тока в качестве эталона с двумя векторами напряжения, нанесенными на график относительно их положения, как показано.

Векторные диаграммы R и L.

Напряжение резистора V R отложено по горизонтальной или «действительной оси», а напряжение индуктора V L отложено по вертикальной или «мнимой оси». Чтобы найти результирующее напряжение V S , возникающее в последовательно соединенной цепи, мы должны объединить вместе два отдельных вектора, используя ток в качестве эталона.Результирующее векторное напряжение можно легко найти с помощью теоремы Пифагора, поскольку комбинация V R и V L образует прямоугольный треугольник, как показано ниже.

Фазорная диаграмма для последовательной цепи RL

Векторная сумма V R и V L дает нам не только амплитуду V S из-за уравнения Пифагора: V2
S = V2
R + V2
L, но и результирующий фазовый угол ( ∠Θ) между V S и i, поэтому мы можем использовать любую из стандартных тригонометрических функций синуса, косинуса и тангенса, чтобы найти ее.

Пример коррекции коэффициента мощности №1

Последовательная цепь RL состоит из сопротивления 15 Ом и индуктора с индуктивным реактивным сопротивлением 26 Ом. Если по цепи течет ток 5 ампер, рассчитайте:

1) напряжение питания.
2) фазовый угол между напряжением питания и током цепи.
3) Нарисуйте получившуюся векторную диаграмму.

1). Напряжение питания В S

Мы можем дважды проверить этот ответ 150 В (среднеквадратичное значение), используя следующие импедансы цепи:

2).Фазовый угол Θ при использовании функций триганометрии составляет:

3). Результирующая векторная диаграмма, показывающая V S

Расчетное падение напряжения на резисторе (действительный компонент) составляло 75 вольт, в то время как напряжение, генерируемое на катушке индуктивности (воображаемый компонент), составляло 130 вольт. Очевидно, что сумма 75 вольт плюс 130 вольт дает 205 вольт, что намного больше, чем рассчитанные 150 вольт. Это связано с тем, что значение 150 В представляет собой векторную сумму.Зная отдельные падения напряжения и импедансы, мы можем преобразовать эти значения в значения, которые представляют потребляемую мощность, действительную или мнимую в цепи.

Питание в цепи серии RL

В цепи, содержащей реактивное сопротивление, ток i будет либо опережать, либо отставать от напряжения на некоторую величину в зависимости от того, является ли реактивное сопротивление емкостным или индуктивным. Мощность, потребляемая резистором в ваттах, называется «реальной мощностью», поэтому ей присваивается символ « P » (или Вт ).Ватты также можно рассчитать как I 2 R, где R — полное сопротивление цепи. Однако, чтобы рассчитать значение активной мощности с точки зрения действующего напряжения и среднеквадратичного значения тока (В действующее значение * I среднеквадратичное значение ), мы также должны умножить эти значения на косинус фазового угла, что дает cosΘ, что дает:

Активная мощность, P = V * I cos (Θ)

Поскольку, как мы видели выше, напряжение и ток «синфазны» для сопротивления, фазовый угол, следовательно, равен нулю (0), что дает нам cos (Θ) = 1.Таким образом, умножение V * I * 1 даст нам то же значение реальной мощности, что и при использовании I 2 R. Тогда, используя приведенный выше пример катушки, мощность, рассеиваемая резистором 15 Ом, составляет:

P R = I 2 R = 5 2 x 15 = 375 Вт

, что означает:

P R = V R * I cos (Θ) = 75 x 5 x cos (Θ) = 375 Вт

Когда напряжение и ток «не совпадают по фазе» друг с другом из-за того, что цепь содержит реактивное сопротивление, произведение V * I называется «кажущейся мощностью» с учетом единиц вольт-ампер (ВА) вместо ватт. .Вольт-амперы обозначены символом « S ». Для чисто индуктивной цепи ток отстает от напряжения на 90 o , поэтому реактивная мощность для индуктивной нагрузки определяется как: V * I cos (+90 o ), что становится: V * I * 0. Очевидно, что мощность, потребляемая индуктивностью, отсутствует, поэтому потери мощности отсутствуют, поэтому P L = 0 Вт. Однако, чтобы показать, что эта мощность без мощности присутствует в цепи переменного тока, она называется вольт-амперно-реактивной (ВАР) и обозначается символом « Q ».Таким образом, для реактивной вольт-амперной характеристики или просто «реактивной мощности» для индуктивной цепи используется обозначение Q L .

