- Расчет конденсаторы рабочие для электродвигателей
- Пример расчета рабочей емкости конденсатора для двигателя
- Включение трехфазного электродвигателя в однофазную сеть питания
- Как подобрать конденсатор
- Подключение пускового и рабочего конденсаторов для трехфазного электромотора
- Как рассчитать емкость рабочего конденсатора
- Что такое конденсатор
- Как подобрать конденсатор для трехфазного электродвигателя
- Как подобрать конденсатор для однофазного электродвигателя
- Итак, как подобрать конденсатор для однофазного электродвигателя?
- Трёхфазный двигатель — в однофазную сеть
- Умный ремонт — Smart Repair: Как запустить трёхфазный двигатель от 220 вольт
- 53.
- Расчет емкости конденсатора асинхронного двухфазного двигателя (конденсаторный двигатель) — Help for engineer
- Как подключить трёхфазный двигатель к однофазной сети 220 вольт.
- Способы включения трехфазных асинхронных двигателей
- Пусковой конденсатор двигателя | Приложения
- Понимание и выбор конденсаторов | Новости промышленного оборудования (IEN)
- Трехфазный двигатель, работающий от однофазного источника питания
- Можно ли изменить размер конденсаторов на насосе для бассейна?
- 3phconv
- : схема и объяснение того, как конденсатор используется для запуска однофазного двигателя
- 404 WOODWEB ERROR
Расчет конденсаторы рабочие для электродвигателей
Для включения трехфазного электродвигателя (что такое электродвигатель ➠) в однофазную сеть обмотки статора могут быть соединены в звезду или треугольник.
Напряжение сети подводят к началам двух фаз. К началу третьей фазы и одному из зажимов сети присоединяют рабочий конденсатор 1 и отключаемый (пусковой) конденсатор 2, который необходим для увеличения пускового момента.
Пусковая емкость конденсаторов
После пуска двигателя конденсатор 2 отключают.
Рабочую емкость конденсаторного двигателя для частоты 50 Гц определяют по формулам:
где Ср — рабочая емкость при номинальной нагрузке, мкФ;
Iном — номинальный ток фазы двигателя, А;
U — напряжение сети, В.
Нагрузка двигателя с конденсатором не должна превышать 65—85% номинальной мощности, указанной на щитке трехфазного двигателя.
Если пуск двигателя происходит без нагрузки, то пусковая емкость не требуется — рабочая емкость будет в то же время пусковой.
При пуске двигателя под нагрузкой, близкой к номинальному моменту необходимо иметь пусковую емкость Сп = (2,5 ÷ 3) Ср.
Выбор конденсаторов по номинальному напряжению производят по соотношениям:
где Uк и U — напряжения на конденсаторе и в сети.
Основные технические данные некоторых конденсаторов приведены в таблице.
Если трехфазный электродвигатель, включенный в однофазную сеть, не достигает номинальной частоты вращения, а застревает на малой скорости, следует увеличить сопротивление клетки ротора проточкой короткозамыкающих колец или увеличить воздушный зазор шлифовкой ротора на 15—20%.
В том случае, если конденсаторы отсутствуют, можно использовать резисторы, которые включаются по тем же схемам, что и при конденсаторном пуске. Резисторы включаются вместо пусковых конденсаторов (рабочие конденсаторы отсутствуют).
Сопротивление (Ом) резистора может быть определено по формуле
,
где R — сопротивление резистора;
κ и I— кратность пускового тока и линейный ток в трехфазном режиме.
Пример расчета рабочей емкости конденсатора для двигателя
Определить рабочую емкость для двигателя АО 31/2, 0.6 кВт, 127/220 В, 4.2/2.4 А, если двигатель включен по схеме, изображенной на рис. а, а напряжение сети равно 220 В. Пуск двигателя без нагрузки.
1. Рабочая емкость Ср = 2800 x 2.4 / 220 ≈ 30 мкФ.
2. Напряжение на конденсаторе при выбранной схеме Uк = 1,15 x U = 1,15 x 220 = 253 В.
По таблице выбираем три конденсатора МБГО-2 по 10 мкФ каждый с рабочим напряжением 300 В. Конденсаторы включать параллельно.
Источник: В.И. Дьяков. Типовые расчеты по электрооборудованию.
Видео о том, как подключить электродвигатель на 220 вольт:
- Подобные расчеты
Наши сети электропитания созданы трехфазными. Потому что генераторы, работающие на электростанциях, имеют трехфазные обмотки и вырабатывают три синусоидальных напряжения, сдвинутых по фазе относительно друг друга на 120°.
Но мы чаще всего пользуемся всего одной фазой — проводим себе один фазный провод из трех и все к нему подключаем. Только в технике нашей часто встречаются электродвигатели, и они по природе своей трехфазны. Ну а фаза от фазы чем отличается? Только сдвигом во времени. Сдвига такого очень просто добиться, включив в цепь питания реактивные элементы: емкости или индуктивности.
Но ведь обмотка на статоре сама и является индуктивностью. Поэтому остается добавить к двигателю снаружи только емкость, конденсатор, а обмотки подключить так, чтобы одна из них в другой сдвигала фазу в одну сторону, а конденсатор в третьей делал то же самое, только в другую. И получатся те же самые три фазы, только «вынутые» из одной фазы питающих проводов.Последнее обстоятельство означает, что мы нагружаем трехфазным двигателем только одну из фаз приходящего питания. Разумеется, это вносит дисбаланс в потребление энергии. Поэтому все-таки лучше, когда трехфазный двигатель питается трехфазным напряжением, а построить цепь его питания от одной приходящей фазы хорошо, только если мощность двигателя не особо велика.
Включение трехфазного электродвигателя в однофазную сеть питания
Обмотки электродвигателя соединяют двумя способами: звезда (Y) или треугольник (Δ).
При подключении трехфазного двигателя к однофазной сети предпочтительнее соединение типа треугольник. На шильдике двигателя об этом есть информация, и когда там обозначено Y — звезда, самым лучшим вариантом было бы открыть его кожух, найти концы обмоток и правильно переключить обмотки в треугольник. Иначе потери мощности будут слишком большими.
Включение двигателя на одну фазу питающей сети требует создания из нее и двух остальных. Это можно сделать по следующей схеме
При запуске двигателя в работу в самом начале требуется высокий стартовый ток, поэтому емкости рабочего конденсатора обычно не хватает. Чтобы «ему помочь», используют специальный стартовый конденсатор, который подключается к рабочему конденсатору параллельно. В самом простом случае (невысокая мощность двигателя) его выбирают точно таким же, как и рабочий. Но для этой цели выпускаются и специально стартовые конденсаторы, на которых так и написано: starting.
Стартовый конденсатор должен быть включен в работу только во время пуска и разгона двигателя до рабочей мощности. После этого его отключают. Используется кнопочный выключатель. Или двойной: одной клавишей включается сам двигатель и кнопка фиксируется во включенном положении, кнопка же, замыкающая цепь рабочего конденсатора, каждый раз размыкается.
Как подобрать конденсатор
Конденсаторы для трехфазного двигателя нужны достаточно большой емкости — речь идет о десятках и сотнях микрофарад. Однако конденсаторы электролитические для этой цели не годятся. Они требуют подключения однополярного, то есть специально для них придется городить выпрямитель из диодов и сопротивлений. Кроме того, со временем в электролитических конденсаторах высыхает электролит и они теряют емкость. Поэтому если будете ставить такой на двигатель, необходимо делать на это скидку, а не верить тому, что на них написано.
Поэтому задачу, как выбрать конденсатор под трехфазный двигатель, часто решают в несколько этапов
Сначала подбираем приблизительно. Надо рассчитать емкость конденсатора по простейшему соотношению как 7 мкФ на каждые 100 ватт мощности. То есть 700 ватт дает нам 49 мкФ первоначально. Емкость выбираемого пускового конденсатора берется в диапазоне 1–3-кратного превышения емкости рабочего конденсатора. Выберите 2*50 = 100 мкФ — будет само то. Ну, для начала можно взять побольше, потом подобрать конденсаторы, ориентируясь на работу двигателя. От емкости конденсаторов зависит реальная мощность движка. Если ее мало, двигатель при тех же оборотах потеряет мощность (обороты не зависят от мощности, а только от частоты напряжения), так как ему будет не хватать тока. При чрезмерной емкости конденсаторов у него будет перегрев от избытка тока.
com/embed/E_6ocnRATig»/>
Нормальная работа двигателя, без шума и рывков — это неплохой критерий правильно выбранного конденсатора. Но для большей точности можно сделать расчет конденсаторов по формулам, а такую проверку оставить на потом в качестве окончательного подтверждения успешности результатов подбора конденсаторов.
Однако надо все-таки подключить конденсаторы.
Подключение пускового и рабочего конденсаторов для трехфазного электромотора
Вот оно соответствие всех нужных приборов элементам схемы
Теперь выполним подключение, внимательно разобравшись с проводами
Так можно подключить двигатель и предварительно, используя неточную прикидку, и окончательно, когда будут подобраны оптимальные значения.
Подбор можно сделать и экспериментально, имея несколько конденсаторов разных емкостей. Если их присоединять параллельно друг другу, то суммарная емкость будет увеличиваться, при этом нужно смотреть, как ведет себя двигатель.
Как рассчитать емкость рабочего конденсатора
Для двух соединений обмоток берутся несколько разные соотношения.
В формуле введен коэффициент соединения Кс, который для треугольника равен 4800, а для звезды — 2800.
Где значения Р (мощность), U (напряжение 220 В), η (КПД двигателя, в процентном значении деленном на 100) и cosϕ (коэффициент мощности) берутся с шильдика двигателя.
Вычислить значение можно с помощью обычного калькулятора или воспользовавшись чем-то вроде подобной вычислительной таблицы. В ней нужно подставить значения параметров двигателя (желтые поля), результат получается в зеленых полях в микрофарадах
Однако не всегда есть уверенность, что параметры работы двигателя соответствуют тому, что написано на шильдике. В этом случае нужно измерить реальный ток измерительными клещами и воспользоваться формулой Cр = Кс*I/U.
Что делать, если требуется подключить двигатель к источнику, рассчитанному на другой тип напряжения (например, трехфазный двигатель к однофазной сети)? Такая необходимость может возникнуть, в частности, если нужно подключить двигатель к какому-либо оборудованию (сверлильному или наждачному станку и пр.). В этом случае используются конденсаторы, которые, однако, могут быть разного типа. Соответственно, надо иметь представление о том, какой емкости нужен конденсатор для электродвигателя, и как ее правильно рассчитать.
Что такое конденсатор
Конденсатор состоит из двух пластин, расположенных друг напротив друга. Между ними помещается диэлектрик. Его задача – снимать поляризацию, т.е. заряд близкорасположенных проводников.
Существует три вида конденсаторов:
- Полярные. Не рекомендуется использовать их в системах, подключенных к сети переменного тока, т. к. вследствие разрушения слоя диэлектрика происходит нагрев аппарата, вызывающий короткое замыкание.
- Неполярные. Работают в любом включении, т.к. их обкладки одинаково взаимодействуют с диэлектриком и с источником.
- Электролитические (оксидные). В роли электродов выступает тонкая оксидная пленка. Считаются идеальным вариантом для электродвигателей с низкой частотой, т.к. имеют максимально возможную емкость (до 100000 мкФ).
Как подобрать конденсатор для трехфазного электродвигателя
Задаваясь вопросом: как подобрать конденсатор для трехфазного электродвигателя, нужно принять во внимание ряд параметров.
Чтобы подобрать емкость для рабочего конденсатора, необходимо применить следующую расчетную формулу: Сраб.=k*Iф / U сети, где:
- k – специальный коэффициент, равный 4800 для подключения «треугольник» и 2800 для «звезды»;
- Iф – номинальное значение тока статора, это значение обычно указывается на самом электродвигателе, если же оно затерто или неразборчиво, то его измеряют специальными клещами;
- U сети – напряжение питания сети, т. е. 220 вольт.
Таким образом вы рассчитаете емкость рабочего конденсатора в мкФ.
Еще один вариант расчета – принять во внимание значение мощности двигателя. 100 Ватт мощности соответствуют примерно 7 мкФ емкости конденсатора. Осуществляя расчеты, не забывайте следить за значением тока, поступающего на фазную обмотку статора. Он не должен иметь большего значения, чем номинальный показатель.
В случае, когда пуск двигателя производится под нагрузкой, т.е. его пусковые характеристики достигают максимальных величин, к рабочему конденсатору добавляется пусковой. Его особенность заключается в том, что он работает примерно в течение трех секунд в период пуска агрегата и отключается, когда ротор выходит на уровень номинальной частоты вращения. Рабочее напряжение пускового конденсатора должно быть в полтора раза выше сетевого, а его емкость – в 2,5-3 раза больше рабочего конденсатора. Чтобы создать необходимую емкость, вы можете подключить конденсаторы как последовательно, так и параллельно.
Как подобрать конденсатор для однофазного электродвигателя
Асинхронные двигатели, рассчитанные на работу в однофазной сети, обычно подключаются на 220 вольт. Однако если в трехфазном двигателе момент подключения задается конструктивно (расположение обмоток, смещение фаз трехфазной сети), то в однофазном необходимо создать вращательный момент смещения ротора, для чего при запуске применяется дополнительная пусковая обмотка. Смещение ее фазы тока осуществляется при помощи конденсатора.
Итак, как подобрать конденсатор для однофазного электродвигателя?
Чаще всего значение общей емкости Сраб+Спуск (не отдельного конденсатора) таково: 1 мкФ на каждые 100 ватт.
Есть несколько режимов работы двигателей подобного типа:
- Пусковой конденсатор + дополнительная обмотка (подключаются на время запуска). Емкость конденсатора: 70 мкФ на 1 кВт мощности двигателя.
- Рабочий конденсатор (емкость 23-35 мкФ) + дополнительная обмотка, которая находится в подключенном состоянии в течение всего времени работы.
- Рабочий конденсатор + пусковой конденсатор (подключены параллельно).
Если вы размышляете: как подобрать конденсатор к электродвигателю 220в, стоит исходить из пропорций, приведенных выше. Тем не менее, нужно обязательно проследить за работой и нагревом двигателя после его подключения. Например, при заметном нагревании агрегата в режиме с рабочим конденсатором, следует уменьшить емкость последнего. В целом, рекомендуется выбирать конденсаторы с рабочим напряжением от 450 В.
Как выбрать конденсатор для электродвигателя – вопрос непростой. Для обеспечения эффективной работы агрегата нужно чрезвычайно внимательно рассчитать все параметры и исходить из конкретных условий его работы и нагрузки.
Трёхфазный двигатель — в однофазную сеть
Автор Светозар Тюменский На чтение 3 мин. Просмотров 21.2k. Опубликовано Обновлено
Пожалуй, наиболее распространённый и простой способ подключения трехфазного электродвигателя в однофазную сеть при отсутствии питающего напряжения ~ 380 в – это способ с применением фазосдвигающего конденсатора, через который запитывается третья обмотка электродвигателя. Перед тем, как подключать трехфазный электродвигатель в однофазную сеть убедитесь, что его обмотки соединены “треугольником” (см. рис. ниже, вариант 2), т. к. именно это соединение даст минимальные потери мощности 3х-фазного двигателя при включении его в сеть ~ 220 в.
Мощность, развиваемая трехфазным электродвигателем, включенным в однофазную сеть с такой схемой соединения обмоток может составлять до 75% его номинальной мощности. При этом частота вращения двигателя практически не отличается от его частоты при работе в трёхфазном режиме.
На рисунке показаны клеммные колодки электродвигателей и соответствующие им схемы соединения обмоток. Однако, исполнение клеммной коробки электродвигателя может отличаться от показанного ниже – вместо клеммных колодок, в коробке может располагаться два разделённых пучка проводов (по три в каждом).
Эти пучки проводов представляют собой “начала” и “концы” обмоток двигателя. Их необходимо «прозвонить», чтобы разделить обмотки друг от друга и соединить по нужной нам схеме “треугольник” – последовательно, когда конец одной обмотки соединяется с началом другой т. д (С1-С6, С2-С4, С3-С5).
При включении трёхфазного электродвигателя в однофазную сеть, в схему “треугольник” добавляются пусковой конденсатор Сп, который используется кратковременно (только для запуска) и рабочий конденсатор Ср.
В качестве кнопки SB для запуска эл. двигателя небольшой мощности (до 1,5 кВт) можно использовать обычную кнопку “ПУСК”, применяемую в цепях управления магнитных пускателей.
Для двигателей большей мощности стоит заменить её на коммутационный аппарат помощнее – напр, автомат. Единственным неудобством в этом случае будет необходимость ручного отключения конденсатора Сп автоматом после того как электродвигатель наберёт обороты.
Таким образом, в схеме реализована возможность двухступенчатого управления электродвигателем, уменьшая общую ёмкость конденсаторов при “разгоне” двигателя.
Если мощность двигателя невелика (до 1 кВт), то запустить его можно будет и без пускового конденсатора, оставив в схеме лишь рабочий конденсатор Ср.
Рассчитать ёмкость рабочего конденсатора можно формулой:
- С раб = 4800 • I / U, мкФ – для двигателей, включенных в однофазную сеть с соединением обмоток “треугольник”.
- С раб = 2800 • I / U, мкФ – для двигателей, включенных в однофазную сеть с соединением обмоток “звезда”.
Это наиболее точный способ, требующий, однако, измерения тока в цепи электродвигателя. Зная номинальную мощность двигателя, для определения ёмкости рабочего конденсатора лучше воспользоваться следующей формулой:
С раб = 66·Р ном, мкФ, где Р ном – номинальная мощность двигателя.
Упростив формулу, можно сказать, что для работы трёхфазного электродвигателя в однофазной сети, ёмкость конденсатора на каждые 0,1 кВт его мощности должна составлять около 7 мкФ.
Так, для двигателя мощностью 1,1 кВт ёмкость конденсатора должна составлять 77 мкФ. Такую ёмкость можно набрать несколькими конденсаторами, соединёнными друг с другом параллельно (общая ёмкость в этом случае будет равна суммарной), используя следующие типы: МБГЧ, БГТ, КГБ с рабочим напряжением, превышающим напряжение в сети в 1,5 раза.
Рассчитав ёмкость рабочего конденсатора можно определить ёмкость пускового – она должна превышать ёмкость рабочего в 2-3 раза. Применять конденсаторы для запуска следует тех-же типов, что и рабочие, в крайнем случае и при условии очень кратковременного запуска можно применить электролитические – типов К50-3, КЭ-2, ЭГЦ-М, рассчитанных на напряжение не менее 450 в.
Как подключить трёхфазный двигатель к однофазной сети.
подключение двигателя 380 на 220 вольт
правильный подбор конденсаторов для электродвигателя
Умный ремонт — Smart Repair: Как запустить трёхфазный двигатель от 220 вольт
Основным применением трёхфазных электродвигателей считается промышленное производство.Но иногда возникает необходимость использовать такой двигатель в подсобном хозяйстве. Для этого нужно произвести простой расчёт и выполнить несложный электромонтаж.
Как правило, для подключения трёхфазного
электродвигателя используют три провода и напряжение питания 380 вольт. В сети
220 вольт только два провода, поэтому, чтобы двигатель заработал, на третий
провод тоже нужно подать напряжение. Для этого используют конденсатор, который
называют рабочим конденсатором.
C=66*P, где С – ёмкость конденсатора, мкФ, P – мощность электродвигателя, кВт.
То есть, на каждые 100 Вт мощности двигателя необходимо подобрать около 7 мкФ ёмкости. Таким образом, для двигателя мощностью 500 ватт нужен конденсатор ёмкостью 35 мкФ.
Необходимую ёмкость можно собрать из нескольких конденсаторов меньшей ёмкости,
соединив их параллельно. Тогда общую ёмкость считают по формуле:
Cобщ = C1+C2+C3+…. .+Cn
Важно помнить о том, что рабочее напряжение конденсатора должно быть в 1,5 раза больше питания электродвигателя. Следовательно, при напряжении питания 220 вольт конденсатор должен быть на 400 вольт. Конденсаторы можно использовать следующего типа КБГ, МБГЧ, БГТ.
Для подключения двигателя используют две схемы подключения – это «треугольник» и «звезда».
Если в трёхфазной сети двигатель был подключен по схеме «треугольник», тогда и к однофазной сети подключаем по этой же схеме с добавлением конденсатора.
Подключение двигателя «звездой» выполняют по следующей схеме.
Для работы электродвигателей мощность до 1,5 кВт достаточно ёмкости рабочего конденсатора. Если подключить двигатель большей мощности, то такой двигатель будет очень медленно разгоняться. Поэтому необходимо использовать пусковой конденсатор. Он подключается параллельно рабочему конденсатору и используется только во время разгона двигателя. Потом конденсатор отключается. Ёмкость конденсатора для запуска двигателя должна быть в 2-3 раза больше ёмкости рабочего.
После запуска двигателя определите направление вращения. Обычно необходимо, чтобы двигатель вращался по часовой стрелке. Если вращение происходит в нужном направлении ничего делать не нужно. Чтобы сменить направление, необходимо сделать перемонтаж двигателя. Отключите два любых провода, поменяйте их местами и снова подключите. Направление вращения сменится на противоположное.
При
выполнении электромонтажных работ соблюдайте правила техники безопасности и
используйте индивидуальные средства защиты от поражения электрическим током.
Интересные статьи.
Как надёжно спрятать деньги
Как сохранить деньги в 2014 году
Рубль падает, что делать?
Как получать много денег и не работать
Как начать копить деньги с нуля
Как получить максимальный доход от вклада
5 лучших советов начинающему инвестору
Как избежать обмана в автосалонах
53.
Однофазные электродвигатели53.Однофазные электродвигатели |
Однофазными электродвигателями оборудовано большое количество маломощных холодильных агрегатов, используемых в быту (домашние холодильники, морозильники, бытовые кондиционеры, небольшие тепловые насосы…).
Несмотря на очень широкое распространение, однофазные двигатели с вспомогательной обмоткой зачастую недооцениваются по сравнению с трехфазными двигателями.
Целью настоящего раздела является изучение правил подключения однофазных электродвигателей, их ремонта и обслуживания, а также рассмотрение узлов и элементов, необходимых для их работы (конденсаторы, пусковые реле). Конечно, мы не будем изучать, как и почему вращаются такие двигатели, но все особенности их использования в качестве двигателей для компрессоров холодильного оборудования мы постараемся изложить.
А) Однофазные двигатели с вспомогательной обмоткой
Такие двигатели, установленные в большинстве небольших компрессоров, питаются напряжением 220 В. Они состоят из двух обмоток (см. рис. 53.1).
► Основная обмотка Р, называемая ________
часто рабочей обмоткой, или по-английски Run (R), имеет провод толстого сечения, который в течение всего периода работы двигателя остается под напряжением и пропускает номинальную силу тока двигателя.
► Вспомогательная обмотка А, называемая также пусковой обмоткой, или по-английски S (Start), имеет провод более тонкого сечения, следовательно, большее сопротивление, что позволяет легко отличить ее от основной обмотки.
Вспомогательная или пусковая обмотка, согласно названию, служит для обеспечения запуска двигателя.
Действительно, если попытаться запустить двигатель, подав напряжение только на основную обмотку (и не запитать вспомогательную), мотор будет гудеть, но вращаться не начнет. Если в этот момент вручную крутануть вал, мотор запустится и будет вращаться в том лее направлении, в котором его закрутили вручную. Конечно, такой способ запуска совсем не годится для практики, особенно если мотор спрятан в герметичный кожух.
Пусковая обмотка как раз и служит для того, чтобы запустить двигатель и обеспечить величину пускового момента выше, чем момент сопротивления на валу двигателя.
Далее мы увидим, что последовательно с пусковой обмоткой в цепь вводится, как правило, конденсатор, обеспечивающий необходимый сдвиг по фазе (около 90°) между током в основной и пусковой обмотках. Эта искусственная расфазировка как раз и позволяет запустить двигатель.
Внимание! Все замеры должны быть выполнены с большой аккуратностью и точностью, особенно, если модель двигателя вам незнакома или схема соединения обмоток отсутствует.
Случайное перепутывание основной и вспомогательной обмоток, как правило, заканчивается тем, что вскоре после подачи напряжения мотор сгорает!
Не стесняйтесь повторить измерения несколько раз и набросать схему мотора, снабдив ее максимумом пометок, это позволит вам избежать многих ошибок!
ПРИМЕЧАНИЕ
Если двигатель трехфазный, омметр покажет одинаковые значения сопротивлений между всеми тремя клеммами. Таким образом, представляется, что трудно ошибиться, прозванивая этот тип двигателя (по трехфазным двигателям см. раздел 62).
В любом случае, возьмите в привычку читать справочные данные на корпусе двигателя, а также подумайте о том, как заглянуть вовнутрь клеммной коробки, сняв ее крышку, поскольку там часто приводится схема соединения обмоток двигателя.
Проверка двигателя. Одним из наиболее сложных для начинающего ремонтника вопросов является принятие решения о том, что по результатам проверки двигатель следует считать сгоревшим. Напомним основные дефекты электрического характера, наиболее часто встречающиеся в двигателях (неважно, однофазных или трехфазных). Большинство этих дефектов имеют причиной сильный перегрев двигателя, обусловленный чрезмерной величиной потребляемого тока. Повышение силы тока может быть следствием электрических (продолжительное падение напряжения, перенапряжение, плохая настройка предохранительных устройств, плохой электрический контакт, неисправный контактор) или механических (заклинивание из-за нехватки масла) неполадок, а также аномалий в холодильном контуре (слишком большое давление конденсации, присутствие кислот в контуре. ..).
Одна из обмоток может быть оборвана . В этом случае омметр при измерении ее сопротивления будет показывать очень большую величину вместо нормального сопротивления. Удостоверьтесь, что ваш омметр исправен и что его зажимы имеют хороший контакт с клеммами обмотки. Не стесняйтесь проверить омметр с помощью хорошего эталона.
Напомним, что обмотка обычного мотора имеет максимальное сопротивление в несколько десятков Ом для небольших двигателей и несколько десятых долей Ома для огромных двигателей. Если обмотка оборвана, нужно будет либо заменить двигатель (или полностью агрегат), либо перемотать его (в том случае, когда такая возможность имеется, перемотка тем более выгодна, чем больше мощность двигателя).
Между двумя обмотками может существовать короткое замыкание. Чтобы выполнить такую проверку, необходимо убрать соединительные провода (и соединительные перемычки на трехфазном двигателе).
Когда вы проводите отсоединение, никогда не стесняйтесь предварительно разработать детальную схему замеров и сделать максимум пометок, чтобы в дальнейшем спокойно и без ошибок вновь поставить на место соединительные провода и перемычки.
В омметр должен показывать бесконечность. Однако, он показывает ноль (или очень низкое сопротивление), что без сомнения означает возможность короткого замыкания между двумя обмотками.
Такая проверка менее показательна для однофазного двигателя с вспомогательной обмоткой в случае, если две обмотки невозможно разъединить (когда общая точка С, соединяющая две обмотки, находится внутри двигателя). Действительно , в зависимости от точного места нахождения короткого замыкания, замеры сопротивлений, осуществленные между тремя клеммами (С —> А, С —> Р и Р —> А), дают пониженные, но достаточно несвязанные между собой величины. Например, сопротивление между точками А и Р, может не соответствовать сумме сопротивлений С —> А + С —> Р.
Также, как и в случае обрыва обмоток, при коротком замыкании между обмотками необходимо либо заменить, либо перемотать двигатель.
Обмотка может быть замкнута на массу. Сопротивление изоляции нового двигателя (между каждой из обмоток и массой) должно достигать 1000 MQ. Со временем это сопротивление уменьшается и может упасть до 10… 100 MQ. Как правило, принято считать, что начиная с 1 MQ (1000 kQ) нужно предусматривать замену двигателя, а при величине сопротивления изоляции 500 kQ и ниже, эксплуатация двигателя не допускается (напомним: 1 MQ = 103kQ = 10°>Q).
Обмотка замкнута на массу
Сопротивление стремится к нулю
Если изоляция нарушена, измерение сопротивления между клеммой обмотки и корпусом мотора дает нулевую ветмчину (или очень низкое сопротивление) вместо бесконечности (см. рис. 53.8). Заметим, что такое измерение должно быть выполнено на каждой клемме двигателя с помощью наиболее точного омметра. Перед каждым измерением убедитесь, что ваш омметр в исправном состоянии, и что его зажимы имеют хороший контакт с клеммой и металлом корпуса двигателя (при необходимости, соскоблите краску на корпусе, чтобы добиться хорошего контакта).
В примере на рис. 53.8 измерение указывает на то, что обмотка несомненно может быть замкнута на корпус.
Рис. 53.8.
Однако контакт обмотки с массой может быть и не полным. Действительно, сопротивление изоляции между обмотками и корпусом может становиться достаточно низким, когда двигатель находится под напряжением, чтобы вызывать срабатывание предохранительного автомата, в то же время оставаясь достаточно высоким, чтобы в отсутствие напряжения не быть обнаруженным с помощью обычного омметра.
В этом случае необходимо использовать мегомметр (или аналогичный прибор), который позволяет контролировать сопротивление изоляции с использованием постоянного напряжения от 500 В, вместо нескольких вольт для обычного омметра
При вращении ручного индуктора мегомметра, если сопротивление изоляции в норме, стрелка прибора должна отклоняться влево (поз. 1) и указывать бесконечность (оо). Более слабое отклонение, например, на уровне 10 MQ (поз. 2), указывает на снижение изоляционных характеристик двигателя, которое хотя и недостаточно для того, чтобы только оно привело к срабатыванию защитного автомата, но, тем не менее, должно быть отмечено и устранено, поскольку даже незначительные повреждения изоляции, вдобавок к уже существующим, в большинстве случаев рано или поздно приведут к полной остановке агрегата.
Отметим также, что только мегомметр может позволить выполнить качественную проверку изоляции двух обмоток между собой, когда их невозможно разъединить (см. выше проблему короткого замыкания между обмотками в однофазном двигателе). В заключение укажем, что проверку подозрительного электродвигателя необходимо проводить очень строго.
В любом случае недостаточно только заменить двигатель, но необходимо также найти, вдобавок к этому первопричину неисправности (механического, электрического или иного характера) с тем, чтобы радикально исключить всякую возможность ее повторения. В холодильных компрессорах, где имеется большая вероятность наличия кислоты в рабочем теле (обнаруживаемой простым анализом масла), после замены сгоревшего мотора необходимо будет предпринять дополнительные меры предосторожности. Не следует пренебрегать и осмотром электроаппаратуры (при необходимости, заменяя контактор и прерыватель, проверяя соединения и предохранители…).
Вдобавок к этому, замена компрессора требует от персонала высокой квалификации и строгого соблюдения правил: слива хладагента, при необходимости промывая после этого контур, возможной установки антикислотного фильтра на всасывающей магистрали, замены фильтра-осушителя, поиска утечек, обезвоживания контура путем вакуумирования, заправки контура хладагентом и полного контроля функционирования. .. Наконец, особенно если изначально установка была заправлена хладагентом типа CFC (R12, R502…), может быть будет возможным и целесообразным воспользоваться заменой компрессора, чтобы поменять тип хладагента?
Б) Конденсаторы
Чтобы запустить однофазный двигатель со вспомогательной обмоткой, необходимо обеспечить сдвиг по фазе переменного тока во вспомогательной обмотке по отношению к основной. Для достижения сдвига по фазе и, следовательно, обеспечения требуемого пускового момента (напомним, что пусковой момент двигателя обязательно должен быть больше момента сопротивления на его валу) используют, в основном, конденсаторы, установленные последовательно со вспомогательной обмоткой. Отныне мы должны запомнить, что если емкость конденсатора выбрана неправильно (слишком малая или слишком большая), достигнутая величина фазового сдвига может не обеспечить запуск двигателя (двигатель стопорится).
В электрооборудовании холодильных установок мы будем иметь дело с двумя типами конденсаторов:
► Рабочие (ходовые) конденсаторы (бумажные) небольшой емкости (редко более 30 мкф), и значительных размеров.
► Пусковые конденсаторы (электролитические), имеющие, наоборот, большую емкость (может превышать 100 мкф) при относительно небольших размерах. Они не должны находиться постоянно под напряжением, иначе такие конденсаторы очень быстро перегреваются и могут взорваться. Как правило, считается, что время их нахождения под напряжением не должно превышать 5 секунд, а максимально допустимое число запусков составляет не более 20 в час.
С одной стороны, размеры конденсаторов зависят от их емкости (чем больше емкость, тем больше и размеры). Емкость указывается на корпусе конденсатора в микрофарадах (др, или uF, или MF, или MFD, в зависимости от разработчика) с допуском изготовителя, например: 15uF±10% (емкость может составлять от 13,5 до 16,5 мкФ) или 88-108 MFD (емкость составляет от 88 до 108 мкФ).
Кроме того, размеры конденсатора зависят от величины напряжения, указанного на нем (чем выше напряжение, тем больше конденсатор). Полезно напомнить, что указанное разработчиком напряжение является максимальным напряжением, которое можно подавать на конденсатор, не опасаясь его разрушения. Так, если на конденсаторе указано 20мкф/360В, это значит, что такой конденсатор свободно можно использовать в сети с напряжением 220 В, но ни в коем случае нельзя подавать на него напряжение 380 В.
53.1. УПРАЖНЕНИЕ |
Попробуйте для каждого из 5 конденсаторов, изображенных на рис. 53.10 в одном и том же масштабе, определить, какие из них являются рабочими (ходовыми), а какие пусковыми.
Конденсатор №1 самый большой по размерам из всех представленных, имеет довольно низкую емкость в сравнении с его размерами. По-видимому, это рабочий конденсатор.
Конденсаторы №3 и №4, при одинаковых размерах, имеют очень небольшую емкость (заметим, что конденсатор №4, предназначенный для использования в сети с напряжением питания, большим, чем конденсатор №3, имеет более низкую емкость). Следовательно, эти два конденсатора также рабочие.
Конденсатор №2 имеет, в сравнении с его размерами, очень большую емкость, следовательно это пусковой конденсатор. Конденсатор №5 имеет емкость несколько меньше, чем №2, но он предназначен для более высокого напряжения: это также пусковой конденсатор.
Проверка конденсаторов. Измерения при помоши омметра, когда они дают те результаты, которые мы только что рассмотрели, являются превосходным свидетельством исправности конденсатора. Тем не менее, они должны быть дополнены измерением фактической емкости конденсатора (вскоре мы увидим, как выполнить такое измерение).
Теперь изучим типичные неисправности конденсаторов (обрыв цепи, короткое замыкание между пластинами, замыкание на массу, пониженная емкость) и способы их выявления. Прежде всего следует заметить, что совершенно недопустимым является вздутие корпуса конденсатора.
В конденсаторе может иметь место обрыв вывода
Тогда омметр, подключенный к выводам и установленный на максимальный диапазон, постоянно показывает бесконечность. При такой неисправности все происходит как в случае отсутствия конденсатора. Однако, если двигатель оснащен конденсатором, значит он для чего-то нужен. Следовательно, мы можем представить себе, что двигатель либо не будет нормально работать, либо не будет запускаться, что зачастую будет обусловливать срабатывание тепловой защиты (тепловое реле защиты, автомат защиты…).
Внутри конденсатора может иметь место короткое замыкание между пластинами
При такой неисправности омметр будет показывать нулевое или очень низкое сопротивление (используйте небольшой диапазон). Иногда компрессор может запуститься (далее мы увидим, почему), но в большинстве случаев короткое замыкание в конденсаторе приводит к срабатыванию тепловой защиты.