Аналогично, для чисто емкостной цепи ток опережает напряжение на 90 o , реактивная мощность для емкостной нагрузки задается как: V * I cos (-90 o ), что снова становится: V * I * 0 . Очевидно, что тогда и, как и раньше, мощность, потребляемая емкостью, отсутствует, поэтому потери мощности отсутствуют, поскольку P C = 0 Вт. Таким образом, чтобы показать, что эта безватная мощность существует в емкостной цепи, она называется вольт-амперной реактивной емкостной и ей присвоено обозначение Q C .Обратите внимание, что реактивная мощность емкости определяется как отрицательная, в результате получается -Q C .

Итак, снова используя наш приведенный выше пример, реактивная мощность, входящая и выходящая из катушки индуктивности со скоростью, определяемой частотой, задается как:

Q L = I 2 X L = 5 2 x 26 = 650 ВАР

Поскольку существует разность фаз 90 o между формами волны напряжения и тока в чистом реактивном сопротивлении (индуктивном или емкостном), мы умножаем V * I на sin (), чтобы получить вертикальную составляющую, которая составляет 90 o out -офазный.Однако синус угла (sin 90 o ) дает результат как «1», поэтому мы можем найти реактивную мощность, просто умножив действующие значения напряжения и тока, как показано.

Q L = I 2 X L = V * I * sin (Θ) = 130 * 5 * sin (90 o ) = 130 * 5 * 1 = 650 VAR

Затем мы можем видеть, что реактивная часть вольт-ампер или VAR имеет величину (такую ​​же, как и для реальной мощности), но не связанный с ней фазовый угол.То есть реактивная мощность всегда находится на вертикальной оси 90, o . Итак, если мы это знаем:

P R = I 2 R = 375 Вт

и

Q L = I 2 X L = 650 ВАР (инд.)

, мы можем построить треугольник мощности, чтобы показать взаимосвязь между P, Q и S, как показано.

Индуктивный треугольник мощности

Треугольник емкостной мощности

Мы снова можем использовать предыдущую теорему Пифагора и тригонометрические функции синуса, косинуса и тангенса, чтобы определить степенной треугольник.

Уравнения степенного треугольника

Пример коррекции коэффициента мощности №2

Катушка

A имеет сопротивление 10 Ом и индуктивность 46 мГн. Если он потребляет ток 5 ампер при подключении к источнику 100 В среднеквадратического значения, 60 Гц, рассчитайте:

1) напряжения на компонентах.
2) фазовый угол цепи.
3) различные мощности, потребляемые последовательной цепью RL.

Сначала найдите импедансы

1).Напряжения на резисторе, В R и индуктивности, В L

2). Фазовый угол схемы

3). Схема силовая

Мы можем подтвердить, что схема потребляет 500 ВА комплексной мощности от источника питания, как S = I 2 Z, поэтому 5 2 x 20 = 500 ВА и построение треугольника мощности также подтвердит это как правильное.

Однако эта комплексная или полная полная мощность , потребляемая последовательной цепью RL, велика, потому что фазовый угол (Θ), на который напряжение опережает ток (ELI), также велик, что приводит к низкому коэффициенту мощности, равному 0.5 (cos60 o ) отстает. Таким образом, нам нужно отменить часть этой индуктивной реактивной мощности, потребляемой (433 ВАр) катушкой, используемой для поддержания магнитного поля катушек, добавив к ней еще немного реактивного сопротивления, но противоположного типа к цепи.