Пластины могут быть замкнуты на массу
Пластины конденсатора, также как и обмотки электродвигателя, изолированы от массы. Если сопротивление изоляции резко падает (опасность чего проявляется при чрезмерном перегреве), утечка тока обусловливает отключение установки автоматом защиты.
Такая неисправность может возникать, если конденсатор имеет металлическую оболочку. Сопротивление, измеренное между одним из выводов и корпусом в этом случае стремится к 0, вместо того, чтобы быть бесконечным (проверять нужно оба вывода).
Емкость конденсатора может быть пониженной
В этом случае действительная величина емкости, измеренная на его концах, ниже емкости, указанной на корпусе с учетом допуска изготовителя.
В измеренная емкость должна была бы находиться в пределах от 90 до 110 мкФ. Следовательно, на самом деле, емкость слишком низкая, что не обеспечит требуемые величины сдвига по фазе и пускового момента. В результате двигатель может больше не запуститься.
Рассмотрим теперь, как осуществить измерение фактической емкости конденсатора с помощью несложной схемы, легко реализуемой в условиях монтажной площадки.
О
ВНИМАНИЕ! Чтобы исключить возможные опасности, необходимо перед сборкой этой схемы проверить конденсатор с помощью омметра.
Внешне исправный конденсатор достаточно подключить к сети переменного тока напряжением 220 В и измерить потребляемый ток (конечно, в этом случае, рабочее напряжение конденсатора должно быть не ниже 220 В).
Схему необходимо защитить либо автоматом защиты, либо плавким предохранителем с рубильником. Измерение должно быть как можно более коротким (пусковой конденсатор опасно долго держать под напряжением).
При напряжении 220 В действительная емкость конденсатора (в мкФ) примерно в 14 раз больше потребляемого тока (в амперах).
Например, вы хотите проверить емкость конденсатора (очевидно, это пусковой конденсатор, поэтому время его нахождения под напряжением должно быть очень небольшим, см. рис. 53.21). Поскольку на нем указано, что рабочее напряжение равно 240 В, его можно включить в сеть напряжением 220 В.
Если емкость, обозначенная на конденсаторе составляет 60 мкФ ± 10% (то есть от 54 до 66 мкФ), теоретически он должен потреблять ток силой: 60 / 14 = 4,3 А.
Установим автомат или плавкий предохранитель, рассчитанный на такой ток, подключим трансформаторные клещи и установим на амперметре диапазон измерения, например, 10 А. Подадим напряжение на конденсатор, считаем показания амперметра и тотчас отключим питание.
ВНИМАНИЕ, ОПАСНОСТЬ! Когда вы измеряете емкость пускового конденсатора, время его нахождения под напряжением не должно превышать 5 секунд (практика показывает, что при небольших затратах на организацию процесса измерения, этого времени вполне достаточно для выполнения замера).
В нашем примере, фактическая емкость составляет около 4,1 х 14 = 57 мкФ, то есть конденсатор исправный, поскольку его емкость должна находиться между 54 и 66 мкФ.
Если замеренный ток составил бы, например, 3 А, фактическая емкость была бы 3 х 14 = 42 мкФ. Эта величина выходит за пределы допуска, следовательно нужно было бы заменить конденсатор.
В) Пусковые реле
Вне зависимости от конструкции, задачей пускового реле является отключение пусковой обмотки, как только двигатель наберет примерно 80% номинального числа оборотов. После этого, двигатель считается запущенным и продолжает вращение только с помощью рабочей обмотки.
Существует два основных типа пусковых реле: реле тока и реле напряжения. Мы упомянем также запуск с помощью термистора СТР.
Вначале изучим пусковое реле тока
Этот тип реле, как правило, применяется в небольших однофазных двигателях, используемых для привода компрессоров, мощность которых не превышает 600 Вт (домашние холодильники, небольшие морозильные камеры. ..).
В большинстве случаев (но не всегда) эти реле подключаются непосредственно к компрессору при помощи двух или трех (в зависимости от моделей) гнезд, в которые входят штеккеры обмоток электродвигателя, предотвращая возможные ошибки при подключении реле к вспомогательной и основной обмоткам. На верхней крышке реле, как правило, нанесены следующие обозначения:
Р / М —> Рабочая (Main) —> Основная обмотка А / S -> Пусковая (Start) —> Вспомогательная обмотка L Линия (Line) —> Фаза питающей сети
Если реле перевернуть верхней крышкой вниз, можно отчетливо услышать стук подвижных контактов, которые скользят свободно.
Поэтому, при установке такого реле необходимо строго выдерживать его пространственную ориентацию, чтобы надпись «Верх» (Тор) находилась сверху, так как если реле перевернуто, его нормально разомкнутый контакт будет постоянно замкнут.
При проверке омметром сопротивления между контактами пускового реле тока (в случае его правильного расположения) между гнездами A/S и Р/М, а также между гнездами L и A/S, должен иметь место разрыв цепи (сопротивление равно со), поскольку при снятом питании контакты реле разомкнуты.
Между гнездами Р/М и L сопротивление близко к 0, соответствуя сопротивлению катушки реле, которая мотается проводом толстого сечения и предназначена для пропускания пускового тока.
Можно также проверить сопротивление реле в перевернутом состоянии. В таком случае, между гнездами A/S и L вместо бесконечности должно быть сопротивление, близкое к нулю.
При монтаже реле тока в перевернутом положении ) его контакты будут оставаться постоянно замкнутыми, что не позволит отключать пусковую обмотку. В результате возникает опасность быстрого сгорания электродвигателя.
Изучим теперь работу пускового реле тока в схеме, приведенной на в отсутствие напряжения.
Как только на схему будет подано напряжение, ток пойдет через тепловое реле защиты, основную обмотку и катушку реле. Поскольку контакты A/S и L разомкнуты, пусковая обмотка обесточена и двигатель не запускается — это вызывает резкое возрастание потребляемого тока.
Повышение пускового тока (примерно пятикратное, по отношению к номиналу) обеспечивает такое падение напряжения на катушке реле (между точками L и Р/М), которое становится достаточным, чтобы сердечник втянулся в катушку, контакты A/S и L замкнулись и пусковая обмотка оказалась под напряжением.
Благодаря импульсу, полученному от пусковой обмотки, двигатель запускается и по мере того, как число его оборотов растет, потребляемый ток падает. Одновременно с этим падает напряжение на катушке реле (между L и Р/М). Когда мотор наберет примерно 80% от номинального числа оборотов, напряжение между точками L и Р/М станет недостаточным для удержания сердечника внутри катушки, контакт между A/S и L разомкнётся и полностью отключит пусковую обмотку.
Однако, при такой схеме пусковой момент на валу двигателя очень незначительный, поскольку в ней отсутствует пусковой конденсатор, обеспечивающий достаточную величину сдвига по фазе между током в основной и пусковой обмотках (напомним, что главным назначением конденсатора является увеличение пускового момента). Поэтому данная схема используется только в небольших двигателях с незначительным моментом сопротивления на валу.
Если речь идет о небольших холодильных компрессорах, в которых в качестве расширительного устройства обязательно используются капиллярные трубки, обеспечивающие выравнивание давления в конденсаторе и давления в испарителе при остановках, то в этом случае запуск двигателя происходит при минимально возможном моменте сопротивления на валу {см. раздел 51. «Капиллярные расширительные устройства»).
При необходимости повышения пускового момента последовательно с пусковой обмоткой необходимо устанавливать пусковой конденсатор (Cd). Поэтому часто реле тока выпускаются с четырьмя гнездами, как например, в модели, представленной.
Реле такого типа поставляются с шунтирующей перемычкой между гнездами 1 и 2. При необходимости установки пускового конденсатора шунт удаляется.
Отметим, что при прозвонке такого реле омметром между гнездами М и 2 сопротивление будет близким к нулю и равным сопротивлению обмотки реле. Между гнездами 1 и S сопротивление равно бесконечности (при нормальном положении реле) и нулю (при реле, перевернутом крышкой вниз).
ВНИМАНИЕ! При замене неисправного реле тока новое реле всегда должно быть с тем же индексом, что и неисправное.
Действительно, существуют десятки различных модификаций реле тока, каждая из которых имеет свои характеристики (сила тока замыкания и размыкания, максимально допустимая сила тока. ..). Если вновь устанавливаемое реле имеет отличные от заменяемого реле характеристики, то либо его контакты никогда не будут замыкаться, либо будут оставаться постоянно замкнутыми.
Если контакты никогда не замыкаются, например, из-за того, что пусковое реле тока слишком мощное (рассчитано на замыкание при пусковом токе 12 А, в то время как на самом деле пусковой ток не превышает 8 А), вспомогательная обмотка не может быть запитана и мотор не запускается. Он гудит и отключается тепловым реле защиты.
Заметим, что эти же признаки сопровождают такую неисправность, как поломка контактов реле
В крайнем случае, проверить эту гипотезу можно замкнув накоротко на несколько секунд контакты 1 и S, например. Если мотор запускается, это будет доказательством неисправности реле.
Если контакт остается постоянно замкнутым, например, из-за низкой мощности пускового реле тока (оно должно размыкаться при падении тока до 4 А, а двигатель на номинальном режиме потребляет 6 А), пусковая обмотка окажется все время под напряжением. Заметим, что то же самое произойдет, если вследствие чрезмерной силы тока, контакты реле «приварятся» или если реле установлено верхом вниз*, из-за чего контакты будут оставаться постоянно замкнутыми.
Компрессор будет тогда потреблять огромный ток и, в лучшем случае, отключится тепловым реле защиты (в худшем случае он -сгорит). Если при этом в схеме присутствует пусковой конденсатор, он также будет все время под напряжением и при каждой попытке запуска будет сильно перегреваться, что в конечном счете приведет к его разрушению.
Нормальную работу пускового реле тока можно легко проверить с помощью трансформаторных клещей, установленных в линии конденсатора и пусковой обмотки. Если реле работает нормально, то в момент запуска ток будет максимальным, а когда контакт разомкнётся, амперметр покажет отсутствие тока.
Наконец, чтобы завершить рассмотрение пускового реле тока, нужно остановиться на одной неисправности, которая может возникать при чрезмерном росте давления конденсации. Действительно, любое повышение давления конденсации, чем бы оно ни обусловливалось (например, загрязнен конденсатор), неизбежно приводит к росту потребляемого двигателем тока (см. раздел 10. «Влияние величины давления конденсации на силу тока, потребляемого электромотором компрессора»). Этот рост иногда может оказаться достаточным, чтобы привести к срабатыванию реле и замыканию контактов, в то время как двигатель вращается. Последствия такого явления вы можете себе представить!
* Установка пускового реле в горизонтальной плоскости, как правило, дает такой же результат и также является неверной (прим. ред.).
Когда мощность двигателя растет (становясь выше, чем 600 Вт), возрастает и сила потребляемого тока, и использование пускового реле тока становится невозможным из-за того, что увеличивается потребный диаметр катушки реле. Пусковое реле напряжения тоже имеет катушку и контакты, но в отличие от реле тока, катушка реле напряжения имеет очень высокое сопротивление (наматывается тонким проводом с большим числом витков), а его контакты нормально замкнуты. Поэтому, вероятность перепутать эти два устройства очень незначительна.
представлен внешний вид наиболее распространенного пускового реле напряжения, представляющего собой герметичную коробку черного цвета. Если прозвонить клеммы реле с помощью омметра, можно обнаружить, что между клеммами 1 и 2 сопротивление равно 0, а между 1-5 и 2-5 оно одинаково и составляет, например 8500 Ом (заметим, что клеммы 4 не включаются в схему и используются только для удобства соединения и разводки проводов на корпусе реле).
Контакты реле наверняка находятся между клеммами 1 и 2, поскольку сопротивление между ними равно нулю, однако к какой из этих клемм подключен один из выводов катушки определить нельзя, так как результат при измерениях будет одинаковым (см. схему на рис. 53.29).
Если у вас есть схема реле, проблем с определением общей точки не будет. В противном случае вам потребуется выполнить дополнительно маленький опыт, то есть подать питание вначале на клеммы 1 и 5, а затем 2 и 5 (измеренное между ними сопротивление составило 8500 Ом, следовательно, один из концов катушки подключен либо к клемме 1, либо к клемме 2).
Допустим, что при подаче напряжения на клеммы 1-5, реле будет работать в режиме «дребезга» (как зуммер) и вы отчетливо различите постоянное замыкание и размыкание его контакта (представьте последствия такого режима для двигателя). Это будет признаком того, что клемма 2 является общей и один из концов катушки подключен именно к ней. В случае
неуверенности вы можете проверить себя, подав питание на клеммы 5 и 2 (контакты 1 и 2
разомкнутся и будут оставаться разомкнутыми).
ВНИМАНИЕ! Если вы подадите напряжение на клеммы 1 и 2 (клеммы нормально замкнутых контактов), то получите короткое замыкание, что может быть очень опасным
Чтобы выполнить такую проверку, вы должны использовать напряжение 220 В, если реле предназначено для оснащения двигателя на 220 В (настоятельно рекомендуем использовать в цепи плавкий предохранитель, чтобы защитить схему от возможных ошибок при подключении). Однако может случиться так, что контакты реле не будут размыкаться ни при подаче питания на клеммы 1 и 5, ни при его подаче на клеммы 2 и 5, хотя катушка будет исправной (при прозвонке омметром сопротивление 1-5 и 2-5 одинаково высокое). Это может быть обусловлено самим принципом, заложенным в основу работы схемы с реле напряжения (сразу после данного абзаца мы его рассмотрим), который требует для срабатывания реле повышенного напряжения. Чтобы продолжить проверку, вы можете увеличить напряжение до 380 В (реле при этом ничего не угрожает, так как оно способно выдержать напряжение до 400 В).
Как только на схему подается питание, ток проходит через тепловое реле защиты и основную обмотку (С—>Р). Одновременно он проходит через пусковую обмотку (С—»А). нормально замкнутые контакты 2-1 и пусковой конденсатор (Cd). Все условия для запуска соблюдены и двигатель начинает вращение.
По мере того, как двигатель набирает обороты, в пусковой обмотке наводится дополнительное напряжение, которое добавляется к напряжению питания.
В конце запуска наведенное напряжение становится максимальным и напряжение на концах пусковой обмотки может достигать 400 В (при напряжении питания 220 В). Катушка реле напряжения сконструирована таким образом, чтобы разомкнуть контакты точно в тот момент, когда напряжение на ней превысит напряжение питания на величину, определенную разработчиком двигателя. Когда контакты I -2 разомкнутся, катушка реле остается запитанной напряжением, наведенным в пусковой обмотке (эта обмотка, намотанная на основную обмотку, представляет собой как бы вторичную обмотку трансформатора).
Во время запуска очень важно, чтобы напряжение на клеммах реле в точности соответствовало напряжению на концах пусковой обмотки. Поэтому пусковой конденсатор всегда должен включаться в схему между точками I и Р, а не между А и 2 Отметим, что при размыкании контактов 1-2 пусковой конденсатор полностью исключается из схемы.
Существует множество различных моделей реле напряжения, отличающихся своими характеристиками (напряжением замыкания и размыкания контактов…).
Поэтому, при необходимости замены неисправного реле напряжения, для этого нужно использовать реле той же самой модели.
Если реле для замены не вполне соответствует двигателю -это значит, что либо его контакты при запуске не будут замкнуты, либо будут замкнуты постоянно.
Когда при запуске контакты реле оказываются разомкнутыми, например из-за того, что реле слишком маломощное (оно срабатывает при 130 В, то есть сразу после подачи напряжения и пусковая обмотка запитана только как вторичная обмотка), двигатель не сможет запуститься, будет гудеть и отключится тепловым реле защиты (см. рис. 53.33).
Отметим, что такие же признаки будут иметь место в случае поломки контакта. В крайнем случае, всегда можно проверить эту гипотезу, замкнув на мгновение накоротко контакты 1 и 2. Если двигатель запустится, значит контакт отсутствует.
Запуск при помощи термистора (СТР)
Термистор, или терморезистор (СТР* — сокращение, в переводе означает положительный температурный коэффициент, то есть повышение сопротивления при росте температуры) включается в цепь так, как показано на рис. 53.37.
При неподвижном роторе мотора СТР холодный (имеет окружающую температуру) и его сопротивление очень низкое (несколько Ом). Как только на двигатель подается напряжение, запитывается основная обмотка. Одновременно ток проходит через низкое сопротивление СТР и пусковую обмотку, в результате чего двигатель запускается. Однако ток, текущий через пусковую обмотку, проходя через СТР, нагревает его, что обусловливает резкое повышение его температуры, а следовательно и сопротивления. По истечении одной-двух секунд температура СТР становится более 100°С, а его сопротивление легко превышает 1000 Ом.
Резкое повышение сопротивления СТР снижает ток в пусковой обмотке до нескольких миллиампер, что эквивалентно отключению этой обмотки так, как это сделало бы обычное пусковое реле. Слабый ток, не оказывая никакого влияния на состояние пусковой обмотки, продолжает проходить через СТР, оставаясь вполне достаточным, чтобы поддерживать его температуру на нужном уровне.
Такой способ запуска используется некоторыми разработчиками, если момент сопротивления при запуске очень малый, например, в установках с капиллярными расширительными устройствами (где при остановке неизбежно выравнивание давлений).
Однако, когда компрессор остановился, длительность остановки должна быть достаточно большой, чтобы не только обеспечить выравнивание давлений, но и, главным образом, охладить СТР (по расчетам для этого нужно как минимум 5 минут).
Всякая попытка запуска двигателя при горячем СТР (имеющим, следовательно, очень высокое сопротивление) не позволит пусковой обмотке запустить двигатель. За такую попытку можно поплатиться значительным возрастанием тока и срабатыванием теплового реле защиты.
Терморезисторы представляют собой керамические диски или стержни и основным видом неисправностей этого типа пусковых устройств является их растрескивание и разрушение внутренних контактов, наиболее часто обусловленное попытками запуска при горячих СТР, что
неизбежно влечет за собой чрезмерное повышение пускового тока.