Стоит ли беспокоиться о низком коэффициенте мощности катушек. Ну да, поскольку коэффициент мощности — это отношение реальной мощности катушки к ее полной мощности (ватты / вольт-амперы), он дает представление о том, насколько эффективно используется подаваемая электрическая мощность.Таким образом, низкий коэффициент мощности означает, что подаваемая электрическая мощность не используется полностью, как в приведенном выше примере катушки, при коэффициенте мощности 50% (Вт / ВА = 250/500) требуется 500 ВА для выработки всего 250 Вт реальной мощности.

Если катушка имеет положительное индуктивное сопротивление, мы должны добавить некоторое отрицательное емкостное реактивное сопротивление, чтобы нейтрализовать его и улучшить общее значение коэффициента мощности катушек. Добавление конденсаторов для уменьшения фазового угла цепи и потребляемой реактивной мощности упоминается как коррекция коэффициента мощности , что позволяет нам снизить коэффициент мощности схемы примерно до 1 единицы.

Коррекция коэффициента мощности

Коррекция коэффициента мощности улучшает фазовый угол между напряжением питания и током, в то время как реальная потребляемая мощность в ваттах остается неизменной, потому что, как мы видели, чистое реактивное сопротивление не потребляет никакой реальной мощности. Добавление импеданса в виде емкостного реактивного сопротивления параллельно указанной выше катушке уменьшит и, таким образом, увеличит коэффициент мощности, что, в свою очередь, снизит среднеквадратичный ток цепи, потребляемый от источника питания.

Коэффициент мощности цепи переменного тока может варьироваться от 0 до 1 в зависимости от силы индуктивной нагрузки, но в действительности он никогда не может быть меньше примерно 0.2 для самых тяжелых индуктивных нагрузок. Как мы видели выше, коэффициент мощности менее 1 означает, что существует потребляемая реактивная мощность, которая увеличивается по мере приближения к 0 (полностью индуктивному). Очевидно, что коэффициент мощности ровно «1» означает, что схема потребляет нулевую реактивную мощность (полностью резистивную), что приводит к углу коэффициента мощности 0 o . Это называется «единичным коэффициентом мощности».

Добавление конденсатора параллельно катушке не только уменьшит эту нежелательную реактивную мощность, но также уменьшит общую величину тока, потребляемого от источника питания.Теоретически конденсаторы могут обеспечивать 100% компенсированной реактивной мощности, необходимой в цепи, но на практике обычно достаточно коррекции коэффициента мощности от 95% до 98% (от 0,95 до 0,98). Итак, используя нашу катушку из примера №2 выше, какое значение конденсатора требуется для увеличения коэффициента мощности с 0,5 до 0,95.

Коэффициент мощности 0,95 равен фазовому углу: cos (0,95) = 18,2 o , таким образом, требуемая величина VAR составляет:

Следовательно, для фазового угла 18.2 o нам нужно значение реактивной мощности 82,2 ВАр. Если исходное нескорректированное значение VAR было 433VAR, а новое рассчитанное значение — 82,2VAR, нам нужно уменьшение на 433–82,2 = 350,8 VAR (емкостное). Следовательно:

Конденсатор, необходимый для снижения реактивной мощности до 82,2 ВАр, должен иметь емкостное реактивное сопротивление 28,5 Ом при номинальной частоте питания. Следовательно, емкость конденсатора рассчитывается как:

Итак, чтобы улучшить коэффициент мощности катушки в примере №2 с 0.От 5 до 0,95 требуется подключенный параллельно конденсатор емкостью 93 мкФ. Используя приведенные выше значения, мы можем теперь рассчитать количество реальной мощности, подаваемой источником после применения коррекции коэффициента мощности.

Новое значение вольт-ампер

Мы также можем построить треугольник мощности, чтобы показать значения VA (S) и VAR (Q) до и после, как показано.

Треугольник силы

Если полная мощность цепей была снижена с 500 ВА до 263 ВА, мы можем рассчитать действующее значение подаваемого тока как:

S = V * I, следовательно: I = S / V = ​​263/100 = 2.63 Ампер

Таким образом, простое подключение конденсатора к катушке не только улучшает ее общий коэффициент мощности с 0,5 до 0,95, но и снижает ток питания с 5 до 2,63 ампер, то есть примерно на 47%. Итоговая схема будет выглядеть так.