. Мы часто указывали на важность соблюдения идентичности моделей при замене неисправных элементов электрооборудования (тепловые реле защиты, пусковые реле…) на новые, либо на те, которые рекомендуются для замены разработчиком. Мы советуем также при замене компрессора менять и комплект пусковых устройств (реле + конденсатор(ы)).
* Иногда встречается термин РТС, который означает то же самое, что и СТР {прим. peo.j.
Г) Обобщение наиболее часто встречающихся схем пусковых устройств
В документации различных разработчиков встречается множество схем с несколькими экзотическими названиями, которые мы сейчас разъясним. Воспользовавшись этим случаем, мы пополним наши знания и увидим роль рабочих конденсаторов.
Для лучшего понимания дальнейшего материала напомним, что в отличие от пусковых конденсаторов, рабочие конденсаторы рассчитаны на постоянное нахождение под напряжением и что конденсатор включается в схему последовательно с пусковой обмоткой, позволяя повысить крутящий момент на вачу двигателя.
1) Схема PSC (Permanent Split Capacitor) — схема с постоянно подключенным конденсатором является самой простой, поскольку в ней отсутствует пусковое реле.
Конденсатор, постоянно находясь под напряжением (см. рис. 53.40\ должен быть рабочим конденсатором. Поскольку с ростом емкости такой тип конденсаторов быстро увеличивается в размерах, их емкость ограничивается небольшими значениями (редко более 30 мкФ).
Следовательно, схема PSC используется, как правило, в небольших двигателях с незначительным моментом сопротивления на валу (малые холодильные компрессоры для капиллярных расширительных устройств, обеспечивающих выравнивание давлений при остановках, вентиляторные двигатели небольших кондиционеров).
При подаче напряжения на схему, постоянно подключенный кон-
денсатор (Ср) дает толчок, позволяя запустить двигатель. Когда двигатель запущен, пусковая обмотка остается под напряжением вместе с последовательно включенным конденсатором, что ограничивает силу тока и позволяет повысить крутящий момент при работе двигателя.
2) Схема СТР. изученная ранее, называется также РТС (Positive Temperature Coefficient) и используется в качестве относительно простого пускового устройства.
Она может быть усовершенствована добавлением постоянно подключенного конденсатор.
При подаче напряжения на схему (после остановки длительностью не менее 5 минут), сопротивление термистора СТР очень низкое и конденсатор Ср, будучи замкнутым накоротко, не влияет на процесс запуска (следовательно, момент сопротивления на валу должен быть незначительным, что требует выравнивания давлений при остановке).
В конце запуска сопротивление СТР резко возрастает, но вспомогательная обмотка остается подключенной к сети через конденсатор Ср, который позволяет повысить крутящий момент при работе двигателя (например, при росте давления конденсации).
Поскольку конденсатор все время находится под напряжением,
пусковые конденсаторы в схемах этого типа использовать нельзя.
53.2. УПРАЖНЕНИЕ 2 |
Однофазный двигатель с напряжением питания 220 В, оснащенный рабочим конденсатором с емкостью 3 мкФ, вращает вентилятор кондиционера. Переключатель имеет 4 клеммы: «Вход» (В), «Малая скорость» (МС), «Средняя скорость» (СС), «Большая скорость» (БС), позволяющие скоммутировать двигатель с сетью таким образом, чтобы выбрать требуемое значение (МС, СС или БС) числа оборотов.
Решение
Набросаем, согласно нашему предположению внутреннюю схему двигателя, сверяясь с данными измерения сопротивлений (например, между Г и Ж должно быть 290 Ом, а между Г и 3 — 200 Ом).
Остается только включить в схему переключатель, помня о том, что максимальная скорость вращения (БС) достигается, если двигатель напрямую подключен к сети . И напротив, минимальное число оборотов будет обеспечено при самом слабом напряжении питания, следовательно, при задействовании максимального значения гасящего сопротивления.
Такие двигатели, редко встречающиеся в настоящее время, могут однако использоваться в качестве привода сальниковых компрессоров. Чтобы изменить направление вращения двигателя, достаточно крест-накрест поменять точку соединения пусковой и основной обмоток.
В качестве примера на рис. показано, как конец пусковой обмотки стал началом, а начало — концом.
Заметим, что в этом случае направление прохождения тока по пусковой обмотке изменилось на противоположное, что позволяет дать в момент запуска импульс магнитного поля в обратном направлении.
Наконец, отметим также двухпроводные двигатели с «витком Фраже» или с «фазосдвигаю-щим кольцом», широко используемые для привода небольших вентиляторов с низким моментом сопротивления (как правило, лопастных). Эти двигатели очень надежные, хотя и имеют малый крутящий момент, и при их включении в сеть отсутствуют какие-либо особые проблемы, поскольку они имеют всего два провода (конечно, плюс заземление).
В) Пусковые реле
Вне зависимости от конструкции, задачей пускового реле является отключение пусковой обмотки, как только двигатель наберет примерно 80% номинального числа оборотов. После этого, двигатель считается запущенным и продолжает вращение только с помощью рабочей обмотки.
Существует два основных типа пусковых реле: реле тока и реле напряжения. Мы упомянем также запуск с помощью термистора СТР.
Вначале изучим пусковое реле тока
Этот тип реле, как правило, применяется в небольших однофазных двигателях, используемых для привода компрессоров, мощность которых не превышает 600 Вт (домашние холодильники, небольшие морозильные камеры…).
Расчет емкости конденсатора асинхронного двухфазного двигателя (конденсаторный двигатель) — Help for engineer
Расчет емкости конденсатора асинхронного двухфазного двигателя (конденсаторный двигатель)
Однофазный асинхронный двигатель
Обмотка статора однофазного асинхронного двигателя занимает приблизительно 2/3 окружности, именно по этой причине его мощность на 1/3 меньше мощности трехфазного двигателя таких же габаритов.
Ток, протекая по обмотке статора, создает пульсирующее магнитное поле, которое можно представить как два поля, вращающиеся в разных направлениях. Поле, которое вращается в направлении ротора называется прямым полем, а второе – обратным. Они воздействуют на ротор и создают соответствующие моменты (Мпр и Мобр).
По причине разных направлений вращения эти электрические машины не могут самостоятельно совершить пуск, так как при неподвижном роторе, то есть при S=1, пусковой момент, он же Мрез, равен нолю (смотри Рисунок 1). Однако, если придать движение ротору, то прямой и обратный моменты не будут равны и двигатель продолжит вращение в том же направлении (ток, протекающий по обмотке ротора будет оказывать размагничивающее действие и при этом будет ослабляться обратное поле).
Рисунок 1 — Зависимость механических характеристик от прямого и обратного вращающих полей
Пуск двигателя с помощью пусковых устройств
Для того чтоб запустить однофазный асинхронный двигатель применяют устройства для пуска двигателя:
— Конденсатор – C;
— Резистор – R.
Пуск трехфазных асинхронных двигателей осуществляется более простым способом из-за уже имеющегося в сети сдвига фаз на 120 электрических градусов
Для получения пускового момента используют пусковую обмотку статора, которая по отношению к рабочей обмотке сдвинута на 90 электрических градусов. Применяют фазосдвигающие элементы, которые подключают к пусковой обмотке. Эта обмотка работает, обычно, около 3 первых секунд, после чего принудительно отключается вручную или с помощью автоматов. По этой причине ее изготовляют из провода меньшего сечения и с меньшим количеством витков по сравнению с рабочей обмоткой.
Пуск при помощи резистора производится при малых необходимых пусковых моментах, то есть если нагрузка на валу незначительна. Рисунок 2 иллюстрирует применение пускового а) конденсатора и б) резистора; где Р – рабочая обмотка, П – пусковая обмотка.
Рисунок 2 – Схема подключения однофазного асинхронного двигателя
Двухфазные асинхронные двигатели
Наличие конденсатора значительно улучшает характеристики двигателя, по этой причине используются двухфазные асинхронные двигатели. В них две обмотки являются рабочими, в одну из них вводится конденсатор для смещения угла между фазами на 90 градусов и создания кругового магнитного поля. Такие двигатели называют конденсаторными.
Расчет емкости конденсатора для двигателя:
Емкость такого конденсатора определяется по формуле:
,
где – ток, протекающий в обмотке статора,
sinφ1 – сдвиг фаз между напряжение и током без конденсатора,
f– частота питающей сети,
U – напряжение сети,
n – коэффициент трансформации.
,
Где и kоб1,kоб2 — обмоточные коэффициенты,
W1, W2, — количество витков обмоток статора и ротора.
Напряжение на зажимах конденсатора выше чем напряжение сети и определяется следующей формулой:
Для повышения пусковых характеристик Существуют двигатели в одну обмотку которых ставятся два конденсатора, один из которых пусковой, второй – рабочий. Пусковой конденсатор обычно имеет емкость в разы большую чем рабочий. При этом пусковой отключается при достижении 70-80% номинальной скорости электрической машины.
Рисунок 3 – Пример подключения пары конденсаторов (конденсаторный двигатель)
Преимущества и недостатки конденсаторных двигателей
Недостатки по сравнению с трехфазным двигателем:
— Меньшая мощность;
— Увеличенное скольжение при номинальном режиме;
— Скорость вращения вала при холостом ходу ниже;
— Пониженная кратность пускового момента;
— Повышенная кратность пускового тока.
Преимущества:
— Имеют высокую эксплуатационную надежность;
— Не требуют трехфазного источника тока.
Недостаточно прав для комментирования
Как подключить трёхфазный двигатель к однофазной сети 220 вольт.
При развитии любой гаражной мастерской, может возникнуть необходимость подключить трёхфазный электродвигатель в однофазную сеть на 220 вольт. Это не удивительно, так как промышленные трёхфазные двигатели на 380 в более распространены, чем однофазные (на 220 в), особенно больших габаритов и мощности. И изготовив какой нибудь станочек, или купив готовый (например токарный) любой гаражный мастер сталкивается с проблемой подключения трёхфазного электромотора к обычной гаражной розетке на 220 вольт. В этой статье мы и рассмотрим варианты подключения, а так же что для этого понадобится.
Для начала следует внимательно изучить шильдик (табличку) электродвигателя, чтобы узнать его мощность, так как от этой мощности будет зависеть ёмкость или количество конденсаторов, которые нужно будет купить. И прежде чем отправляться на поиски и покупку конденсаторов, для начала следует вычислить, какая ёмкость потребуется именно для вашего двигателя.
Расчёт ёмкости.
Ёмкость нужного конденсатора напрямую зависит от мощности вашего электродвигателя и высчитывается по простой формуле:
С = 66 Р мкФ .
Буква С означает ёмкость конденсатора в мкФ (микрофарад), а буква Р означает номинальную мощность электродвигателя в кВт (киловатт). Из этой простой формулы видно, что на каждые 100 ватт мощности трёхфазного двигателя, потребуется чуть менее 7 мкФ (если быть точным, то 6,6 мкФ) электрической ёмкости конденсатора. Например для эл. двигателя мощностью 1000 ватт (1 Квт) потребуется конденсатор ёмкостью 66 мкФ, а для эл. двигателя на 600 ватт нужен будет конденсатор ёмкостью примерно 42 мкФ.
Так же следует учесть, что потребуются конденсаторы, рабочее напряжение которых в 1,5 — 2 раза больше, чем напряжение в обычной однофазной сети. Обычно на базаре попадаются конденсаторы небольших ёмкостей (8 или 10 мкФ), но необходимую ёмкость легко собрать из нескольких параллельно соединённых конденсаторов маленькой ёмкости. То есть например 70 мкФ можно легко получить из семи параллельно спаянных конденсаторов по 10 мкФ.
Но всё же всегда следует стараться найти по возможности один конденсатор ёмкостью 100 мкФ, чем 10 конденсаторов по 10 мкФ, так надёжнее. Ну и рабочее напряжение, как я уже говорил, должно быть как минимум в 1,5 — 2 раза больше рабочего, а лучше в 3 — 4 раза больше (чем больше напряжение, на которое рассчитан конденсатор, тем надёжнее и долговечнее). Рабочее напряжение всегда пишется на корпусе конденсатора (как и мкФ).
Правильно вы подобрали (рассчитали) ёмкость конденсатора или нет, можно и на слух. При вращении мотора, должен быть слышен только шум от подшипников, ну и шум вентилятора воздушного охлаждения. Если же к этим шумам прибавляется и вой двигателя, нужно чуть уменьшить ёмкость (Ср) рабочего конденсатора. Если же звук нормальный, то можно наоборот немного увеличить ёмкость (так будет мощнее мотор), но только чтобы мотор работал тихо (до появления воя).
Проще говоря, нужно поймать момент, меняя ёмкость, когда к нормальному шуму от подшипников и крыльчатки, начнёт прибавляться еле слышимый посторонний вой. Это и будет необходимая ёмкость рабочего конденсатора. Это важно, так как если рабочая ёмкость конденсатора окажется больше необходимой, то мотор будет перегреваться, а если ёмкость будет меньше нужной, то мотор потеряет свою мощность.
Покупать лучше конденсаторы типа МБГЧ, БГТ, КБГ, ну а если не найдёте таких в продаже, можно применить и электролитические конденсаторы. Но при подключении электролитических конденсаторов, их корпуса нужно хорошо соединить между собой и изолировать от корпуса станка или ящика (если он металлический, но лучше использовать ящик для конденсаторов из диэлектрика — пластик, текстолит и т.п.).
При подключении трёхфазного двигателя к сети 220 вольт, частота вращения его вала (ротора) почти не изменится, а вот мощность его всё же немного уменьшится. И если подключить электродвигатель по схеме треугольник (рис 1), то мощность его уменьшится примерно процентов на 30 и будет составлять 70 — 75 % от его номинальной мощности (при звезде чуть меньше). Но можно подключить и по схеме звезда (рис 2), и при подсоединении звездой, мотор легче и быстрее запускается.
Чтобы подключить трёхфазный электродвигатель по схеме звезда, нужно его две фазные обмотки подключить в однофазную сеть, а третью фазную обмотку двигателя, подключить через рабочий конденсатор Ср к любому из проводов сети 220 в.
Чтобы подключить трёхфазный электромотор мощностью до полтора киловатта (1500 ватт), хватает только рабочего конденсатора необходимой ёмкости. Но при включении больших моторов (более 1500 ватт), движок либо очень медленно набирает обороты, либо вообще не запускается. В таком случае необходим пусковой конденсатор (Сп на схеме), ёмкость которого в два с половиной раза (лучше в 3 раза) больше ёмкости рабочего конденсатора. Лучше всего подходят в качестве пусковых конденсаторов электролитические (типа ЭП), но можно использовать и такого же типа как и рабочие конденсаторы.
Схема подсоединения трёхфазного мотора с пусковым конденсатором показана на рисунке 3 (а так же пунктирной линией на рисунках 1 и 2). Пусковой конденсатор включают только во время пуска двигателя, и когда он запустится и наберёт рабочие обороты (обычно хватает 2 секунд), пусковой конденсатор отключают и разряжают. В такой схеме используются кнопка и тумблер. При пуске аключается тумблер и кнопка одновременно и после запуска двигателя, кнопка просто отпускается и пусковой конденсатор отключается. Чтобы разрядить пусковой конденсатор, достаточно выключить двигатель (после окончания работы) и затем на короткое время нажать кнопку пускового конденсатора, и он разрядится через обмотки электродвигателя.
Определение фазных обмоток и их выводов.
При подключении необходимо знать, где какая обмотка электродвигателя. Как правило выводы обмоток статора электромоторов маркируют различными бирками с обозначением начала или конца обмоток, или помечают буквами на корпусе распределительной коробочки двигателя (или клеммной колодки). Ну а если же маркировка стёрлась или её вообще нет, то нужно прозвонить обмотки с помощью тестера (мультиметра), установив его переключатель на прозвонку, или с помощью обычной лампочки и батарейки.
Для начала следует узнать принадлежность каждого из шести проводов к отдельным фазам обмотки статора. Для этого следует взять любой из проводов (в клеммной коробочке) и подсоединить его к батарейке, например к её плюсу. Минус батарейки подсоедините к контрольной лампе, а второй вывод (провод) от лампочки, по очереди подсоединяйте к оставшимся пяти проводам двигателя, пока контрольная лампочка не загорится. Когда на каком то проводе лампочка загорится, это будет означать, что оба провода (тот что от батарейки и тот к которому подсоединили провод от лампы и лампа загорелась) принадлежат одной фазе (одной обмотке).
Теперь эти два провода пометьте картонными бирками (или малярным скотчем) п напишите на них маркероа начало первого провода С1, а второй провод обмотки С4. С помощью лампы и батарейки (или тестера) аналогично находим и помечаем начало и конец оставшиеся четырёх проводов (двух оставшихся фазных обмоток).Начало и конец второй фазной обмотки помечаем как С2 и С5, и начало и конец третьей фазной обмотки С3 и С6.
Далее следует точно определить, где начало и конец статорных обмоток. Я опишу далее способ, который поможет определить начало и конец статорных обмоток для двигателей до 5 киловатт. Да больше и не надо, так как однофазная сеть (проводка) гаража рассчитана на мощность 4 киловата, а если мощнее, то штатные провода не выдерживают. И вообще то редко кто использует двигатели в гараже, мощнее 5 киловатт.
Для начала соединим все начала фазных обмоток (С1, С2 и С3)в одну точку (согдасно помеченным бирками выводам), по схеме «звезда». И затем включим двигатель в сеть 220 в с использованием конденсаторов. Если при таком подключении, электродвигатель без гудения сразу раскрутится до рабочих оборотов, это значит, что вы попали в одну точку всеми началами или всеми концами фазных обмоток.
Ну а если же при включении в сеть, электродвигатель загудит и не сможет раскрутиться до рабочих оборотов, то в первой фазной обмотке нужно поменять местами выводы С1 и С4 (поменять местами начало и конец). Если это не поможет, то верните выводы С1 и С4 в первонаальное положение и попробуйте теперь поменять местами выводы С2 и С5. Если двигатель опять не набирает обороты и гудит, то верните назад выводы С2 и С5 поменяйте местами выводы третьей пары С3 и С6.
При всех вышеописанных манипуляциях с проводами, строго соблюдате правила техники безопасности. Провода держите только за изоляцию, лучше плоскогубцами с ручками из диэлектрика. Ведь электромотор имеет общий стальной магнитопровод и на зажимах остальных обмоток, может возникнуть довольно большое напряжение, опасное для жизни.
Изменение вращения вала электродвигателя (ротора).
Часто бывает, что вы например сделали шлифовальный станочек, с лепестковым кругом на валу. И лепестки из наждачной бумаги расположены под определённым углом, против которого вращается вал, а нужно в другую сторону. Да и опилки летят не на пол а наоборот вверх. Значит необходимо поменять вращение вала двигателя в другую сторону. Как это сделать?
Чтобы изменить вращение трёхфазного двигателя, включенного в однофазную сеть на 220 вольт по схеме «треугольник», нужно третью фазную обмотку W (см. рисунок 1,б) подключить через конденсатор к резьбовой клемме второй фазной обмотки статора V.
Ну а чтобы изменить вращение вала трёхфазного двигателя, подключенного по схеме «звезда», необходимо третью фазную обмотку статора W (см. рисунок 2,б) подключить через конденсатор к резьбовой клемме второй обмотки V.
Ну и напоследок хочу сказать, что шум двигателя от длительной его работы (несколько лет) может возникнуть со временем, и не следует путать его с гулом от неправильного подключения. Так же со временем может возникнуть и вибрация мотора. А бывает даже ротор трудно вращать вручную. Причиной этого как правило является выработка подшипников — их дорожки и шарики износились, да и сепаратор тоже. От этого возникают повышенные зазоры между деталями подшипников и они начинают шуметь, и со временем могут даже заклинить.
Этого допускать нельзя, и дело даже не только в том, что вал труднее будет вращаться и мощность двигателя упадёт, а ещё и в том, что между статором и ротором довольно маленький зазор, и при сильном износе подшипников, ротор может начать цеплять за статор, а это уже куда серьёзнее. Детали двигателя могут испортиться и восстановить их не всегда удаётся. Поэтому намного проще заменить зашумевшие подшипники новыми, от какой то авторитетной фирмы (как выбрать подшипник читаем вот тут), и электродвигатель снова будет работать долгие годы.
Надеюсь данная статья поможет гаражным мастерам, без проблем подключить трёхфазный двигатель какого то станка к однофазной гаражной сети на 220 вольт, ведь с применением различных станочков (шлифовальных, полировальных, сверлильных, токарных, гриндера и т.д.) намного упрощается процесс доводки деталей при тюнинге или ремонте.
Способы включения трехфазных асинхронных двигателей
Всякий асинхронный трехфазный двигатель рассчитан на два номинальных напряжения трехфазной сети 380 /220 — 220/127 и т. д. Наиболее часто встречаются двигатели 380/220В. Переключение двигателя с одного напряжения на другое производится подключением обмоток «на звезду» — для 380 В или на «треугольник» — на 220 В. Если у двигателя имеется колодка подключения, имеющая 6 выводов с установленными перемычками, следует обратить внимание в каком порядке установлены перемычки. Если у двигателя отсутствует колодка и имеются 6 выводов — обычно они собраны в пучки по 3 вывода. В одном пучке собраны начала обмоток, в другом концы (начала обмоток на схеме обозначены точкой).
В данном случае «начало» и «конец» — понятия условные, важно лишь чтобы направления намоток совпадали, т. е. на примере «звезды» нулевой точкой могут быть как начала, так и концы обмоток, а в «треугольнике» — обмотки должны быть соединены последовательно, т. е. конец одной с началом следующей. Для правильного подключения на «треугольник» нужно определить выводы каждой обмотки, разложить их попарно и подключить по след. схеме:
Если развернуть эту схему, то будет видно, что катушки подключены «треугольником».
Если у
двигателя
имеется
только 3
вывода, следует
разобрать
двигатель:
снять крышку
со стороны
колодки и в
обмотках
найти
соединение
трёх обмоточных
проводов (все
остальные
провода
соединены по
2).
Соединение
трёх
проводов
является
нулевой
точкой
звезды. Эти 3
провода следует
разорвать,
припаять к
ним выводные
провода и
объединить
их в один
пучок. Таким
образом мы
имеем уже 6
проводов,
которые
нужно соединить
по схеме треугольника. Если
имеется 6
выводов, но
не
объединены в
пучки и не
имеется
возможности
определить начала
и концы. можно посмотреть здесь.
Трехфазный двигатель вполне успешно может работать и в однофазной сети, но ждать от него чудес при работе с конденсаторами не приходится. Мощность в самом лучшем случае будет не более 70% от номинала, пусковой момент сильно зависит от пусковой емкости, сложность подбора рабочей емкости при изменяющейся нагрузке. Трехфазный двигатель в однофазной сети это компромис, но во многих случаях это является единственным выходом. Существуют формулы для рассчета емкости рабочего конденсатора, но я считаю их не корректными по следующим причинам: 1. Рассчет производится на номинальную мощность, а двигатель редко работает в таком режиме и при недогрузке двигатель будет греться из-за лишней емкости рабочего конденсатора и как следствие увеличенного тока в обмотке. 2. Номинальная емкость конденсатора указаная на его корпусе отличается от фактической + /- 20%, что тоже указано не конденсаторе. А если измерять емкость отдельного конденсатора, она может быть в два раза большей или на половину меньшей. Поэтому я предлагаю подбирать емкость к конкретному двигателю и под конкретную нагрузку, измеряя ток в каждой точке треугольника, стараясь максимально выравнять подбором емкости. Поскольку однофазная сеть имеет напряжение 220 В, то двигатель следует подключать по схеме «треугольник». Для запуска ненагруженного двигателя можно обойтись только рабочим конденсатором.
.
Направление
вращения
двигателя
зависит от
подключения
конденсатора
(точка а) к
точке б или в.
Практически ориентировочную
ёмкость
конденсатора
можно определить
по сл.
формуле: C мкф
= P Вт /10,
где C –
ёмкость
конденсатора
в
микрофарадах,
P –
номинальная
мощность
двигателя в
ваттах.
Для начала достаточно, а точная подгонка должна производиться после
нагрузки двигателя конкретной работой. Рабочее
напряжение конденсатора должно быть выше напряжения сети, но практика
показывает, что успешно работают старые советские бумажные конденсаторы
рассчитаные на 160В. А их найти значительно легче, даже в мусоре. У
меня мотор на сверлилке работает с такими конденсаторами, расположеными
для защиты от хлопка в заземленной коробке от пускателя не помню
сколько лет и пока все цело. Но к такому подходу я не призываю, просто
информация для размышления. Кроме того, если включить 160и Вольтовые
конденсаторы последовательно, вдвое потеряем в емкости зато рабочее
напряжение увеличится вдвое 320В и из пар таких конденсаторов можно
собрать батарею нужной емкости.
Включение
двигателей с
оборотами
выше 1500 об/мин,
либо
нагруженных
в момент
пуска, затруднено.
В таких
случаях
следует
применить пусковой
конденсатор,
ёмкость
которого зависит
от нагрузки
двигателя,
подбирается
экспериментально
и
ориентировочно
может быть от
равной рабочему
конденсатору
до в 1,5 – 2 раза
большей. В дальнейшем, для понятности, все что относится к
работе будет зеленого цвета, все что относится к пуску будет
красного, что к торможению синего.
Включать пусковой конденсатор в простейшем случае можно при помощи нефиксированной кнопки.
Для автоматизации пуска двигателя можно применить реле тока. Для двигателей мощностью до 500 Вт подойдёт реле тока от стиральной машины или холодильника с небольшой переделкой. Т. к. конденсатор остаётся заряженным и в момент повторного запуска двигателя, между контактами возникает довольно сильная дуга и серебряные контакты свариваются, не отключая пусковой конденсатор после пуска двигателя. Чтобы этого не происходило, следует контактную пластинку пускового реле изготовить из графитовой или угольной щётки (но не из медно-графитовой, т. к. она тоже залипает). Также необходимо отключить тепловую защиту этого реле, если мощность двигателя превышает номинальную мощность реле.
Если мощность двигателя выше 500 Вт, до 1,1кВт можно перемотать обмотку пускового реле более толстым проводом и с меньшим количеством витков с таким расчётом, чтобы реле отключалось сразу же при выходе двигателя на номинальные обороты.
Для более
мощного
двигателя
можно изготовить
самодельное
реле тока,
увеличив
размеры
оригинального. Переделка
реле тока.
Большинство трехфазных двигателей мощностью до
трех кВт хорошо работают
и в однофазной сети за исключением двигателей с двойной беличьей
клеткой, из наших это серия МА, с ними лучше не связываться, в
однофазной сети они не работают.
Работает
схема следующим образом: при переводе переключателя в положение 3 и
нажатии на кнопку К1 происходит пуск двигателя, после отпускания кнопки
остается только рабочий конденсатор и двигатель работает на полезную
нагрузку. При переводе переключателя в положение 1, на обмотку
двигателя подается постоянный ток и двигатель тормозится, после
остановки необходимо перевести переключатель в положениие 2, иначе
двигатель сгорит, поэтому переключатель должен быть специальным и
фиксироваться только в положении 3 и 2, а положение 1 должно быть
включено только при удержании. При мощности двигателя до 300Вт и
необходимости быстрого торможения, гасяший резистор можно не применять,
при большей мощности сопротивление резистора подбирается по желаемому
времени торможения, но не должно быть меньше сопротивления обмотки
двигателя.
.
Эта схема похожа на первую, но
торможение здесь происходит за счет энергии запасенной в
электролитическом конденсаторе С1 и время торможения будет зависить от
его емкости. Как и в любой схеме пусковую кнопку можно заменить на реле
тока. При включении переключателя в сеть двигатель запускается и
происходит заряд конденсатора С1 через VD1 и R1. Сопротивление R1
подбирается в зависимости от мощности диода, емкости конденсатора и
времени работы двигателя до начала торможения. Если время работы
двигателя между пуском и торможением превышает 1 минуту, можно
использовать диод КД226Г и резистор 7кОм не менее 4Вт. рабочее
напряжение конденсатора не менее 350В Для быстрого торможения хорошо
подходит конденсатор от фотовспышки, фотовспышек много, а нужды в них
больше нет. При выключении
переключатель переходит в положение замыкающее конденсатор на обмотку
двигателя и происходит торможение постоянным током. Используется
обычный переключатель на два положения.
Еще одна не совсем обычная схема автоматического включения.
Как и в других схемах здесь есть
система торможения, но ее при ненадобности легко выкинуть. В этой схеме
включения две обмотки соединены паралельно, а третья через систему
пуска и вспомогательный конденсатор, емкость которого примерно в два
раза меньше необходимого при включении треугольником. Для изменения
направления вращения нужно поменять местами начало и конец
вспомогательной обмотки, обозначеной красной и зеленой точками. Запуск
происходит за счет зарядки конденсатора С3 и продолжительность запуска
зависит от емкости конденсатора, а емкость должна быть достаточно
велика, чтобы двигатель успел выйти на номинальные обороты. Емкость
можно брать с запасом, так как после заряда конденсатор не оказывает
заметного действия на работу двигателя. Резистор R2 нужен для разрядки
конденсатора и тем самым подготовки его для следующего пуска, подойдет
30 кОм 2Вт. Диоды
Д245 — 248 подойдут любому двигателю. Для двигателей меньшей мощности
соответственно уменьшится и мощность диодов, и емкость конденсатора.
Хоть и затруднительно сделать реверсивное включение по данной схеме, но
при желании и это можно. Потребуется сложный переключатель или пусковые
автоматы.
Пусковой конденсатор двигателя | Приложения
Конденсаторы моторные
Асинхронные двигателипеременного тока, также известные как асинхронные двигатели, используют вращающееся магнитное поле для создания крутящего момента. Трехфазные двигатели получили широкое распространение, поскольку они надежны и экономичны. Вращающееся магнитное поле легко достигается в трехфазных асинхронных двигателях, поскольку сдвиг фазового угла между отдельными фазами составляет 120 градусов. Однако однофазные двигатели переменного тока требуют внешней схемы, которая создает сдвиг фазового угла для создания вращающегося магнитного поля.Эта схема может быть реализована с использованием усовершенствованной силовой электроники или, проще говоря, с использованием конденсатора двигателя.
На видео ниже показано простое для понимания объяснение принципа работы асинхронного двигателя переменного тока.
Однофазные асинхронные двигатели переменного тока
Однокатушечные асинхронные двигатели переменного тока
Асинхронные двигателипеременного тока обычно используют две или более катушек для создания вращающегося магнитного поля, которое создает крутящий момент на роторе. Когда используется одна катушка, она генерирует пульсирующее магнитное поле, которого достаточно для поддержания вращения, но недостаточно для запуска двигателя с места.Двигатели с одной катушкой должны запускаться с использованием внешней силы и могут вращаться в любом направлении. Направление вращения зависит от внешней силы. Если двигатель был запущен по часовой стрелке, он будет продолжать вращаться и набирать скорость по часовой стрелке, пока не достигнет максимальной скорости, которая определяется частотой источника питания. Точно так же он продолжит вращение против часовой стрелки, если первоначальное вращение было против часовой стрелки. Эти двигатели непрактичны из-за невозможности самостоятельно надежно начать вращение.
Пусковой конденсатор асинхронных двигателей переменного тока
Одним из способов улучшения конструкции с одной катушкой является использование вспомогательной катушки последовательно с пусковым конденсатором двигателя. Вспомогательная катушка, также называемая пусковой катушкой, используется для создания начального вращающегося магнитного поля. Чтобы создать вращающееся магнитное поле, ток, протекающий через основную обмотку, должен быть в противофазе по отношению к току, протекающему через вспомогательную обмотку. Роль пускового конденсатора заключается в том, чтобы задерживать ток во вспомогательной обмотке, выводя эти два тока в противофазе.Когда ротор достигает достаточной скорости, вспомогательная катушка отключается от цепи с помощью центробежного переключателя, а двигатель остается запитанным от одной катушки, создающей пульсирующее магнитное поле. В этом смысле вспомогательную катушку в этой конструкции можно рассматривать как пусковую катушку, поскольку она используется только во время запуска двигателя.
Конденсатор пусковой / рабочий, асинхронные двигатели переменного тока
Другим способом дальнейшего улучшения конструкции однофазного асинхронного двигателя с одной катушкой является введение вспомогательной катушки, которая остается под напряжением не только во время фазы запуска двигателя, но и во время нормальной работы.В отличие от двигателя переменного тока, использующего только пусковой конденсатор двигателя, который создает пульсирующее магнитное поле во время нормальной работы, двигатели переменного тока, использующие пусковой конденсатор двигателя и рабочий конденсатор двигателя, создают вращающееся магнитное поле во время нормальной работы. Функция пускового конденсатора двигателя остается такой же, как и в предыдущем случае — он отключается от цепи после того, как ротор достигает заданной скорости с помощью центробежного переключателя. После этого вспомогательная обмотка остается запитанной через рабочий конденсатор двигателя.На рисунке ниже описан этот тип конструкции.
Конденсаторы пуска и пуска двигателя
Пусковые конденсаторы
Пусковые конденсаторы двигателя используются во время фазы запуска двигателя и отключаются от цепи, когда ротор достигает заданной скорости, которая обычно составляет около 75% максимальной скорости для этого типа двигателя. Эти конденсаторы обычно имеют значение емкости более 70 мкФ. Они бывают разных номиналов напряжения, в зависимости от области применения, для которой они предназначены.
Рабочие конденсаторы
В некоторых конструкциях однофазных двигателей переменного тока используются рабочие конденсаторы, которые остаются подключенными к вспомогательной катушке даже после того, как пусковой конденсатор отключен центробежным переключателем. Эти конструкции работают, создавая вращающееся магнитное поле. Конденсаторы для работы двигателя предназначены для непрерывной работы и остаются под напряжением всякий раз, когда двигатель запитан, поэтому вместо электролитических конденсаторов используются полимерные конденсаторы с малыми потерями. Значение емкости рабочих конденсаторов обычно ниже, чем емкость пусковых конденсаторов, и часто находится в диапазоне 1.От 5 мкФ до 100 мкФ. Выбор неправильного значения емкости для двигателя может привести к неравномерному магнитному полю, что может проявляться как неравномерная скорость вращения двигателя, особенно под нагрузкой. Это может вызвать дополнительный шум от двигателя, падение производительности и повышенное потребление энергии, а также дополнительный нагрев, который может вызвать перегрев двигателя.
Приложения
Пусковые и пусковые конденсаторы двигателя используются в однофазных асинхронных двигателях переменного тока. Такие двигатели используются, когда однофазный источник питания более практичен, чем трехфазный, например, в бытовых приборах.Однако они не так эффективны, как трехфазные асинхронные двигатели переменного тока. Фактически, однофазные двигатели переменного тока в 2-4 раза менее эффективны, чем трехфазные двигатели переменного тока, поэтому они используются только для менее мощных двигателей. Типичные области применения, в которых используются конденсаторы пускового и рабочего двигателя, включают электроинструменты, стиральные машины, сушильные барабаны, посудомоечные машины, пылесосы, кондиционеры и компрессоры.
Понимание и выбор конденсаторов | Новости промышленного оборудования (IEN)
Двигатель может быть сердцем любой системы HVAC, но он бесполезен без качественных конденсаторов, которые, как автомобильный аккумулятор, обеспечивают правильную работу двигателя и системы.Насколько вы понимаете критическую функцию конденсаторов в системе отопления, вентиляции и кондиционирования воздуха?
Эта статья поможет вам разобраться в некоторых отраслевых стандартах, установленных для качества, безопасности и производительности конденсаторов, и даст вам представление о том, как выбирать конденсаторы на рабочем месте.
Что делают конденсаторы
Почти каждый двигатель снабжен пусковым конденсатором, рабочим конденсатором или обоими.
Пусковой конденсатор включен в электрическую цепь двигателя в состоянии покоя.Он дает двигателю первоначальный толчок при запуске, кратковременно увеличивая его пусковой крутящий момент и позволяя двигателю быстро включаться и выключаться. Типичная номинальная мощность пускового конденсатора находится в диапазоне от 25 мкФ до 1400 мкФ и от 110 до 330 В переменного тока.
Когда двигатель достигает определенной скорости, пусковой конденсатор отключается от цепи обмотки переключателем (или реле). Если скорость двигателя упадет ниже этой скорости, конденсатор снова включится в электрическую цепь, чтобы двигатель набрал требуемую скорость.
Разработанный для непрерывной работы, рабочий конденсатор всегда остается под напряжением и включен в электрическую цепь двигателя. Типичный рабочий конденсатор находится в диапазоне от 2 мкФ до 80 мкФ и рассчитан на 370 или 440 В переменного тока.
Рабочий конденсатор надлежащего размера увеличит эффективность работы двигателя за счет обеспечения правильного «фазового угла» между напряжением и током для создания вращательного электрического поля, необходимого для двигателя.
Правильная установка / замена конденсаторов
Насколько важно соответствие номинальной емкости двигателя? Короче говоря, это очень важно, даже критично.Чтобы обеспечить надлежащую работу двигателя, для которой он был разработан производителем, и предотвратить повреждение двигателя, всегда используйте тот же номинальный номинал емкости, который указан на паспортной табличке двигателя.
Всегда существует допустимый уровень для номинального значения микрофарад (мкФ). Типичный допуск емкости рабочего конденсатора двигателя для систем отопления, вентиляции и кондиционирования воздуха составляет +/- 6%. С учетом вышесказанного это означает, что конденсатор на 40 мкФ может иметь номинал от 37,6 до 42,4 мкФ и по-прежнему считаться проходным конденсатором.
Когда инженеры проектируют двигатели, они принимают во внимание этот тип диапазона допусков. В них указывается номинальный (40 мкФ) номинал с допуском (+/- 6%), чтобы гарантировать, что в случае замены конденсатора двигатель будет обеспечивать те же характеристики, для которых он был разработан.
Учитывая приведенное выше объяснение диапазонов допусков, не рекомендуется использовать 35 мкФ вместо 40 мкФ.
40 мкФ ± 6% = от 37,6 до 42,4 мкФ 35 мкФ ± 6% = от 32,9 до 37,1 мкФ
Как вы можете видеть, верхняя сторона допуска емкости 35 мкФ (37.1 мкФ) не соответствует нижнему пределу допуска емкости конденсатора 40 мкФ (37,6 мкФ), которым вы пытаетесь его заменить. То же самое для конденсаторов 5 мкФ и 4 мкФ.
5 мкФ ± 6% = от 4,7 до 5,3 мкФ 4 мкФ ± 6% = от 3,76 до 4,24 мкФ
Использование конденсаторов неправильного размера может иметь различные пагубные последствия для двигателя. Если номинал конденсатора в мкФ меньше, чем рассчитан на двигатель, ток обмотки двигателя будет слишком большим. Если номинальная емкость конденсатора в мкФ выше, чем рассчитана на двигатель, ток обмотки двигателя будет слишком низким.Любой сценарий может привести к одному или нескольким из следующих событий:
- Пониженная скорость двигателя
- снижает воздушный поток / охлаждение системы
- увеличивает системный шум
- Повышение температуры
- вызывает износ подшипников и потери смазки
- приводит к изоляции поломка
- увеличивает шум
- Снижение КПД двигателя
- увеличивает потребление энергии
- сокращает срок службы системы и двигателя
- Неправильная работа оборудования
- приводит к неправильному циклу работы
- Повышенный шум
- вызывает напряжение других компонентов
Двигатели спроектированы с определенными номинальными характеристиками и допусками.
Если что-то выходит за пределы этого номинала, двигатель будет работать быстрее или медленнее. В любом случае, конечный результат будет заключаться в том, что машина не будет работать должным образом, а двигатель, конденсатор или любой другой компонент в машине будут испытывать дополнительную нагрузку, которая вызовет повреждения, создаст шум и потребует ремонта.
Также были вопросы, какое напряжение использовать при замене конденсаторов. Практическое правило — всегда использовать напряжение, большее или равное номинальному напряжению, требуемому двигателем.Требуемое напряжение всегда указано на заводской табличке двигателя. НИКОГДА не используйте более низкое напряжение, чем требуется, потому что это значительно снижает срок службы конденсатора. Использование конденсатора с более низким номинальным напряжением не повредит систему, но ускорит окончание срока службы конденсатора.
Номинальное напряжение — это рабочее напряжение, при котором конденсатор может работать до 60 000 часов. Если блок обогрева или кондиционирования воздуха увеличивает напряжение на конденсаторе (например: конденсатор рассчитан на 370 В переменного тока, а напряжение на выходе блока составляет 440 В переменного тока), срок службы конденсатора значительно сократится.С другой стороны, если блок обогрева или кондиционирования воздуха снижает напряжение на конденсаторе (например: конденсатор рассчитан на 440 В переменного тока, но выдает 370 В переменного тока из блока), то срок службы конденсатора увеличивается.
Даже несмотря на то, что конденсатор является недорогим компонентом, установка неправильного размера может иметь серьезные последствия для всей системы!
Отраслевые стандарты
Итак, вопрос в том, как узнать, какой конденсатор обладает качеством и надежностью, требуемыми производителями двигателей, без необходимости годами помещать конденсаторы в реальный блок HVAC и смотреть, работают ли они?
Существуют различные инструменты для обеспечения хорошего качества конденсаторов, в том числе электрические и механические испытания, описанные в нескольких отраслевых стандартах конденсаторов.Для обеспечения долговременной надежности основным и единственным инструментом является высокоускоренное испытание срока службы (HALT). Сегодня на рынке представлено множество отраслевых стандартов, основными из которых являются:
- Tecumseh H-115
- IEC-60252-1
- EIA-456-A
На рынке наблюдается рост спроса на качественные конденсаторы. за последние несколько лет. Кажется, что многие производители урезали углы в отношении качества материалов и производственных процессов, так что, хотя конденсаторы хорошо тестируются в готовом виде, они не прослужат более 6–12 месяцев в полевых условиях.Очевидно, что с более дешевыми материалами и отказом от некоторых производственных процессов цена конденсаторов упала до очень низкого уровня. Наряду с такими низкими ценами на рынке появились конденсаторы с чрезвычайно низким сроком службы.
Ключом к качеству конденсатора, помимо использования качественных материалов в производстве, являются конструкция конденсатора, системы контроля качества и тестирование производительности на протяжении всего производственного процесса, чтобы изготовить конденсатор, который пройдет тестирование HALT.Большинство, если не все конденсаторы, будут тестироваться одинаково с полки, но в течение срока службы конденсатора вы увидите радикальные изменения от одного поставщика к другому. Здесь в игру вступают отраслевые стандарты.
Tecumseh H-115
Tecumseh H-115 был одной из первых попыток стандартизации критериев испытаний для пленочных конденсаторов. Этот стандарт использовался и до сих пор в основном используется в США и применяется только к приложениям, работающим с конденсаторными двигателями. Этот стандарт включает испытание на надежность с двумя факторами ускорения, которые включают приложенное напряжение и приложенную температуру.
Условия испытаний:
- Количество протестированных конденсаторов: 12 единиц
- Приложенное напряжение: 126% от номинального напряжения
- Прикладываемая температура: 80 ° C (рабочий конденсатор двигателя обычно рассчитан на 70 ° C)
- Время испытания (часы) : 500 часов
- Моделирование срока службы (часы): 60 000 часов
Рассматриваемые отказы:
- Микрофарад (мкФ) Потери: более 5%
- Коэффициент рассеяния: не обсуждает
- Допустимые отказы: 1 единица из 12 единиц
IEC-60252-1
IEC-60252-1, созданный Международной электротехнической комиссией (IEC), использовался и до сих пор в основном используется в Европе и Азиатско-Тихоокеанском регионе.Как и в случае с Tecumseh H-115, этот стандарт применим только к конденсаторным двигателям. В этом стандарте для проверки надежности используется только один коэффициент ускорения (приложенное напряжение).
В этом стандарте разные номинальные классы определяют разный срок службы конденсаторов в полевых условиях. Различные рейтинги классов зависят от количества часов испытаний, которые проходит конденсатор.
- Класс A определяет прикладной срок службы 30 000 часов
- Класс B определяет прикладной ресурс 10 000 часов
- Класс C определяет прикладной срок службы 3000 часов
- Класс D определяет прикладной срок службы 1000 часов
Эта статья фокусируется только на спецификации класса B стандарта IEC-60252-1.
Условия испытаний для спецификации класса B:
- Количество протестированных конденсаторов: не указано
- Приложенное напряжение: 125% от номинального напряжения
- Прикладываемая температура: 70ºC (рабочий конденсатор двигателя обычно рассчитан на 70ºC)
- Время испытания (часы): 2000 часов
- Моделирование срока службы (часы): 10000 часов
Рассматриваемые отказы:
- Микрофарад (мкФ) Потери: более 3%
- Коэффициент рассеяния: не обсуждает
- Допустимые сбои: предстоит определить между заказчиком и поставщиком
EIA-456-A
EIA-456-A, созданный Electronics Industries Alliance (EIA), использовался и до сих пор в основном используется в США. .S. EIA взял оба вышеупомянутых стандарта и улучшил их, опубликовав всеобъемлющий стандарт для металлизированных пленочных конденсаторов для приложений переменного тока.
Он не только охватывает приложения, работающие с двигателями, но также включает конденсаторы, используемые в системах освещения с высокой интенсивностью разряда, а также в приложениях общего назначения, таких как источники питания и блоки коррекции коэффициента мощности.
Условия испытаний:
- Количество протестированных конденсаторов: 12 единиц
- Приложенное напряжение: 125% от номинального напряжения
- Прикладываемая температура: + 10 ° C выше номинальной максимальной рабочей температуры
- Время испытания (часы): 2000 часов
- Моделирование срока службы (часы): 60 000 часов
Рассматриваемые отказы:
- Микрофарад (мкФ) Потери: более 3%
- Коэффициент рассеяния: более 0.15%
- Допустимые отказы: определяется между заказчиком и поставщиком
При сравнении этих трех стандартов EIA-456-A является самым жестким и тщательным. Это также основа для многих, если не для большинства, стандартов надежности конденсаторов производителей оригинального оборудования (OEM) HVAC.
Многие производители конденсаторов заявляют, что у них есть конденсатор емкостью 60 000 часов, но реальный вопрос в том, какой тест был применен к их продуктам? При сравнении Tecumseh H-115 (500 часов испытаний) и EIA-456-A (2000 часов испытаний) разница множителей увеличивается в четыре раза.
Поскольку условия испытаний Tecumseh H-115 и EIA-456-A одинаковы, можно видеть, что 500 часов испытаний по шкале EIA-456-A равны примерно 15000 часов работы (см. Таблицу 5). Применяемые часы Tecumseh H-115 очень похожи на стандарт IEC-60252-1 класса B на 10 000 прикладных часов.
В США стандартным считается 5 000 часов работы; Таким образом, вы можете предположить, что стандарт EIA-456-A, который определяет 60000 часов работы конденсатора, оценивает срок службы конденсатора примерно от 10 до 12 лет, в то время как Tecumseh H-115 оценивает, что конденсатор прослужит всего от 2 до С тех пор прошло 3 года, а вместо 60 000 часов наработано 15 000 часов.
Получаете ли вы то, за что заплатили?
Это было много деталей, но, надеюсь, они помогли вам лучше понять номиналы конденсаторов и стандарты, используемые в индустрии HVAC.
Главное помнить, что все конденсаторы будут хорошо протестированы сразу после установки, но важен срок службы конденсатора. Рекомендуется выполнить домашнюю работу перед покупкой конденсаторных изделий. Это может сэкономить вам деньги и сэкономить головные боли в будущем.
Спросите производителей о том, насколько их продукция соответствует отраслевому стандарту EIA-456-A.Не бойтесь спрашивать производителей об их возможностях по тестированию надежности. Любой уважаемый производитель сможет обсудить это с вами. Исходя из этого, вы сможете сами оценить качество конденсаторного изделия. Экономия нескольких долларов на конденсаторах может в конечном итоге обойтись вам в сотни, поэтому важно понимать, что вы получаете.
Перепечатано с разрешения RSES Journal
Трехфазный двигатель, работающий от однофазного источника питания
Трехфазный асинхронный двигатель переменного тока широко используется в промышленном и сельскохозяйственном производстве благодаря своей простой конструкции, низкой стоимости, простоте обслуживания и эксплуатации.Трехфазный двигатель переменного тока использует трехфазный источник питания (3 фазы 220 В, 380 В, 400 В, 415 В, 480 В и т. Д.), Но в некоторых реальных приложениях у нас есть только однофазные источники питания (1 фаза 110 В, 220 В, 230 В, 240 В и т. Д.) .), особенно в бытовой технике. В случае, если трехфазные машины работают от однофазных источников питания, есть 3 способа сделать это:
- Перемотка мотора
- Купить GoHz VFD
- Купить преобразователь частота / фаза
I: Перемотка двигателя
Необходимо выполнить некоторые работы по преобразованию работы трехфазного двигателя в однофазное питание.Здесь вы узнаете, как преобразовать трехфазный двигатель 380 В для работы от однофазного источника питания 220 В.
Принцип перемотки
Трехфазный асинхронный двигатель использует три взаимно разделенных угла 120 ° сбалансированного тока через обмотку статора для создания изменяющегося во времени вращающегося магнитного поля для привода двигателя. Прежде чем говорить об использовании трехфазного асинхронного двигателя, переводимого для работы от однофазного источника питания, мы должны пояснить вопрос создания вращающегося магнитного поля однофазного асинхронного двигателя, поскольку однофазный двигатель может быть запущен только после установления вращающегося магнитного поля. .Причина, по которой у него нет начального пускового момента, заключается в том, что однофазная обмотка в магнитном поле не вращается, а пульсирует. Другими словами, он фиксирован относительно статора. В этом случае пульсирующее магнитное поле статора взаимодействует с током в проводнике ротора и не может генерировать крутящий момент, потому что нет вращающегося магнитного поля, поэтому двигатель не может быть запущен. Однако расположение двух обмоток внутри двигателя имеет разный угол наклона. Если он пытается произвести ток другой фазы, у двухфазного тока есть определенная разность фаз во времени, чтобы создать вращающееся магнитное поле.Таким образом, статор однофазного двигателя должен иметь не только рабочую обмотку, но и пусковую. В соответствии с этим принципом мы можем использовать трехфазную обмотку трехфазного асинхронного двигателя и сдвинуть одну из обмоток с помощью конденсатора или индуктивности, так что две фазы могут проходить через разный ток, чтобы установить вращающееся магнитное поле, чтобы управлять двигателем. Когда трехфазный асинхронный двигатель использует однофазный источник питания, мощность составляет только 2/3 от исходной.
Метод перемотки
Чтобы использовать трехфазный двигатель на однофазном источнике питания, мы можем соединить любые двухфазные катушки обмотки последовательно, а затем подключить к другой фазе. В это время магнитный поток в двух обмотках имеет разность фаз, но рабочая обмотка и пусковая обмотки подключены к одному источнику питания, поэтому ток одинаковый. Поэтому последовательно подключите конденсатор, катушку индуктивности или резистор к пусковой обмотке, чтобы ток имел разность фаз.Для увеличения пускового момента соединения можно использовать автотрансформатор для увеличения напряжения однофазного источника питания с 220 В до 380 В, как показано на рисунке 1.
Малогабаритные двигатели общего назначения имеют Y-образное соединение. Для трехфазного асинхронного двигателя Y-типа клемма обмотки конденсатора C подключается к клемме пуска автотрансформатора. Если вы хотите изменить направление вращения вала, подключите его, как показано на рисунке 2.
Если вы не хотите повышать напряжение, блок питания 220 В также может использовать это.Поскольку исходная трехфазная обмотка напряжения питания 380 В теперь используется для источника питания 220 В, напряжение слишком низкое, поэтому крутящий момент слишком низкий.
Рисунок 3 Слишком низкий крутящий момент проводки. Если вы хотите увеличить крутящий момент, вы можете подключить конденсатор фазовой синхронизации к двухфазной обмотке вместе в катушке и использовать ее в качестве пусковой обмотки. Одна катушка, напрямую подключенная к источнику питания 220 В, см. Рисунок 4.
На рисунках 3 и 4, если вам нужно изменить направление вращения вала, вы можете просто изменить сквозное направление пусковой обмотки или рабочей обмотки. .
Магнитный момент после того, как две обмотки соединены последовательно (одна из которых является обратной струной), складывается из двух углов магнитного момента 60 ° (Рисунок 5). Магнитный момент намного выше, чем магнитный момент 120 ° (показан на Рисунке 6), поэтому пусковой момент проводки на Рисунке 5 больше, чем на Рисунке 6.
Значение резистора доступа R (Рисунок 7) на обмотке пускателя должно быть замкнуто на сопротивление фазы обмотки статора и должно выдерживать пусковой ток, равный 0.1-0,12 пускового момента.
Выбор конденсатора фазового сдвига
Рабочий конденсатор c = 1950 × Ie / Ue × cosφ (микрозакон), Ie, ue, cosφ — это исходный номинальный ток двигателя, номинальное напряжение и значения мощности.
Обычный рабочий конденсатор, используемый в однофазном источнике питания трехфазного асинхронного двигателя (220 В): на каждые 100 Вт используются 4-6 микроконденсаторы. Пусковой конденсатор может быть выбран в соответствии с пусковой нагрузкой, обычно в 1–4 раза превышающей рабочий конденсатор.Когда двигатель достигает 75% ~ 80% номинальной скорости, пусковой конденсатор должен быть отключен, иначе двигатель сгорит.
Емкость конденсатора должна быть правильно выбрана, чтобы токи 11, 12 двух фазных обмоток были равны и равны номинальному току Ie, то есть 11 = 12 = Ie. Если требуется высокий пусковой момент, можно добавить пусковой конденсатор и подключить к рабочему конденсатору. При нормальном запуске отключите пусковой конденсатор.
Есть много преимуществ в использовании трехфазного двигателя от однофазного источника питания, работа по перемотке проста.Однако общая мощность однофазного источника питания слишком мала, он должен выдерживать высокий пусковой ток, поэтому этот метод можно применить только к двигателю мощностью 1 кВт или менее.
II: Купите VFD GoHz.
VFD, сокращение от Variable Frequency Drive, это устройство для управления двигателем, работающим с регулируемой скоростью. Однофазный преобразователь частоты в трехфазный — лучший вариант для трехфазного двигателя, работающего от однофазного источника питания (1 фаза 220 В, 230 В, 240 В), он устраняет пусковой ток во время запуска двигателя, заставляя двигатель работать от нулевой скорости до полной. скорость плавная, плюс цена абсолютно доступная.Доступны частотно-регулируемые приводы GoHz мощностью от 1/2 до 7,5 л.с., частотно-регулируемые приводы большей мощности могут быть настроены в соответствии с конкретными двигателями.
Видео с подключением однофазного частотно-регулируемого привода ГГц к трехфазному преобразователю частоты
Преимущества использования частотно-регулируемого преобразователя частоты ГГц для трехфазного двигателя:
- Плавный пуск может быть достигнут путем настройки параметров частотно-регулируемого привода, время пуска может быть установлено на несколько секунд или даже десятки.
- Функция бесступенчатого регулирования скорости для обеспечения наилучшей работы двигателя.
- Переведите двигатель с индуктивной нагрузкой на емкостную нагрузку, которая может увеличить коэффициент мощности. ЧРП
- имеет функцию самодиагностики, а также функции защиты от перегрузки, перенапряжения, низкого давления, перегрева и более 10 функций.
- Может быть легко запрограммирован с клавиатуры для автоматического управления.
III: Купите преобразователь частоты / фазы
Преобразователь частоты GoHz или преобразователь фазы также можно использовать для таких ситуаций, он может преобразовывать однофазный (110 В, 120 В, 220 В, 230 В, 240 В) в трехфазный (0- 520 В) с чистым синусоидальным выходом, который лучше для работы двигателя, чем форма волны ШИМ VFD, они предназначены для лабораторных испытаний, самолетов, военных и других приложений, где требуются высококачественные источники питания, это очень дорого.
Статья по теме: Влияние двигателя 60 Гц (50 Гц) на источник питания 50 Гц (60 Гц)
Можно ли изменить размер конденсаторов на насосе для бассейна?
Мы получаем много вопросов по конденсаторам на двигателях бассейновых насосов. В основном есть два типа конденсаторов, используемых в двигателях насосов небольших бассейнов, которые обычно используются в жилых помещениях в системах наземных бассейнов.(1) Пусковой конденсатор используется в двигателях с конденсаторным пуском / асинхронным пуском и в двигателях с конденсаторным пуском / конденсаторным пуском. Обычно он имеет значение от 108 до 300 мфд или мкФ. Термин mfd или uf является аббревиатурой от микрофарада и является взаимозаменяемым. Некоторые конденсаторы скажут, например, 25 мкФ или 25 мкФ, это то же значение. Пусковые конденсаторы имеют диапазон значений, например, общий номинал 161-193 мкФ или мкФ. Номинальное напряжение обычно составляет 115 вольт на большинстве двигателей насосов мощностью менее 2 л.с., в то время как некоторые могут иметь номинальное напряжение 230 вольт.Значение пускового конденсатора не слишком критично, так как он активен в пусковой цепи только около 3/4 секунды.
(2) Второй тип конденсатора, используемый в насосах бассейна, — это рабочий конденсатор. Эти конденсаторы обычно имеют номинал от 15 до 50 мкФ или мкФ. Эти конденсаторы имеют номинальное напряжение обычно 330 или 440 вольт. Вы можете безопасно заменить конденсатор с более высоким номинальным напряжением вместо конденсатора с более низким напряжением, но никогда не устанавливайте конденсатор с более низким напряжением, если исходный был более высоким напряжением — Эти конденсаторы используются во многих двигателях с конденсаторным пуском / конденсаторным запуском.В отличие от пускового конденсатора, значение рабочего конденсатора довольно критично.
ПРИ ЗАМЕНИТЕ РАБОЧИЙ КОНДЕНСАТОР ОБЯЗАТЕЛЬНО ЗАМЕНИТЕ ЕГО НА ТАКОЕ ЗНАЧЕНИЕ В MFD, КАК БЫЛО ОРИГИНАЛЬНОЕ …
Мы провели обширные испытания, установив двигатель в испытательной лаборатории и заменив рабочие конденсаторы с различными значениями. от 15 до 50 мфд. Результаты показаны в таблице ниже (эта информация, вероятно, будет понятна только инженерам-электрикам)
Итог: Попробуйте заменить рабочий конденсатор на точное значение.Инженеры-мотористы провели обширные испытания своей продукции, чтобы определить наиболее эффективный конденсатор для данного двигателя. Ни при каких обстоятельствах нельзя заменять конденсатор больше оригинального Наши испытания с конденсаторами с завышенными номиналами вызвали сильный перегрев двигателя и мог привести к возгоранию и / или разрушению двигателя. Если вам необходимо в крайне аварийной ситуации попытаться заменить рабочий конденсатор, попробуйте использовать тот, который по значению mfd как можно ближе или ниже, чем исходный… Никогда не устанавливайте тот, который имеет более высокое значение mfd, чем исходный
Производитель указал 30 мфд в качестве подходящего конденсатора для этого двигателя.
3phconv
3phconv
K3PGP . Экспериментатор . Уголок
Дом Астрономия Велосипед Строительство Лазер Moonbounce Программное обеспечение Гость Разное
Одиночный в 3-фазное преобразование мощности
Это сборник данные, полученные по моему запросу, отправлены в MOON-NET.
——
От кого: K3PGP — Джон
Кому: [email protected]
Тема: Трехфазное питание от однофазного источника?
Дата: вторник, 23 марта 1999 г., 17:50
Я видел упоминание о людях, использующих трехфазный двигатель и
Конденсаторная батарея
для создания трехфазного напряжения 208 В переменного тока от однофазного 220 В переменного тока
линия. В одном конкретном случае
я видел двигатель мощностью 15 л.с., который использовался для питания 208
Vac при 25
ампер на каждую ногу к источнику питания передатчика.Источник был единым
фаза 220
Vac. К сожалению, я не могу получить более подробную информацию.
Кто-нибудь знает, как для этого подключается мотор? Как мне
определить
двигатель какого размера мне нужен, а также подключение и стоимость
конденсаторы?
К сожалению, у меня есть незавершенный проект EME, требующий трех
фаза 208
В перем. тока при прибл. 25 ампер на ногу. Все, что доступно на
на участке
однофазное 220в. Любая помощь будет оценена.
Спасибо…
Джон — K3PGP
http://www.k3pgp.org
— =
——
Ответов было получено от:
Кен W6GHV, Джим N9JIM ex-WB9AJZ, Майк Мерфи KA8ABR, Том W2DRZ, Расс K2TXB, Кент Д. О’Делл KA2KQM, Оливье CT1FWC / F6HGQ, Стэн WA1ECF, Майк WD0CTA, Том KB2BAH, Клифф K7RR, Дэйв N7DB и Тед VE3BQN.
Ниже приводится краткое изложение эти ответы. Хотя многое из этого относится к работающим двигателям та же система может применяться для работы любого трехфазного оборудования в том числе передатчики от однофазного источника.
Если я кого-то упустил или проиграл чтобы отдать должное, дайте мне знать!
Ответ на мой вопрос — Y-E-S, и основная идея была лучшей. резюмировано Russ K2TXB и размещено ниже.
ПРИМЕЧАНИЕ: При таком подключении двигатель НЕ Начните. Будет только гудеть. Вам нужно намотать веревку на вал и вручную запустить его вращение, как двигатель газонокосилки. Другой вариант — конденсаторный пуск, описанный в следующая статья.
Для тех из вас, кто хочет более подробно в следующей подборке статей. я обновлю эту статью, как только мой двигатель мощностью 15 л.с. У меня есть шанс провести несколько реальных тестов с его помощью 3-х фазный источник питания передатчика.
Используется много качества промышленные машины доступны по привлекательным ценам, Трехфазные электродвигатели. В большинстве жилых домов нет доступ к 3-х фазной электросети по разумной цене. Если строитель домашнего магазина решает использовать эти машины, они должны либо замените трехфазные двигатели однофазными двигателями или найдите способ использовать однофазное питание в своем доме для их работы.Этот В статье объясняется, как построить вращающийся фазовый преобразователь, который будет преобразовать однофазную электрическую мощность 220 В переменного тока в трехфазную 220 VAC для питания вашего промышленного оборудования.
Безопасность должна быть вашим первым делом проблема, и любая электрическая проводка должна соответствовать местным электрический код. При этом некоторые типичные размеры проводов, будут описаны методы защиты от перегрузки и короткого замыкания. чтобы вы начали. Также металлический каркас моторов и вашего машины должны быть заземлены. Это защитное заземление обычно не провести любое электричество.Он присутствует в случае, если токопроводящий проводник случайно задевает металлический каркас. Это обеспечивает путь с низким сопротивлением, по которому электричество течет вместо того, чтобы идти через ваше тело на землю.
Есть два основных типа фазовых преобразователей на рынке, которые позволят использовать 3-фазные двигатели для работы с однофазным входом преобразователя. Эти типы называются статическими и поворотными. Статический преобразователь в основном только пусковая цепь, которая после запуска двигателя отключается и позволяет двигателю работать на однофазном питании.В Недостатком этого способа является то, что токи обмоток двигателя будет очень неуравновешенным, и двигатель не сможет работать выше примерно двух третей его номинальной мощности. Роторный преобразователь обеспечивает ток во всех 3 фазах и, хотя и не идеально, позволяют двигателю обеспечивать всю или почти всю свою номинальную мощность в лошадиных силах. Если коэффициент обслуживания двигателя составляет от 1,15 до 1,25, вам следует иметь возможность использовать полную номинальную мощность. Фактор обслуживания может быть находится на паспортной табличке двигателя и обычно обозначается аббревиатурой S.F. Причины, по которым электроэнергия не идеальна, носят технический характер. и может включать небольшой дисбаланс напряжения и тока, например а также фазовые углы между фазами не идеальны. В балансировка напряжения и тока проста, если у вас есть доступ к вольтметру или, желательно, амперметру клещевого типа. Но даже если у вас нет этих измерителей, используя приблизительные значения рабочих конденсаторов, указанных в этой статье, токи должны быть рядом, и вы сможете получить почти полную мощность от ваши 3-х фазные двигатели.
Терминология, используемая для описанные части фазового преобразователя нуждаются в пояснении. В вращающаяся часть вращающегося фазового преобразователя — стандартная трехфазная Электродвигатель называется холостым. Это называется так потому, что как правило, его вал не имеет механической нагрузки. С подача однофазного питания на трехфазный двигатель не запустит его вращающийся, средство для запуска холостого двигателя, вращающегося около номинального скорость нужна. Это можно сделать несколькими способами. Трос можно использовать небольшой однофазный электродвигатель, или можно использовать пусковой конденсатор.Если используются механические средства, мощность на холостой ход не подается до тех пор, пока двигатель не будет вращается, и трос или питание однофазного двигателя удаленный. Для балансировки напряжений и токов в 3 фазах на выходе можно использовать пару рабочих конденсаторов. Выключатель требуется большинством местных электротехнических норм для каждой части оборудование. Если вилка и розетка используются для подключения питания к оборудования, это соответствует требованиям отключения. Перегрузка защита требуется для каждого двигателя.Это может быть встроено в мотор или предоставляется отдельно. Проверьте паспортную табличку двигателя, если не сказано встроенная защита от перегрузки, значит она должна быть поставляется отдельно. Обычно тепловое реле перегрузки и магнитный контактор используется для управления двигателем. В магнитный контактор — это сверхмощное реле для включения двигателей и выкл. Он разработан для работы с высокими пусковыми токами моторы. Также доступны механические (ручные) контакторы. с тепловой защитой от перегрузки в составе выключателя.Для цель этой статьи два провода, несущие одну фазу Электропитание 220 В переменного тока будет называться линиями 1 и 2. Они соединены к клеммам 1 и 2 холостого двигателя соответственно. Провод поступающий с третьего вывода холостого двигателя будет называться строка 3.
Для построения роторной фазы преобразователь следуйте общей схеме, показанной ниже:
Рисунок 1
Однофазный 220 В переменного тока ввод вводится в строках 1 и 2, обозначенных L1 и L2 на рисунке. 1.Предохранители картриджа с выдержкой времени используются для короткого замыкания охрана. 1R-1 и 1R-2 — главные контакты для магнитного контактор (силовое реле). Катушка для этого реле обозначается 1R. Рабочие конденсаторы подключены между линиями 1-3 и 2-3. В перегрузки являются частью теплового реле перегрузки с нормальным замкнутый контакт с маркировкой OL-1. Этот контакт откроется, если есть сработала перегрузка. Открытие этого контакта отключает поток ток через цепь управления 120 В переменного тока, отключающую катушку 1р.Клеммы холостого двигателя имеют маркировку T1, T2 и T3. В Схема запуска использует реле 2R и его контакт 2R-1 для подключения пусковой конденсатор между линиями 1 и 3, в то время как кнопка пуска удерживается. В цепи управления вспомогательный контакт реле 1, обозначенный 1R-X, поддерживает питание катушки 1R после запуска. кнопка отпущена. 3-фазная выходная мощность подключена после главных контактов (1R-1 и 1R-2), чтобы питание от линий 1 и 2 не подключены к выходу, если фаза конвертер работает.
Более простая альтернатива, что исключает отдельную цепь запуска, а также устраняет набор рабочих конденсаторов между линиями 2-3 называется самостоятельным пусковой фазовый преобразователь. Этот дизайн обсуждается позже в этом статья.
Выберите размер провода на основе от тока, который будет течь в проводе. Таблица 1 может быть использована для руководства и основан на трехфазных двигателях 220 В переменного тока и 125% ток на паспортной табличке двигателя. Используйте только медный провод минимального размера. из №14. Допускается использование провода большего диаметра, чем указано в таблице. 1.
Стол
1
Минимальный рекомендуемый провод
размеры.
Двигатель | Двигатель | Проволока |
1/2 | 2.0 | № 14 |
3/4 | 2,8 | № 14 |
1,0 | 3,6 | № 14 |
2.0 | 6,8 | № 14 |
3,0 | 9,6 | № 14 |
5,0 | 15,2 | № 12 |
7.5 | 22,0 | № 10 |
Если длина провода длиннее
используется более 50 футов, например, от панели автоматического выключателя до
фазовый преобразователь, выберите размер провода, чтобы сохранить напряжение
падение в проводе менее 3 процентов. Не забудьте добавить
токи всех устройств, которые будут получать энергию от этого питающего провода.
Таблица 2 может использоваться в качестве руководства и основана на медном проводе.
Стол
2
Минимальный рекомендуемый размер провода
для низкого падения напряжения. Амперы против футов.
Ток | 60 | 90 | 120 | 150 | 180 | 210 |
5 | № 14 | № 14 | № 14 | № 14 | № 14 | № 14 |
6 | № 14 | № 14 | № 14 | № 14 | № 14 | № 12 |
7 | № 14 | № 14 | № 14 | № 14 | № 12 | № 12 |
8 | № 14 | № 14 | № 14 | № 12 | № 12 | № 12 |
9 | № 14 | № 14 | № 12 | № 12 | № 10 | № 10 |
10 | № 14 | № 14 | № 12 | № 12 | № 10 | № 10 |
12 | № 14 | № 12 | № 12 | № 10 | № 10 | № 10 |
14 | № 12 | № 12 | № 10 | № 10 | № 10 | № 8 |
16 | № 12 | № 12 | № 10 | № 10 | № 10 | № 8 |
18 | № 10 | № 10 | № 10 | № 8 | № 8 | № 8 |
20 | № 10 | № 10 | № 10 | № 8 | № 8 | № 8 |
25 | № 10 | № 10 | № 8 | № 8 | № 6 | № 6 |
30 | № 8 | № 8 | № 8 | № 6 | № 6 | № 6 |
Выбор холостого двигателя это первый шаг.Это должен быть трехфазный двигатель, рассчитанный на работу. при доступном сетевом напряжении и частоте, обычно 220 VAC, 60 Гц. Фазовые преобразователи, протестированные здесь, были звездой (звездой). ранить. Некоторые двигатели имеют треугольную обмотку. Многие моторы имеют более 3 провода, так что его можно подключить более чем к одному напряжению. Двойной Двигатели с обмоткой под напряжением обычно имеют 9 выводов, как показано ниже.
Рисунок 2
Проверьте паспортную табличку двигателя, если для напряжения указано 220/440, то его можно подключить в одну сторону для 220 вольт и еще вариант на 440 вольт.Если вы не уверены, отсоедините все провода и измерьте сопротивление между проводами и сравните с рис. 2. Тот же двигатель будет иметь силу тока указан как 15 / 7,5, что означает, что он потребляет 15 ампер при подключении для 220 В переменного тока и 7,5 А при подключении для 440 В переменного тока. Рейтинг скорости не важно; от 1100 до 3600 об / мин все в порядке. Выше скорость может дать немного лучшие углы фазы, но чем ниже скорость вообще проще завести. Двигатели на шариковых подшипниках рекомендуется вместо двигателей с подшипниками скольжения.Если мотор имеет масляные колпачки, это подшипник скольжения, если в нем есть смазка арматура или вообще не арматура, это шарикоподшипник. Вращение двигатель, чтобы убедиться, что подшипники исправны. Также при покупке Используемый двигатель подключите омметр между каждым проводом и рамой, чтобы убедитесь в отсутствии коротких замыканий. Это признак того, что изоляция внутри двигателя неисправна. Для руководства стоимость бывшего в употреблении трехфазного двигателя мощностью 2 лошадиные силы или меньше должна быть около 20 долларов; для более крупных двигателей используйте около 10 долларов за каждую лошадиную силу.В Номинальная мощность холостого двигателя должна быть такой же или выше чем самый большой трехфазный двигатель, который вы будете использовать. Если у вас есть оборудование, которое запускается с нагруженным двигателем, например, воздушный компрессора, то мощность двигателя в 1,5 раза больше, чем рекомендуемые.
Пусковой конденсатор должен быть рассчитанным как минимум на 250 В переменного тока. Недорогой электролитический тип может быть использован. Если холостой двигатель составляет 1 л.с. или меньше, тем больше дорогой маслонаполненный тип, используемый для рабочих конденсаторов, также может быть используется, потому что небольшие размеры не слишком дороги.Я Пусковой преобразователь фаз использует тот же набор маслозаполненных конденсаторы как пусковые, так и рабочие. В электролитический тип со временем потеряет емкость и поэтому следует покупать новые. Его можно определить по круглый, черный, пластиковый корпус. Рейтинг микрофарад должен быть выбирается по номинальной мощности холостого двигателя. Поскольку холостой двигатель запускается без механической нагрузки, размер не критично и для руководства от 50 до 100 мкФ на лошадиную силу будет работать.Больший рейтинг принесет мотор чтобы ускориться и потреблять больше тока при запуске. А 220- Пусковой конденсатор 250 В переменного тока, 270-324 мкФ, новый продается примерно по цене 15 долларов.
Рабочие конденсаторы необязательный. Конвертер без них будет нормально работать, однако вы может получить около 80% мощности от ваших трехфазных двигателей из-за низкого тока в третьей линии. Рабочие конденсаторы обычно рассчитаны на 330 или 370 В переменного тока. Маслонаполненный тип должен быть использовал. Они рассчитаны на непрерывный режим работы переменного тока, в то время как электролитического типа нет и может взорваться.Маслонаполненный тип не потеряет емкость с годами и поэтому может быть куплены б / у или излишки. Новый рабочий конденсатор на 50 мкФ может стоить 50 долларов при использовании или излишек всего 7 долларов. Может быть определяется по металлическому корпусу и овальной форме (иногда прямоугольные или даже круглые.) Назначение рабочих конденсаторов — для балансировки напряжения и тока в 3 фазных линиях. Один комплект подключен между линиями 1 и 3. Другой подключен между строками 2 и 3. Набор может потребоваться, потому что если больше, чем нужно около 50 мкФ, два и более отдельных конденсатора должны быть подключены параллельно, чтобы получить желаемое значение.В лучший способ определить их размер — методом проб и ошибок, используя зажим введите амперметр на трехфазных линиях, в то время как трехфазный двигатель Бег. Для идеального баланса каждый набор может иметь разное значение. Для справки или в случае отсутствия идеальной балансировки токов необходимо, рейтинг микрофарад можно оценить по мощности номинал холостого двигателя. Используя равную емкость от 12 до 16 микрофарад на каждую лошадиную силу должно давать удовлетворительный баланс.
Эффект бега конденсаторы на напряжение и ток в 3 фазных линиях показаны в цифра 3 и рисунок 4 .В цифра 3 , холостому двигателю мощностью 3/4 л.с. требовалось около 18 микрофарад между обе строки 1-3 и строки 2-3. На рис. 4 фиг.4 для холостого двигателя мощностью 5 лошадиных сил требовалось около 70 микрофарады между фазами. Этот бездельник лучше всего был уравновешен 80 мкФ между линиями 1-3 и 60 мкФ между линиями 2-3, хотя 70 микрофарад между ними было незначительно хуже.
В течение текущего балансировочные тесты 3-фазный двигатель включал только шпиндель токарный станок, металл не резался.Это должно было получить повторяемая, хоть и небольшая, нагрузка. В таблице 3 показан текущий баланс. с использованием различных рабочих конденсаторов.
Фаза самозапуска преобразователь использует емкость только между одной фазой (1-3) вместо использования 2 комплектов, как рекомендовано здесь. Результат попытки этого с тем же 5-сильным фазовым преобразователем показан на рисунке 5. Баланс напряжений и токов улучшен по сравнению с режимом бездействия конденсаторы, но не так хорошо, как поместить емкость между ними строки 1-3 и строки 2-3.В любом случае, в качестве побочного преимущества, однофазный ток потребления, который включает как фазовый преобразователь и потребление мощности двигателя нагрузки также будет уменьшено резко, как показано на рисунке 6. Когда 3-фазные двигатели не были работал и работал только холостой ход, однофазный ток без пусковых конденсаторов составлял 14,8 ампер, а с пробегом конденсаторов это было всего 4,4 ампера, как показано треугольниками на Рисунок 6. Снижение тока на 70 процентов впечатляет, но из-за изменения коэффициента мощности фактическая потребляемая мощность изменилась только с 379 Вт до 295 Вт или 22%.
Стол
3
Токарный двигатель 1/2 л.с. токарный шпиндель
Только.
Однофазная линия Ампер Вольт пФ Вт Трехфазные линии ------ Амперы ------ Емкость Линия1 Линия2 Линия3 пФ Вт 1-3 2-3 17,22 246,2 0,16 685 2,37 2,42 0,43 0,45 289 0 0 15.85 246,7 0,16 627 2,27 2,33 0,59 0,43 279 10 10 10,13 246,6 0,22 545 1,91 2,09 1,29 0,39 279 50 50 8,67 246,2 0,26 557 1,83 2,06 1,52 0,37 279 60 60 7,15 245,6 0,29 512 1,68 2,00 1,72 0,32 240 70 70 7,13 245,6 0,29 504 1,81 1,88 1,76 0,32 249 80 60
Убедиться, что размер не за горами пробег конденсаторов при резке металла, парочка точки данных были получены при скорости шпинделя 130 об / мин и подаче скорость 0.004 дюйма / оборот при уменьшении диаметра из куска мягкой стали. Первоначальный диаметр составлял 1,850 дюйма. Первый проход 0,030 уменьшил диаметр вдвое до 1,790. Второй проход 0,060 начался с диаметра 1,790 и уменьшил его до 1,670. В таблице 4 перечислены результаты, показывающие баланс аналогичен тому, когда использовалась та же самая емкость, и шпиндель не резал металл.
Стол
4
60 мкФ между строками
1-3 и строки 2-3.
Однофазная линия Ампер Вольт пФ Вт
3-фазная линия ----- Амперы ------ Линия 1 Линия 2 Линия 3 пФ Вт 8,67 246,2 0,26 557 1,83 2,06 1,52 0,37 279 Только шпиндель 8,71 247,1 0,26 565 1,83 2,08 1,53 0,40 303 0,030 дюйма резка 8.85 247,1 0,30 648 1,90 2,18 1,58 0,50 387 0,060 дюйма
Показаны два реле. на схеме в фиг.1 . Реле № 1 является главным силовым реле и должно иметь Номинальная мощность двигателя, соответствующая размеру холостого двигателя. Эти часто называют магнитными контакторами. Он имеет два основных полюса для переключения однофазных линий 220 В переменного тока и вспомогательного набор контактов, используемых для фиксации катушки реле под напряжением когда главные контакты замкнуты.Холостой ход отключен нажатие кнопки остановки, которая размыкает цепь катушки вызывая размыкание контактора. Реле номер 2 используется для подключить пусковой конденсатор к цепи. Реле используется так что высокие пусковые токи не проходят через толчок кнопка. Можно использовать реле номинального тока двигателя или если номинальный ток используется реле, выберите на нем как минимум 2-х кратную паспортную табличку Текущий. Фактический ток зависит от размера запуска конденсатора и может быть оценен с помощью следующего уравнения.6 = 24,9 ампер
Электрические нормы и правила требуют отключение для каждой единицы оборудования. Выключатель (или вилка) отделяет все токопроводящие жилы от линии Напряжение. Для однофазных систем 220 В переменного тока это 2 провода (2 полюсный переключатель), для 3-фазных систем это 3 провода (3-полюсный переключателя.) Поскольку преобразователь фазы питается однофазным мощность может использоваться 2-полюсный разъединитель или 2 из 3 полюсов 3 полюсный переключатель. Каждая единица оборудования, использующая трехфазное питание также должен иметь собственный 3-полюсный рабочий выключатель.Многие из этих имеют предохранители как часть переключателя и называются предохранителями отключается. Это полезно для двигателей, поскольку перегрузка двигателя недостаточно защищает от короткого замыкания как предохранители. Использование временной задержки, патронные предохранители распространены с цепями двигателя. Некоторые местные коды позволяют использовать филиал выключатель цепи или автоматический выключатель в качестве сервисного отключения для оборудования, если оно находится в пределах видимости оборудования. В отключение фазового преобразователя часто может удовлетворить это требование в домашних магазинах.
Холостой двигатель запущен первый и обычно оставленный включенным, в то время как трехфазные двигатели в магазин включается и выключается по мере необходимости. Более одного двигателя на время можно управлять, и каждый работающий двигатель будет действовать как фаза преобразователь для других, поэтому общая мощность может быть 2 в 3 раза больше холостого хода мотора лошадиных сил. Если используется ручной переключатель вместо магнитного контактора нажмите кнопку включения пусковой конденсатор должен удерживаться до того, как ручной переключатель будет включенный.Когда запускается холостой двигатель (около 1 секунды или меньше) затем отпускают кнопку пускового конденсатора.
Коммерческие поставщики статические преобразователи позволяют использовать статический преобразователь для запуска холостой двигатель, чтобы несколько двигателей могли работать одновременно. Однако некоторые из этих коммерческих устройств используют напряжение или ток. реле для включения пускового конденсатора. Если мотор рядом с размер холостого хода (для которого рассчитан статический преобразователь) составляет запускается, пусковой ток может понизить линейное напряжение на доли секунды и приведет к включению пускового конденсатора.Это может привести к перегрузке статического преобразователя, поскольку другие двигатели Бег. Рекомендуемый здесь дизайн не имеет этого ограничение, поскольку пусковой конденсатор задействован только тогда, когда оператор нажимает кнопку пуска.
Собственная
Пусковой преобразователь фазы
Фаза самозапуска преобразователь проще и дешевле, чем показанный преобразователь в рисунок 1. A самозапуск Схема показана ниже.
Рисунок 7
Однако текущие и баланс напряжения на 3-фазном выходе больше зависит от нагрузки, поэтому что некоторый дисбаланс присутствует при нагрузках, отличных от какая емкость была выбрана.
Для многих магазинов маленький величина дисбаланса приемлема и большинство коммерческих роторных фазовые преобразователи относятся к самозапускаемому типу. Внутри одного коммерческий 2-х сильный вращающийся фазовый преобразователь было два 30 конденсаторы микрофарад, подключенные параллельно, это эффективно 60 микрофарады. Так как между конденсаторной батареей прошло всего два провода. и двигатель, они должны быть подключены только к одной фазе. В преобразователь на 3 л.с. другого производителя, три на 40 мкФ использовались конденсаторы (всего 120 мкФ.)
Для простейшего преобразователя без отдельной пусковой цепи, используя 25-30 мкФ на мощность холостого хода между одной из входных линий и третьей (сгенерированная) линия обеспечит приемлемый фазовый преобразователь. Тоже малая емкость и холостой либо не заводится, либо начнется очень медленно. Поскольку обычно используются предохранители с выдержкой времени для защиты двигателя от короткого замыкания допускает некоторое превышение ток для запуска около 5 секунд, рекомендуется достаточно емкости, чтобы запустить холостой ход быстрее, чем это.Избыточная емкость приведет к тому, что трехфазные напряжения превысят входное линейное напряжение, особенно когда холостой ход не нагружен. В таблицах 5 и 6 показаны напряжения с разной емкостью для 5 Фазовый преобразователь л.с. и 3 л.с. соответственно. Токарный станок раньше нагрузка на преобразователь для испытаний в таблицах 5 и 6 имеет Двигатель 1/2 л.с.; используемый сверлильный станок имеет двигатель мощностью 3/4 л.с. Как более Была приложена трехфазная нагрузка, напряжения на линиях 1-3 и 2-3 были уменьшены, как показано в таблицах. Также показано в таблицах 5 и 6 время, необходимое для запуска холостого хода.Сравните рисунок 4 и рисунок 5 и решите, улучшение балансировки выпуска стоит дополнительных усилий отдельная пусковая цепь, которая требуется, если одинаковая емкость подключен через обе линии 1-3 и 2-3.
Стол
5
Самозапускающийся холостой ход 5 л.с.
Время пуска, 3-фазные напряжения Секунды L1-L2 L1-L3 L2-L3
120 мкФ: 2,6 247,1 262,8 238,7 Без нагрузки 246.9 255,4 231,0 Токарный станок 247.1 251.0 227.2 Токарный и сверлильный станок 130 мкФ: 1,6 246,9 264,8 243,7 Без нагрузки 246,6 258,6 234,8 Токарный станок 246,2 253,7 229,8 Токарный и сверлильный станок 150 мкФ: 1,0 247,9 270,3 253,6 Без нагрузки 246,6 263,2 244,0 Токарный станок 247,8 259,2 238,8 Токарный и сверлильный станок
Стол
6
Самозапускающийся холостой ход 3 л.с.
Время пуска, 3-фазные напряжения Секунды L1-L2 L1-L3 L2-L3 50 мкФ: 0,8 245,6 249,4 225,0 Без нагрузки 245,6 239,0 220,0 Токарный станок 70 мкФ: 0,8 245,5 260,4 238,7 Без нагрузки 100 мкФ: 0,6 246,1 277,7 256,1 Без нагрузки 245,9 262,5 245,6 Токарный станок 245,6 255,9 236,6 Токарный и сверлильный станок 120 мкФ: 0,6 245.5 288,0 265,7 Без нагрузки 245,7 270,3 254,9 Токарный станок 245,3 261,5 245,9 Токарный станок и сверлильный станок
Дом Астрономия Велосипед Строительство Лазер Moonbounce Программное обеспечение Гость Разное
Содержание этого веб-сайта 1995-2012 K3PGP и авторов-составителей.
Двигатели с конденсаторным пуском: схема и объяснение того, как конденсатор используется для запуска однофазного двигателя
Однофазный асинхронный двигатель может быть выполнен с возможностью самозапуска различными способами. Один из часто используемых методов — это двигатели с расщепленной фазой. Другой метод — это индукционные двигатели с конденсаторным пуском.
Индукционные двигатели с конденсаторным пуском
Мы знаем об активности конденсатора в чистой цепи переменного тока. Когда конденсатор вводится таким образом, напряжение отстает от тока на некоторый фазовый угол.В этих двигателях необходимая разность фаз между Is и Im достигается за счет включения конденсатора последовательно с обмоткой стартера. В этих двигателях используются конденсаторы электролитического типа, которые обычно видны, поскольку они установлены вне двигателя как отдельный блок. (щелкните изображение, чтобы увеличить его).
Во время пуска, поскольку конденсатор включен последовательно с обмоткой пускателя, ток через обмотку пускателя Is опережает напряжение V, которое прикладывается к цепи.Но ток через основную обмотку Im по-прежнему отстает от приложенного напряжения V. Таким образом, чем больше разница между Is и Im, тем лучше результирующее вращающееся магнитное поле.
Когда двигатель достигает примерно 75% скорости полной нагрузки, центробежный переключатель S размыкается, отсоединяя обмотку стартера и конденсатор от основной обмотки. Из векторной диаграммы важно отметить, что разность фаз между Im и Is составляет почти 80 градусов по сравнению с 30 градусами в асинхронном двигателе с расщепленной фазой.Таким образом, асинхронный двигатель с конденсаторным пуском создает лучшее вращающееся магнитное поле, чем двигатели с расщепленной фазой. Из векторной диаграммы видно, что ток через обмотку пускателя Is опережает напряжение V на небольшой угол, а ток через основную обмотку Im отстает от приложенного напряжения. Следует принимать во внимание, что результирующий ток I небольшой и почти совпадает по фазе с приложенным напряжением V.
Крутящий момент, развиваемый асинхронным двигателем с расщепленной фазой, прямо пропорционален синусу угла между Is и Im.Также угол составляет 30 градусов в случае двигателей с расщепленной фазой. Но в случае асинхронных двигателей с конденсаторным пуском угол между Is и Im составляет 80 градусов. Тогда очевидно, что одно только увеличение угла (с 30 градусов до 80 градусов) увеличивает пусковой крутящий момент почти вдвое по сравнению со стандартным асинхронным двигателем с расщепленной фазой. Кривая характеристики «скорость-момент» показывает пусковой и рабочий моменты асинхронного двигателя с конденсаторным пуском.
Типы двигателей
Существуют различные типы двигателей с конденсаторным пуском, разработанные и используемые в различных областях.Они следующие:
- Одно напряжение, внешне реверсивное,
- Одно напряжение, нереверсивное исполнение,
- Реверсивное одинарное напряжение и с термостатом,
- Одно напряжение, нереверсивное, с магнитным переключателем,
- Двухвольтный, нереверсивный тип,
- Двухвольтный, реверсивный,
- Одно напряжение, трехпроводное, реверсивное,
- Одно напряжение, мгновенно-реверсивное,
- Двухскоростной тип и
- Двухскоростной с двухконденсаторным типом.
Эти двигатели могут использоваться для различных целей в зависимости от потребностей пользователя. Пусковые характеристики, характеристики скорости / крутящего момента каждого из вышеперечисленных двигателей могут быть проанализированы перед их использованием в работе.
Моя следующая статья об однофазных двигателях с расщепленными полюсами; Вы можете прочитать это здесь.
Кредиты изображений:
www.tpub.com
www.allaboutcircuits.com
A / C-D / C Machines от A.K&B.Л. Тераджа.
|
|
|
|