Цепь окончательной коррекции коэффициента мощности

При желании вы можете увеличить емкость конденсатора с расчетного значения 93 мкФ для нашего простого примера до максимального значения 114.8 мкФ, улучшая коэффициент мощности с требуемых 0,95 до 1,0 (единица). На самом деле для этого примера будет достаточно одного стандартного неполяризованного конденсатора емкостью 100 мкФ.

В этом руководстве мы видели, что запаздывающий коэффициент мощности из-за индуктивной нагрузки увеличивает потери мощности в цепи переменного тока. Добавляя подходящую емкостную реактивную составляющую в виде конденсатора параллельно индуктивной нагрузке, мы можем уменьшить разность фаз между напряжением и током.

Это приводит к уменьшению коэффициента мощности схемы, то есть отношения активной мощности к полной мощности, а также к улучшению качества мощности схемы и уменьшению количества требуемого тока источника.Этот метод называется «Коррекция коэффициента мощности».

[PDF] Скачать TECHN. ПРИМЕНЕНИЕ. ПРИМЕЧАНИЯ КОНДЕНСАТОРЫ МОТОРА

Скачать Скачать TECHN. ПРИМЕНЕНИЕ. ПРИМЕЧАНИЯ МОТОКОНДЕНСАТОРЫ …

МЕЖДУНАРОДНЫЕ КОНДЕНСАТОРЫ, SA

ТЕХНИЧЕСКОЕ ПРИМЕНЕНИЕ

TS 02-000I Выпуск 0

ДВИГАТЕЛЬНЫЕ КОНДЕНСАТОРЫ

Эти технические примечания по применению пытаются облегчить нашим клиентам и / или представителям конкретный ответ на проблемы и сомнения, которые могут возникнуть при использовании моторные конденсаторы.

ИНДЕКС

TS 02-010I

Кодификация конденсаторов двигателя согласно DIN / VDE

TS 02-011I

Выбор емкости конденсаторов двигателя

TS 02-012I

Использование трехфазных двигателей в однофазных сети

TS02000I.WPD

1/1

МЕЖДУНАРОДНЫЕ КОНДЕНСАТОРЫ, S, A, ТЕХНИЧЕСКОЕ ПРИМЕНЕНИЕ ПРИМЕЧАНИЕ

TS 02-010I Выпуск 0

Кодификация конденсаторов согласно DIN 40040 / VDE 560-8 Конденсаторы двигателей кодируются означает пять цифр.Первые три цифры представляют собой климатический диапазон конденсатора и определяют условия окружающей среды, в которых он может работать. Последние две цифры указывают на надежность конденсатора.

HPF NT

Пример: ЦИФРЫ:

1-я

2-я 3-я 4-я 5-я

КЛИМАТИЧЕСКИЙ ДИАПАЗОН 1-я цифра Нижний предел температуры

НАДЕЖНОСТЬ

2-я цифра

3-я цифра

4-я

50003

4-я

предельная температура1)

Допустимые пределы относительной влажности (%) 2)

Кол-во отказов для 109 компонентов час5)

Ожидаемый срок службы5)

Letter

Letter

часов

M

1000

30000

N

3000

T

10000

Letter

EC

Letter

EC

G

-40

S

70 9000 250003

75

Дж

-10

P

85

P

10000

U

3000900 03

K

0

M

100

Q

30000

V

1000

Letter

F

Среднее3)

# 75

Макс.4)

# 95

1)

Температура, измеренная на поверхности конденсатора

2)

В конденсаторах двигателя обычно используется только диапазон F

3)

Среднегодовое значение

4 )

Максимальное значение для периода не более 30 дней в году

5)

Пары MS, NT, PU и QV дают частоту отказов (в конце ожидаемого срока службы) ниже 3% Пример: NT , 3000 · 10-9 · ч-1 · 10000 h = 0,03 (3%)

В примере HPF NT значение букв будет следующим: HPFNT

TS02010I.WPD

Нижний предел температуры Верхний предел температуры Пределы относительной влажности Частота отказов (в конце ожидаемого срока службы) Ожидаемый срок службы

— 25 EC 85 EC # 75% Среднее; # 95% Макс. # 3% 10000 ч

1/1

INTERNATIONAL CAPACITORS, SA ТЕХНИЧЕСКОЕ ПРИМЕНЕНИЕ ПРИМЕЧАНИЕ

TS 02-011I Выпуск 0

Выбор емкости конденсаторов двигателя

Выбор постоянного конденсатора для однофазного двигателя подразумевает рассмотрение технико-экономических аспектов.Поскольку обмотка однофазного двигателя может выполняться самыми разными способами (разделение пространства обмотки между основной обмоткой и вспомогательной обмоткой, выбор количества витков обмотки и секций обмотки и т. Д.), Это Невозможно дать универсальных правил определения емкости и рабочего напряжения конденсатора для определенной мощности двигателя. В таком случае всегда необходимо применять критерии, установленные производителем двигателя. Однако ниже представлена ​​процедура расчета с единственной целью — быть полезной для первой оценки и дать приблизительное представление о значениях постоянного конденсатора: считается, что в целом для каждого CV мощности конденсатор двигателя требует примерно реактивная мощность 1 квар.Мощность конденсатора может быть определена по следующей формуле:

Где:

QC =

1,35 P (квар)

[1]

QC = P =

Мощность конденсатора в квар Мощность двигателя в кВт

Поскольку реактивная мощность конденсатора определяется по формуле:

Где:

QC =

UC2 · 2 · π · f · C · 10-9 (квар)

UC = f = C =

Конденсатор напряжение в В Номинальная частота в Гц Емкость конденсатора в мкФ

Емкость конденсатора будет тогда определена как: QC C = S)))))))))))))) Q UC2 · 2 · π · F · 10-9

TS02011I.WPD

(мкФ)

[2]

1/2

INTERNATIONAL CAPACITORS, SA TS 02-011I Issue 0

Напряжение между выводами конденсатора можно рассчитать по току вспомогательной обмотки двигателя: IA · 106

UC = S)))))))) QQ 2 · π · f · C Где: IA =

(В)

[3]

Ток вспомогательной обмотки в А

Пример : Двигатель мощностью P = 0,05 кВт, при токе во вспомогательной обмотке IA = 0,17 А. В первую очередь рассчитывается необходимая мощность [1]: QC =

1.35 · 0,05 =

0,0675 квар

сразу после этого предлагаются уравнения [2] и [3] 0,0675 C = S))))))))))))))) QQ UC2 · 2 · π · 50 · 10-9

(мкФ)

0,17 · 106 UC = S)))))))))))) Q 2 · π · 50 · C

(В)

Путем разрешения системы , получаем следующий результат:

C = 1,4 мкФ

TS02011I.WPD

UC = 397 V

2/2

МЕЖДУНАРОДНЫЕ КОНДЕНСАТОРЫ, SA ТЕХНИЧЕСКОЕ ПРИМЕНЕНИЕ

TS 02-012I Издание 0

трехфазных двигателей в однофазных сетях Трехфазный двигатель может использоваться в однофазной сети с помощью постоянного конденсатора.Даже невозможно получить такие же оригинальные условия работы, эта система позволяет расширить область применения некоторых видов инструментов и механизмов. Схема подключения показана на рисунке

Примечание:

Изменение клеммы подключения * конденсатора позволяет инвертировать направление вращения двигателя.

Выбор конденсатора Приблизительные значения емкости требуемого конденсатора указаны в следующей таблице. Из-за прохождения тока конденсатора через обмотку двигателя его рабочее напряжение выше, чем напряжение сети Напряжение сети (В)

Конденсатор C

Напряжение конденсатора UC

220 В

— 70 мкФ / кВт

— 250 В

110 В

— 240 мкФ / кВт

— 125 В

380 В

— 22 мкФ / кВт

— 430 В

Мощность двигателя Ожидаемые значения К трехфазному двигателю, подключенному к однофазной сети, относятся следующие: Пусковой момент: Максимальное напряжение:

ПРИМЕЧАНИЕ:

TS02012I.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *