Дроссель для люминесцентных ламп: Дроссель для люминесцентных ламп: схема подключения

Содержание

Зачем нужен дроссель для люминесцентных ламп: устройство + схема подключения


Согласитесь: лишние приборы, без которых вполне может работать система освещения, покупать и устанавливать ни к чему. К таким устройствам, вызывающим сомнение, относится дроссель для люминесцентных ламп. Вы не знаете, нужен ли он в схеме подключения или без него можно обойтись?

Мы поможем вам разобраться с возникшим вопросом. В статье подробно рассмотрены особенности, назначение дросселя и выполняемые им функции. Приведены фото и схема подключения, которая поможет самостоятельно собрать люминесцентный светильник и выполнить его запуск, правильно подключив все компоненты в электроцепь.

В помощь домашнему мастеру мы подобрали ряд видеороликов, содержащих рекомендации по подключению люминесцентных лампочек, а также по выбору нужного дросселя в зависимости от типа лампы.

Содержание статьи:

Назначение и устройство дросселя

Разрядные лампы, представителем которых является люминесцентная разновидность, нельзя зажечь как обычные, обеспечив электроснабжение. Они попросту не будут работать. Чтобы получить свечение такого типа источника, потребуется дополнительно использовать пуско-регулирующий аппарат.

Назначение балласта в схеме включения

Выходит, что для функционирования люминесцентной лампочки необходимо не только обеспечить протекание тока, но и приложить к ней напряжение.

Поэтому в схеме включения задействуют балласт – сопротивление. Оно включается последовательно с лампой и предназначено для ограничения тока, протекающего через ее электроды.

Его роль могут выполнять различные электротехнические компоненты:

  • в случае постоянного тока – это резисторы;
  • при переменном – дроссель, конденсатор и резистор.

Среди этих приспособлений наиболее удачным вариантом является дроссель. Он обладает реактивным сопротивлением без выделения излишнего тепла. Способен ограничить ток, предотвратив его лавинообразное нарастание при включении в электросеть.

Галерея изображений

Фото из

Дроссель в импульсных схемах питания

Ограничитель в высокочастотных электрических схемах

Сердечник в виде кольца

Секционная намотка провода

Дроссель не только является неотъемлемым элементом в стартерной схеме включения, он выполняет такие функции:

  • способствует созданию безопасного и достаточного для конкретной лампочки тока, который обеспечивает оперативный разогрев ее электродов при разжигании;
  • импульс повышенного напряжения, образующийся в обмотке, способствует возникновению разряда в колбе люминесцента;
  • обеспечивает стабилизацию разряда при номинальном значении электротока;
  • способствует беспроблемной работе лампочки вопреки отклонениям напряжения, периодически возникающим в сети.

Важное значение для функционирования имеет индуктивность дросселя. Поэтому при покупке этого электромеханического компонента следует обращать внимание на технические параметры, которые должны соответствовать характеристикам лампочки.

При выборе электромеханического ПРА, который еще называют дросселем или ограничителем тока, имеют значение не только техпараметры, но и репутация производителя – неизвестные китайские фирмы могут предложить ограничитель, реальные характеристики которого значительно ниже заявленных

Из чего состоит пускорегулятор?

Дроссель, используемый в схемах включения лампочек люминесцентного типа, – это не что иное, как намотка провода на сердечнике – катушка индуктивности. Именно ее промышленное исполнение и носит название дросселя в электротехнике, что дословно переводится как «ограничитель».

Различные типы обмоток с разнообразными сердечниками, отличающиеся размерами, формой и внешним видом. Индуктивность конкретного изделия напрямую зависит толщины провода, плотности расположения витков в намотке и их количества, формы сердечника и прочих параметров

Дроссель с нужными техническими характеристиками производят в промышленных условиях, поэтому у потребителя не возникнет проблем при подборе нужного варианта, соответствующего параметрам подключаемой лампочки.

Более того, имея навыки сбора различных электротехнических приспособлений, соответствующие комплектующие и электроинструменты, можно попытаться самостоятельно соорудить катушку с нужной индуктивностью.

На схемах изображение дросселя может отличаться. В цепях подключения люминесцентных лампочек чаще всего можно встретить вариант L6 – обмотка с магнитопроводом ферритовым сердечником

Дроссель состоит из следующих элементов:

  • проволока в изоляционном материале;
  • сердечник – чаще всего ферритового типа или из прочего материала;
  • заливочная масса, компаунд – в ее состав входят вещества, устойчивые к горению, что обеспечивает дополнительную изоляцию витков обмоточного провода;
  • корпус, в который помещена намотка – его производят из термоустойчивых полимеров.

Наличие последнего элемента зависит от особенностей и характеристик конкретной модели ограничителя тока.

Участвуя в схеме розжига разрядной лампочки вместе со стартером, индуктивное сопротивление в виде дросселя ограничивает силу тока в момент подачи напряжения на лампу, а генерация ЭДС самоиндукции в размере 1000 В обеспечивает ее зажигание и стабилизирует горение дуги

Стартерная схема несовершенна, хотя и показывает отличный результат. Но мерцание лампочки, шумность дросселя и его большие размеры, а также фальшьстарт из-за ненадежного привели к изобретению более совершенной версии пускорегулятора – электронной.

ЭПРА в процессе функционирования способствуют снижению мощности по­терь до 50%, избавляют от миганий лампочки. Их использование позволило уменьшить массу дросселей, а также существенно повысить отдачу осветительного прибора.

Правда стоимость электронного балласта существенно выше ЭМПРА, да и приобретать нужно у производителей с отличной репутацией – таких как Philips, Osram, Tridonic, прочие.

Схема + самостоятельное подключение

Люминесцентную лампочку просто так не включишь – ей требуется зажигатель и ограничитель тока. В миниатюрных моделях производитель все эти элементы предусмотрительно встроил в корпус и потребителю остается лишь вкрутить изделие в подходящий патрон светильника/люстры и щелкнуть выключателем.

А для более габаритных изделий потребуется , которая бывает как электромеханического, так и электронного типа. Чтобы ее правильно подсоединить, обеспечив беспроблемную работу прибора, предстоит знать порядок подключения отдельных элементов в электроцепь.

Схема подключения люминесцентной лампочки (EL) с использованием дросселирующего аппарата, где LL – это дроссель, SV – стартер, C1, C2 – конденсаторы

Правда имея схему, но не имея практического опыта по выполнению подобного рода работ, сложно будет справиться с задачей. Более того, если подключение требуется выполнить вне дома – в коридоре учебного учреждения или прочего общественного заведения – то самовольное вмешательство в работу электросети может обернуться проблемами.

Для этого в штате учреждений должен быть электрик, работающий на постоянной основе или же обслуживающий заведение по мере возникновения потребностей в его услугах.

На схеме реализовано подключение двух лампочек люминесцентного типа последовательно. Существенная проблема – если сломается/перегорит одна из них, то вторая тоже работать не будет

Рассмотрим пошаговое подключение двух трубчатых ЛЛ к электросети с использованием стартерной схемы. Для чего понадобится 2 стартера, дросселирующий компонент, тип которого должен обязательно соответствовать типу лампочек.

А также следует обратить внимание на суммарную мощность пускателей, которая не должна превышать этот параметр у дросселя.

Галерея изображений

Фото из

Установка держателей для лампочек

Установка ламп в держатели

Подсоединение короткого проводка к держателю стартера

Проверка работоспособности собранной схемы

Соединение длинным проводом держателя стартера с ЛЛ

Второй конец жилы от стартера крепят ко второму держателю лампы

Соединение первой лампы со второй в одну цепь

Подключение питающего кабеля

При подключении питающего кабеля к светильнику важно помнить, что за ограничение тока отвечает дроссель.

Значит, фазную жилу предстоит подсоединять через него, а на лампочку подключить нулевой провод.

Галерея изображений

Фото из

Вторую жилу от питающего кабеля следует вставить в разъем электромеханического ПРА, который еще называют дросселем. Правильное отверстие выбирают исходя из обозначений, нанесенных на его корпусе

Теперь предстоит заняться дальнейшим формированием цепи, соединив вторую ЛЛ со вторым стартером, а точнее, с его держателем. Для этого нужно взять еще одну короткую жилу и вставить один конец в разъем держателя лампочки, а второй – в отверстие крепления стартера

Аналогичную процедуру предстоит проделать с другой стороны трубчатого люминесцента, тоже используя короткий проводок. Особое внимание следует уделить надежности создаваемого контакта – чтобы ничего не болталось

Осталось завершить формирование цепи, используя еще одну длинную жилу, конец которой предстоит подключить в свободный разъем держателя второй лампочки, а второй – в отверстие дросселирующего компонента

Теперь нужно закрепить все элементы схемы, требуемые для работы собранной системы. Для этого нужно взять 2 стартера, приобретенные заранее. Важно чтобы их тип и мощность соответствовали параметрам ЛЛ

Каждый стартер, который еще называют пускатель, следует поставить в заранее подготовленные держатели, к которым уже успели подсоединить провода. Этот элемент представляет собой небольшую колбу с двумя электродами – жестким и гибким биметаллическим

Второй стартер аналогично крепится в полости держателя, расположенного с противоположной стороны рядом с дросселем. От одного балластного компонента на 36 Вт можно запитать 2 лампочки

Осталось самое интересное – проверить в действии собранную схему, включив питающий кабель в электрическую сеть. Если все выполнено правильно, то две ЛЛ запустятся и начнут светить. В противном случае они никак не отреагируют

Фазную жилу питающего кабеля подсоединяют в дроссель

Соединение второй лампы со вторым стартером

Подсоединение в цепь второй стороны лампы

Соединение второй лампы с дросселем

По одному стартеру для каждой лампочки

Установка пускателей в держатели

Дроссель один на две лампочки

Проверка работоспособности собранной схемы

Подобная схема подключения актуальна для больших осветительных приборов. Что же касается компактных моделей, то они оснащены встроенным механизмом запуска и регулировки – миниатюрным , вмонтированном внутри корпуса изделия.

В компактной люминесцентной лампочке между цоколем и трубками со смесью газов располагается пускорегулирующий аппарат маленьких размеров. Он отлично справляется с запуском прибора и по сроку службы может значительно выигрывать у других элементов ЛЛ

Перегрев дросселя и возможные последствия

Использование лампочек, у которых вышел срок службы и периодически возникают различные поломки, может обернуться пожаром. О том, как утилизировать отслужившие люминесцентные приборы, подробно .

Избежать возникновения пожароопасной ситуации поможет регулярное инспектирование состояния осветительных приборов – визуальный осмотр, проверка основных узлов.

К концу службы лампы можно заметить существенный перегрев ПРА – конечно, водой проверять температуру нельзя, для этого следует воспользоваться измерительными приборами. Нагрев способен достигать 135 градусов и выше, что чревато печальными последствиями

При неправильной эксплуатации может произойти взрыв колбы . Мельчайшие частицы в состоянии разлететься в радиусе трех метров. Причем они сохраняют свои зажигательные способности, даже упав с высоты потолка на пол.

Опасность представляет перегрев обмотки дросселя – аппарат состоит из различных типов материалов, каждый из которых имеет свои характеристики. Например, изоляционные прокладки производители пропитывают сложными составами, отдельные элементы которых имеют неодинаковую горючесть и способность к образованию дыма.

Даже семь витков дросселя, в которых случилось замыкание, способны стать пожароопасными. Хотя большую вероятность возгорания представляет замыкание не менее 78 витков – этот факт был установлен опытным путем

Помимо перегрева дросселирующего элемента, существуют и другие ситуации с люминесцентными светильниками, представляющие пожарную опасность.

Это могут быть:

  • проблемы, обусловленные нарушением технологии изготовления ПРА, что повлияло на конечное качество аппарата;
  • плохой материал рассеивателя осветительного прибора;
  • схема зажигания – со стартером или без него пожарная опасность одинакова.

Следует помнить, что к проблемам может привести небрежность при выполнении подключения, плохое качество контактов или составляющих цепи, что чаще всего происходит при использовании совсем дешевых аппаратов, приобретенных у неизвестных производителей.

Добросовестные компании дают гарантию на свою продукцию, а технические параметры приборов, указанные на корпусе или упаковке, соответствуют действительности. Этот факт прямо влияет на срок службы как самого ПРА, так и , с особенностями устройства и работы которых ознакомит рекомендуемая нами статья.

Выводы и полезное видео по теме

Тонкости сборки схемы из двух ЛЛ с последовательным включением:

Видеоролик о том, что такое дроссель и зачем он нужен:

Проверка дросселя на предмет поломки:

Ознакомившись с назначением и устройством дросселей, используемых для запуска люминесцентных лампочек, можно вооружиться схемой подключения и попытаться реализовать ее самостоятельно. Правда, это актуально для дома.

В общественных учреждениях решение подобных вопросов следует доверить электрикам, имеющим спецдопуск к электромонтажным работам.

Пишите, пожалуйста, комментарии в находящемся ниже блоке, размещайте фото по теме статьи, задавайте вопросы. Расскажите о том, как подбирали и подключали дроссель. Делитесь полезной информацией по аспектам выбора и технологии установки устройства.

Дроссель для ламп дневного света от ОСК Лампы.РФ

ОСК Лампы.РФ осуществляет оптовую реализацию светотехнической продукции. В условиях постоянно растущего спроса на производительные энергосберегающие приборы предприятие делает упор на инновационные изделия, отвечающие современным требованиям.

Стандартное напряжение домашней сети для люминесцентных ламп не подходит. Использование специальных приборов, дросселей, позволяет преобразовать силу тока до номинального показателя. Это катушка с проводом, намотанным на специальный ферромагнитный сердечник. Индуктивные свойства дросселя дают возможность использовать его для запуска люминесцентных ламп.

Технические характеристики дросселей

Фото

Артикул

Наименование

Напряжение, В

Упаковка

503875.58

L 7/9/11.851 230V/50HZ 85x41x28 VS — дроссель 2250/п

230V

10

12682600

L 26.826H 230V 0,325А 155x41x26 Schwabe Hellas — дроссель

230V

10

534142. 12

L 4/6/8-265H 220V VS — дроссель

220V

10

13283100

L 32.830H 0.45A 230V 155x41x26 Schwabe Hellas — дроссель

230V

10

10707134

NAHJ 70.713.4 230V 1,00A 112x66x52 SCHWABE HELLAS -дроссель

230V

кор. 6

11256134

Q 125.613.4 230V 1,15A 112x66x52 SCHWABE HELLAS — дроссель

230V

1

12282200

L 22.890H 0.4A 230V 155x41x26 Schwabe Hellas — дроссель

230V

10

534487.11

NAHJ 1000.089 220V 10,3A 203x102x92 метгал-натрий -дроссель Vossloh Schwabe 105/палл

220V

1

12506146

Q 250. 614.6 220V 2,13A 145x66x52 SCHWABE HELLAS — дроссель

220V

1

13083000

L 30.832H 0.36A 230V 155x41x26 Schwabe Hellas — дроссель

230V

10

20041210

CD-Z 400M 35-400W 230V 50Hz d35x87 FOTON металл+гайка -ИЗУ

230V

30

20040202

CD-Z 1000 600-1000W 230V 4-5kV 1 метр FOTON металл+гайка — ИЗУ

230V

30

x02564752

FOTON 1000W 230V 10,3А 248x102x92 МГ-натрий -дроссель

230V

1

3545454646

FL-01 2000W 10,3A 400x265x188 IP65 FOTON LIGHTING- моноблок

230V

1

434641

FL-02 BOX 70W 250×85 IP65 FOTON LIGHTING- пустой корпус

230V

1

246466

FL-11 GEAR BOX 70W 224x170x105 IP65 FOTON LIGHTING-моноблок

230V

10

246467

FL-11 GEAR BOX 150W 224x170x105 IP65 FOTON LIGHTING-моноблок

230V

10

20110071

FL-19 GEAR BOX 70 FOTON LIGHTING (моноблок) (225Х125Х75)

230V

8

556444

FL-20 GEAR BOX 2x18w IP20 FOTON LIGHTING моноблок 225x125x75

230V

8

511031

GBP-23 35W зеленый FOTON LIGHTING моноблок 215x82x73

230V

10

Принцип работы дросселя

Дроссель (катушка индуктивности) работает, как электрический трансформатор с одной намоткой. Он представляет собой сдерживающий барьер при резком снижении или сильном росте напряжения в сети. Катушка используется для подавления помех и пульсаций в цепи, изоляции и развязки частей схемы.

В низкочастотном дросселе сердечник и ферромагнитные пластины изолированы для предотвращения помех, вызванных токами Фуко. Такая катушка отличается большой индуктивностью и защищает сеть и приборы от резких скачков напряжения. Высокочастотные устройства не имеют сердечника – многослойная навивка осуществляется на стандартные резисторы или пластиковые каркасы.

Сфера применения дросселей

При покупке изделий необходимо следить за тем, чтобы их мощность соответствовала количеству подключаемых люминесцентных ламп. Особенно это касается больших площадей, например, офисных центров, магазинов, конференц-залов, промышленных цехов.

Дроссели используются:

  • в моноблоках;
  • компактных источниках света;
  • линейных источниках света.

Разновидности дросселей

Катушки индуктивности различаются в зависимости от назначения, места установки, видов ламп, в которых применяются, и объема мощностных потерь.

По назначению выделяют следующие типы дросселей:

  • переменного тока — для ограничения напряжения в сети;
  • сглаживающие — для подавления пульсаций выпрямленного тока;
  • насыщения — для установки в стабилизаторах напряжения;
  • усилители — с подмагничивающимся от постоянного тока в сети сердечником, который допускает изменение значений индуктивного сопротивления.

По типу ламп, с которыми используются, различают два вида катушек индуктивности:

  • однофазные, рассчитанные на офисные и бытовые системы освещения, работающие от сети 220 В;
  • трехфазные, подходящие для ламп ДРЛ и ДНАТ, рассчитанные на напряжение 220 и 380 В.

По месту установки различают дроссели:

  • открытые — встраиваемые непосредственно в корпус светильника, который защищает устройство от внешних факторов;
  • закрытые герметичные устройства с водостойким корпусом подходят для установки в уличных условиях и помещениях с повышенным уровнем влажности.

В процессе работы люминесцентной лампы сопротивление дросселя уменьшает силу тока, который протекает по цепи, до некого необходимого значения. Какая-то часть мощности тратится на нагрев устройства, не выполняя при этом никакой полезной работы.

По объему мощностных потерь дроссели делятся на следующие виды:

  • В — низкий уровень потерь;
  • С — пониженный уровень;
  • D — обычный уровень.

Гибкий подход к вопросам ценообразования и внимательное отношение к покупателям позволяют ОСК Лампы.РФ занимать одну из лидирующих позиций на рынке реализации светотехнических изделий.

Отзывы наших клиентов

Кристина Алексеевна

В помещениях нашего завода постоянно наблюдалось мерцание света. Удалось решить проблему путем установки дросселей.

Важно, что менеджеры уделили внимание всем помещениям, подобрали устройства с расчетом количества ламп, мощности. Теперь все поставленные задачи выполнены, провели установку оборудования, и увеличилась производительность труда! Спасибо!

Кирилл

Убедился, что всегда нужно обращаться к профессионалам. До этого покупал продукцию в другом месте, и постоянно были проблемы с освещением. Все решилось просто, после консультации со специалистами ОСК Лампы.РФ. Поставили на складах дросселя и перестали перегоратьь лампы, что важно — снизилось энергопотребление!

Дмитриев

Заказывал раньше люминесцентные лампы и решил сэкономить на покупке дросселей. Оказалось, сделал ошибку, при малейших сбоях в сети приборы сгорали. В общем, скупой платит дважды, хорошо хоть теперь удалось наладить работу. Хочу поблагодарить вашу компанию за грамотные консультации и быструю поставку продукции!

Смотрите также:

схема подключения, принцип работы, замена,

Дроссель (балласт) является обязательным атрибутом практически любого люминесцентного светильника. В этой статье мы рассмотрим, что это за прибор, как он работает и для чего вообще нужен дроссель в люминесцентных лампах.

Для чего нужна пускорегулирующая аппаратура

Прежде чем мы начнем разговор о дросселе, разберемся, что такое пускорегулирующая аппаратура и для чего она нужна. Для того чтобы ответить на эти вопросы, необходимо понять, как работает люминесцентная лампа (ЛДС). Взглянем на ее схематическое изображение.

Схема, поясняющая устройство ЛДС

Перед нами стеклянная колба в виде трубки, в концы которой впаяны две спирали из вольфрама – анод и катод. Сама трубка заполнена инертным газом с небольшим добавлением ртути. Если на анод и катод подать рабочее напряжение, то лампа не засветится – слишком велико сопротивление инертного газа, и тока между электродами не будет.

Для того чтобы прибор запустить, необходимо разогреть спирали. Как только они разогреются, начнется термоэлектронная эмиссия, такая же, как в обычной электронной вакуумной лампе для радиоприемников. Между электродами начнет течь ток, а пары ртути станут излучать ультрафиолет. Попадая на люминофор, ультрафиолет заставляет его ярко светиться. Само же УФ излучение практически полностью поглощается стеклом и люминофором.

Пуск ДЛС обеспечивает специальный прибор – стартер, который кратковременно подает на спирали напряжение (о схеме его включения поговорим позже). Он является пусковой частью пускорегулирующей аппаратуры.

Стартеры для запуска ДЛС

Заставить лампу работать (как говорят, «запустить») можно и другим способом, кратковременно подав на электроды повышенное напряжение.  Именно так и работают электронные пускорегулирующие аппараты, о которых поговорим позже.

Но после пуска ЛДС начинаются новые проблемы: тлеющий разряд в колбе переходит в дуговой и мгновенно приводит к короткому замыканию. Чтобы этого не произошло, ток через лампу во время ее работы необходимо ограничивать. Эту роль исполняет еще один прибор – электромагнитный балласт. Он является регулирующей частью пускорегулирующей аппаратуры.

ЭмПРА для ЛДС мощностью 36 Вт

Таким образом, без стартера лампа не запустится, без балласта – сгорит. Комплекс этих двух устройств и называют пускорегулирующим. Теперь, я думаю, тебе понятно, для чего пускорегулирующая аппаратура нужна, и что без нее никак не обойтись.

Важно! Мощность дросселя должна соответствовать мощности лампы. В противном случае лампа либо тут же погаснет, либо не запустится вовсе, либо сгорит.

к содержанию ↑

Схема подключения люминесцентной лампы

Теперь пора узнать, как подключить ЛДС к дросселю и стартеру.

Схема подключения одной люминесцентной лампы

Как это работает? При подаче на светильник напряжения практически все оно, протекая через дроссель, прикладывается к стартеру, поскольку тока через саму лампу нет. За счет тлеющего разряда биметаллическая пластина в стартере разогревается и замыкает цепь, подавая на спирали полное напряжение сети. Тлеющий разряд в стартере гаснет, биметаллическая пластина остывает и размыкает цепь, но к этому времени спирали лампы уже разогреты. За счет обратной самоиндукции дроссель формирует короткий высоковольтный (около 1 кВ) разряд и зажигает лампу.

Важно! Если старта не произошло, то процесс пуска повторяется. Ты наверняка видел старые ЛДС, которые часами «моргают», не могут зажечься.

Теперь напряжение на стартере недостаточно для начала в нем тлеющего разряда, и в дальнейшей работе светильника он не участвует. В работу включается балласт, который ограничивает ток через газоразрядный прибор на заданном уровне. Величина его зависит от мощности дросселя. Именно поэтому я упоминал выше, что мощность дросселя должна соответствовать мощности ЛДС. В противном случае ток будет слишком мал или слишком  велик.

Наглядная иллюстрация работы люминесцентного светильника со стартером и электромагнитным дросселем

Пару слов по поводу конденсатора, стоящего на входе схемы. Имея большую индуктивность, балласт потребляет не только активную, но и реактивную энергию, причем последняя расходуется впустую – на нагрев самого дросселя. Конденсатор, который называют компенсирующим, уменьшает расход реактивной энергии, увеличивая КПД конструкции и облегчая режим работы самого дросселя.

Можно ли подключить к одному дросселю две ЛДС? Тут все будет зависеть от рабочего напряжения самих ламп. Если они рассчитаны на напряжение 220 В, то придется собрать схему с двумя дросселями, точнее, собрать две схемы, которые я привел выше. Но если лампы рассчитаны на напряжение 110 В, то такое вполне возможно.

Схема подключения двух люминесцентных ламп к одному дросселю

Принцип работы этой схемы такой же, как и предыдущей, только каждый стартер отвечает за пуск своей ЛДС.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Собирая такую схему, нужно взять стартеры на 110 В и выбрать дроссель, мощность которого равна суммарной мощности ламп. Кроме того, мощность используемых ламп должна быть одинаковой. Именно такая схема используется в растровых светильниках, которые применяются в офисах. В них установлено 4 лампы по 18 Ватт. Лампы запитаны попарно, установлено 2 дросселя.

Нередко на дросселе отечественного производства можно увидеть аббревиатуру ЭмПРА. Именно так правильно называется электромагнитный дроссель – Электромагнитный Пускорегулирующий Аппарат.

к содержанию ↑

Зачем нужен дроссель в схеме

В принципе, зачем нужен дроссель для ламп, мы выяснили: чтобы ограничить через них ток на рабочем уровне. Как он включается, мы тоже знаем. Осталось узнать, как и за счет чего он ограничивает ток, поэтому пора поговорить об устройстве дросселя и принципе его работы.

Дросселем в радиотехнике называют обмотку, навитую на сердечник того или иного типа. Но такой дроссель при частоте 50 Гц имеет относительно низкую индуктивность. Чтобы повысить индуктивность дросселя для люминесцентных ламп без увеличения его габаритов, применяют разомкнутый магнитопровод, оставляя между секциями пластин небольшие зазоры.

Дроссель для ЛДС – та же катушка индуктивности, но с незамкнутым магнитопроводом

Почему дроссель оказывает сопротивление току? Проходя через катушку дросселя, переменный ток намагничивает сердечник, запасая в нем магнитную энергию. Причем при одной полуволне она запасается с одним знаком, при другой – с другим. Но чтобы запасти энергию с другим знаком, нужно сначала «уничтожить» предыдущий: перемагнитить сердечник, который, конечно, “сопротивляется” и не дает это сделать быстро. Именно за счет такого постоянного перемагничивания ток ограничивается.

Вполне очевидно, что дроссель будет выполнять свои функции только в цепи переменного тока.

к содержанию ↑

Преимущества и недостатки электромагнитного дросселя

Теперь поговорим о преимуществах и недостатках. К преимуществам электромагнитного дросселя можно отнести:

  1. Относительно невысокую стоимость.
  2. Простоту конструкции.
  3. Долговечность.

Недостатков у этого прибора, увы, немного больше. Это:

  1. Большие массогабаритные показатели.
  2. Мерцание лампы с удвоенной частотой питающей сети.
  3. Гудение.
  4. Низкий КПД из-за большого индуктивного сопротивления.
  5. При отрицательных напряжениях может не запустить лампу.
  6. Долгий запуск (от 1 до 3 сек.).
  7. При тяжелом пуске лампа может долго «моргать», из-за чего у нее перегорают спирали.
к содержанию ↑

Можно ли обойтись без него

Выше я писал, что дроссель – неотъемлемая часть пускорегулирующей аппаратуры, а значит, обойтись без него нельзя. Но дроссель дросселю рознь. Существуют приборы, которые ограничивают ток другим, электронным методом. Их называют ЭПРА – Электронный Пускорегулирующий Аппарат.

ЭПРА для люминесцентных ламп

Как видно из схемы, нанесенной на корпус прибора, этот может обслуживать сразу 4 ЛДС, причем для их пуска стартеры не потребуются. Оправдана ли замена ЭмПРА на ЭПРА? Безусловно, поскольку ЭПРА:

  1. Имеет небольшие массогабариты.
  2. Не гудит.
  3. Не вызывает мерцания лампы с частотой сети.
  4. Имеет высокий КПД (на 30-50% выше, чем у ЭмПРА).
  5. Запускает ЛДС практически мгновенно.

Электронный дроссель сложнее и дороже электромагнитного, но цена вполне компенсируется достоинствами.

к содержанию ↑

Типовые неисправности — замыкание, перегрев, обрыв

А теперь рассмотрим возможные неисправности электромагнитных дросселей и научимся их (дроссели) проверять. Самые распространенные неисправности ЭмПРА:

  1. Перегрев. Обычно вызывается неправильной эксплуатацией (светильник не имеет вентиляции или стоит в жарком помещении), напряжением сети выше нормального и производственным браком (межвитковое замыкание).
  2. Обрыв обмотки. Может быть вызван перегревом, механическим повреждением или просто производственным браком.
  3. Замыкание. Может быть как межвитковое, так и полное. Причины те же: брак, перегрев, механическое повреждение.

Как проверить электромагнитный дроссель

Сделать это несложно, причем никаких измерительных приборов не потребуется. Достаточно собрать простую схему прямо на коленках, подключив лампу накаливания параллельно стартеру и через дроссель запитанную от розетки:

Схема проверки дросселя

Важно! Мощность лампы для проверки должна примерно равняться мощности проверяемого дросселя (балласта).

Итак, собираем схему, включаем. В результате видим:

  1. Лампа не горит. В балласте обрыв.
  2. Горит на полную яркость. Замыкание.
  3. Моргает или горит вполнакала. Балласт, возможно, исправен.

Пусть теперь схема поработает хотя бы с полчаса. Если балласт нагрелся выше 70 градусов Цельсия, то, скорее всего, он имеет межвитковое замыкание. Такой прибор просто не запустит ЛДС, а если и запустит, то из него в скором времени пойдет дым.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Возможен еще один тип неисправности – пробой на корпус. Тут уже понадобится мультиметр, который поставлен в режим измерения максимально больших сопротивлений. Измеряем сопротивление между клеммами и корпусом дросселя, мультиметр должен показывать «бесконечность».

Вот и подошла к концу беседа об электромагнитных дросселях. Теперь ты знаешь, для чего они нужны, как устроены и даже сможешь самостоятельно проверить этот простой, но такой необходимый прибор.

Предыдущая

ЛюминесцентныеОсобенности энергосберегающих люминесцентных ламп

Следующая

ЛюминесцентныеСхема подключения и характеристики люминесцентных ламп на 18 Вт

Дроссели (ПРА) для люминесцентных ламп:устройство,принцип работы и ремонт

Что такое дроссель и для чего он нужен.

Люминесцентные лампы, которые являются представителями типа газоразрядных ламп, невозможно зажечь как обычные лампы накаливания, просто подключив к ним напряжение питающей сети. Просто не произойдет ничего. Чтобы выполнить зажигание такой лампы необходима специальная схема или электронный пускорегулирующий аппарат.

В случае применения простейшей схемы для запуска тлеющего разряда в колбе газоразрядной лампы потребуется стартер и дроссель. Со стартером все понятно. Он требуется только для запуска, после чего он отключается. В работе всегда участвует дроссель. Его задача ограничивать ток, протекающий через лампы. Может показаться, что достаточно резистора. Он и меньшие размеры имеет. Теоретически, в цепи на переменном токе можно ограничивать ток резистором, конденсатором, катушкой индуктивности. Но в отличие от резистора, она обладает реактивным сопротивлением. И это делает его наиболее уместным вариантом, для его использования в качестве балластного элемента. В схеме он подключается последовательно с лампой.

Благодаря реактивному сопротивлению и выполняется защита от лавинообразного нарастания тока.

Устройство дросселя (ПРА).

Внешний вид дросселя

На фотографии представлен дроссель для люминесцентных ламп дневного света. По большому счету он является катушкой индуктивности с металлическим сердечником в корпусе (кожухе) из листового металла. Более современные изготавливаются в термоустойчивом пластиковом корпусе, имеют более низкие массо-габаритные показатели. Это промышленное название (максимально близкий перевод — ограничитель). Его сопротивление по постоянному току порядка 60 Ом.  При проверке мультиметром, в случае индикации бесконечного сопротивления – дроссель неисправен, в обрыве. Если сопротивление менее 55 Ом, это также означает неисправность дросселя. В этом случае он, скорее всего, имеет межвитковое замыкание. Это случалось со старыми ПРА, когда начинает рассыпаться компаунд и происходит отслоение лака с проволоки. В простейшей схеме он выполняет функцию балласта.

Дроссель в разрезе

Сердечник дросселя обычно изготавливается из трансформаторной стали, при этом пластины, входящие в его набор, электрически не контактируют между собой. Это сделано для уменьшения вихревых токов.

Принцип работы дросселя.

Основное, что делает дроссель – это производит сдвиг фазы переменного тока в момент перехода через ноль. За счет этого поддерживается тлеющий разряд в колбе газоразрядной лампы. Для ограничения тока, проходящего через электроды лампы выбран дроссель так как он имеет реактивное сопротивление. Кроме того, любая катушка индуктивности может накапливать энергию.

Для зажигания тлеющего разряда необходим импульс электрического тока, это тоже обеспечивается дросселем.

При подаче питания на схему происходит следующее:

  1. Ток идет по схеме через каушку, электроды лампы и стартер. Он сравнительно не велик, не более 50 мА.
  2. В колбе стартера происходит ионизация газа, температура растет.
  3. Биметаллические контакты замыкаются, сила тока возрастает до 600 мА. Дальнейший ток ограничивается дросселем
  4. Этого тока вполне достаточно для разогрева электродов лампы EL
  5. В лампе EL1 начинает протекать тлеющий разряд, образуется ультрафиолетовое излучение.
  6. Люминофорное покрытие под действием образовавшегося ультрафиолета начинает испускать свет с видимой длиной волны.

Важно помнить, что параметры лампы и дросселя коррелируют. Обычно самостоятельное изготовление дросселя лишено смысла. Сейчас на рынке очень много различной пуско-регулирующей аппаратуры. Дополнительно дроссель снижает помехи и сглаживает пульсации.

Классификация и разновидности дросселей.

В разных схемах дроссели могут выполнять разные функции. Допустим в схеме осветителя на люминесцентной лампе у него одни задачи, в электронике при помощи катушки можно, допустим, произвести развязку разночастотных электронных схем, или использовать в LC-фильтре. Это и определяет классификацию.

 Вид дросселя зависит от его назначения в каждой конкретной схеме. Это могут быть фильтрующие, сглаживающие, сетевые, моторные, особого назначения. В любом случае, их объединяет общее свойство: высокое сопротивление по переменному току и низкое – по постоянному. Этим можно добиться снижения электромагнитных помех и наводок. В однофазных цепях катушку индуктивности можно применить в качестве ограничителя (предохранителя) от бросков напряжения. Функцию сглаживания дроссель выполняет в фильтрах выпрямителей. Обычно применяется LC-фильтр.

Схема подключения дросселя для люминесцентных ламп.

Схема подключения дросселя для люминесцентной лампы

Это простейшая схема для одного источника света. В случае использования двух ламп можно ограничится одним дросселем, но в этом случае, он должен выдерживать суммарную мощность двух ламп.

Схема подключения дросселя для  двух люминесцентных ламп

В данной схеме конденсатор С1 желателен, но он не является обязательной частью схемы. Теоретически вместо стартеров можно поставить обычные кнопки без фиксации. После зажигания светильника эти кнопки необходимо отпустить.

Ремонт дросселя.

Неисправность дросселя можно установить с помощью замены стартера и/или люминесцентной лампы на заведомо исправные. Если в этом случае освещения нет, то причина в нем. Неисправность дросселя можно определить и при помощи мультиметра в режиме измерения сопротивления. Работоспособный электромагнитный дроссель имеет сопротивление около 60 Ом. Допустимое отклонение составляет около 10 процентов. Если сопротивление мало, то это указывает на межвитковое замыкание. Это случается на дросселе, который достаточно долго эксплуатируется. Причина заключается в отслоении лакокрасочной изоляции и замыкании витков. Бесконечное сопротивление указывает (либо вообще нет прозвонки) на обрыв, отсутствие контакта. Скорее всего он просто сгорел, так был скачок напряжения.

Помните что при работе с любыми электроприборами необходимо соблюдать технику безопасности! 

Ремонт дросселя для люминесцентной лампы заключается в разборке: снятии кожуха при его присутствии, разборке пластин сердечника и перемотке катушки. Однако, это нецелесообразный процесс в следствие его трудоемкости и низкой цены нового. Его проще заменить на заведомо исправный. При замене необходимо соблюсти мощностные параметры.

Выводы.

Хоть схема и имеет полувековую историю, она до сих пор остается актуальной. ПРА необходим для работы люминесцентной лампы. Все компоненты производятся и стоят недорого. К достоинствам этой схемы можно отнести ее простоту и доступность компонентов. Обычно дроссель является самым долгоживущим компонентом схемы.

Из минусов отмечено, что при использовании классической схемы при включении освещения несколько секунд наблюдается мерцание. Это плохо отражается на сроке полезной эксплуатации самого источника света. Т.е. Лампа проработает меньше в такое схеме, чем при использовании электронного пускателя.

В плане экономической целесообразности, при частом включении и выключении света использовать такую элементную базу не выгодно, проще приобрести электронный пускатель, хоть его покупка и обойдется дороже, но это будут одномоментные затраты.

Простая Схема Подключения Люминесцентных Ламп

ЭкономияSavedRemoved 0

Обычные лампы накаливания малоэффективны – они выделяют больше тепла, чем света. Да и срок службы их невелик. Подключение люминесцентных ламп позволяет почти в 3 раза сэкономить на оплате электроэнергии. Плюс подобные источники освещения имеют больший диапазон цветов и менее вредны для глаз. Однако для их монтажа требуется приобретение специальных устройств: дросселей или электронных плат ЭПРА.

Читайте также: Интересные идеи для украшения любимой дачи своими руками | 150+ оригинальных фото подсказок для умельцев

Особенности люминесцентных светильников

Читайте также:  Какая должна быть электропроводка в частном доме, укладка своими руками, инструкция для новичков

Устройство люминесцентной лампы

Чтобы понять, каким образом осуществляется подключение люминесцентных ламп, требуется понять принцип их работы. Внешне они выглядят как стеклянные цилиндры, воздух в которых полностью заменен инертным газом, находящимся под небольшим давлением. Здесь же находится небольшое количество паров ртути, способных ускорять ионизацию – движение электронов.

С двух сторон цилиндра расположены электроды. Между ними находится вольфрамовая спираль, покрытая оксидами веществ, способных при пропускании тока и нагреве легко перемещаться на довольно большие расстояния, создавая ультрафиолетовое излучение (УФ).

Читайте также:  [Инструкция] Соединение проводов в распределительной коробке: типы соединений и их применение

Электромагнитный ПРА

Но, так как этот вид излучения невидим, его преобразуют с помощью люминофора (особого состава на основе галофосфата кальция, которым покрыты стенки цилиндра), способного поглощать УФ, взамен выделяя видимые лучи света. Именно от вида люминофора зависит цвет освещения.

После включения устройства и перехода в рабочее состояние сила тока в нем может возрастать за счет падения сопротивления газов. Если не ограничить этот процесс, оно может быстро сгореть.

Для снижения силы тока используют дроссели (ограничители) – винтоспиральные катушки индуктивности, дающие дополнительную нагрузку и способные сдвигать фазу переменного тока и поддерживать желаемую мощность на весь период включения. Ограничительные устройства имеют и иное название: балласты или ПРА (пускорегулирующие аппараты).

Читайте также:  Двухтрубная система отопления частного дома: устройство, типы систем, схемы, компоновка, разводка, монтаж и запуск системы (Фото & Видео) +Отзывы

Электронный пускорегулирующий аппарат

Более совершенными видами балласта являются электронные механизмы (ЭПРА), принцип работы которых будет описан в следующей главе. Для запуска разряда используется пусковое устройство, называемоестартером.

Электромагнитный дроссель или ЭПРА следует подбирать в зависимости от количества ламп и их мощности. Подсоединять предназначенное для двух ламп устройство к одной запрещено. Во избежание выхода прибора из строя подключать ЭПРА без нагрузки, то есть лампы, также не следует.

Читайте также: Ландшафтный дизайн вашего участка своими руками – (130+ Фото идей & Видео) +Отзывы

Принцип действия

Читайте также:  Установка газового котла в частном доме: все необходимые требования для быстрого и законного запуска системы отопления (Фото & Видео) +Отзывы

Принцип действия люминесцентных ламп

Опишем кратко схему взаимодействия стартера, балласта и светильника:

Читайте также: Многолетние цветы (ТОП-50 видов): садовый каталог для дачи с фото и названиями | Видео + Отзывы

Основные этапы подключения

Читайте также:  Газовый баллон на даче: для плиты, обогревателя и других нужд: правила пользования (Фото & Видео) +Отзывы

Схема подключения одного источника освещения к одному дросселю

Схема подключения люминесцентной лампы с дросселем довольно проста:

К сожалению, стартер – не слишком надежное устройство. Плюс при работе лампа может мерцать, негативно влияя на зрение. В принципе, возможно и подключение без него. Заменить эту деталь можно подпружинной кнопкой-выключателем.

Читайте также: Изготовление теплицы своими руками из профильной трубы и поликарбоната: полное описание процесса, чертежи с размерами, полив и обогрев (Фото & Видео)

Монтаж двух ламп

Читайте также:  Секреты шумоизоляции стен в квартире: используем современные материалы и технологии (25+ Фото & Видео) +Отзывы

Варианты подключений

Какое бы количество источников света не требовалось включить в осветительную систему, все они подключаются последовательно. Для запуска двух ламп потребуется соответственно два стартера. Их подсоединяют параллельно.

Итак, опишем процесс подключения сразу 2 люминесцентных ламп:

Если вы поняли принцип этой схемы, то легко сможете этим же способом подключить 3 или 4 люминесцентных лампы.

Читайте также: 56 Самых лучших урожайных сортов огурцов для теплицы: описание и фото | +Отзывы

Пара ламп и один дроссель

Читайте также:  Обогрев теплицы: виды отопления, пошаговые рекомендации обустройства своими руками (20 Фото & Видео) +Отзывы

Схема с одним дросселем

Стартеров здесь понадобится два, а вот дорогостоящий ПРА вполне можно использовать один. Схема подключения в этом случае будет чуть сложней:

Читайте также: Баклажаны: описание и характеристика 53 популярных и необычных сортов для открытого грунта и теплицы (Фото & Видео) +Отзывы

Подключение без дросселя

Читайте также:  Инфракрасный потолочный обогреватель с терморегулятором — современные технологии в вашем доме (Цены) +Отзывы

В данном подключении дроссель не используется

Этот способ используется в основном в старых лампах при выходе из строя балласта. Сделать это можно посредством использования постоянного тока, номинал которого выше обычного. То есть напряжение в момент пуска следует повысить. Сила этого напряжения подбирается исходя из характеристик как сети, так и самого источника света.

Для подключения люминесцентной лампы без дросселя требуется подсоединение диодного моста (или пары диодов). Контакты замыкаются с обеих сторон попарно. На одну сторону источника освещения должен приходиться плюс, на другую минус.

Подобную схему можно использовать даже при сгоревшей нити накаливания. Ведь цилиндр с газом при этом способе будет подпитываться за счет постоянного напряжения. Учтите лишь, что данный способ можно использовать на короткий период – со временем труба быстро потемнеет, а затем из-за выгорания люминофора вовсе перестанет излучать свет.

Читайте также: Горох: описание 43 самых популярных сортов, низкорослые, среднерослые и сорта зернофуражного назначения (Фото & Видео) +Отзывы

Подключение ЭПРА

Читайте также:  Как сделать монтаж водяного теплого пола своими руками: пошагавшая инструкция монтажа на все виды покрытий (20+ Фото & Видео) +Отзывы

Подсоединение ЭПРА (электронного пускового механизма)

Дроссели являются довольно шумными устройствами. Поэтому их последние годы подключают в систему люминесцентного освещения нечасто, заменяя их ЭПРА, цифровыми или аналоговыми.

В стартере подобные устройства уже не нуждаются. По сути, электронные пусковые устройства – это небольшие электронные платы. Они сами способны регулировать уровень напряжения и обеспечивают ровный свет, без мерцания. Плюс они более безопасны и менее пожароопасны в эксплуатации и имеют больший срок службы.

Вариантов реализации ЭПРА может быть немало, но основных способов запуска два:

  • источники предварительно разогревают; это помогает увеличить КПД прибора и снизить его мерцание
  • с использованием колебательного контура; нить накала в этом случае является его частью; при прохождении разряда параметры контура меняются, в результате напряжение падает до требуемого уровня

Избавиться от надоедливого гудения и моргания можно, заменив старый дроссель на современный электронный пускорегулирующий механизм. Для этого следует:

Достоинства и недостатки люминесцентных источников света

Читайте также:  Печь на отработке: виды, устройство, чертежи, инструкция по изготовлению своими руками (Фото & Видео) +Отзывы

Использование ламп для тепличного выращивания растений

ПЛЮСЫ:

  • Первым значительным плюсом таких устройств является существенная экономия электроэнергии. Источники света последнего поколения, работающие по этому принципу, тратят ее в 4-5 раз меньше, чем обычные лампы накаливания.
  • Кроме высокой светоотдачи, положительным моментом является длительный срок службы. Он может составлять 12-25 тыс. часов. Подобные устройства часто используют для контрастного освещения помещений большой площади (офисов, торговых центров, школ) или уличного освещения. Используют их на транспорте, в уличных фонарях, туннелях.

МИНУСЫ:

  • Необходимость подключения дополнительных устройств (стартеров и дросселей)
  • Доминирование в спектре желтого света и искажение цветопередачи освещаемых предметов
  • Значительные габариты колбы, из-за чего становится сложно равномерно перераспределить поток света
  • На силу света в таких источниках способна влиять температура окружающей среды
  • Разогрев лампы происходит не сразу; полную яркость она набирает спустя некоторое время, иногда оно может длится 10-15 минут
  • значительная пульсация света, что может сказаться отрицательно на зрении
  • Наличие, пусть в минимальных количествах ртути, опасной для здоровья человека, растений и животных

Последними разработками ученых стали компактные люминесцентные источники освещения, внешне схожие с обычными лампами накаливания. Они снабжены стандартным патроном, и их можно легко вкрутить в любую люстру или торшер. Никакой модернизации при этом не требуется.

Вся пускорегулирующая аппаратура (ПРА) в них расположена в самом патроне или выносится отдельно в небольшие блоки. Подобные устройства часто называют энергосберегающими.

Сравнение параметров разных источников освещения

Но все же последние годы пользователи предпочитают подключать вместо люминесцентных ламп современные светодиодные. Принцип работы этих устройств существенно отличается. Люминесцентные колбы заполняются газом и парами ртути, и световое излучение образуется за счет разогревания вольфрамовой спирали. В светодиодных устройствах излучателем света является группа диодов или единичный светодиод. Именно он преобразует ток в световые лучи при протекании его через полупроводник.

Подобные устройства не только более прочны и менее опасны (повреждение люминесцентных же грозит попаданием в организм человека ртути). КПД светодиодных источников освещения гораздо больше, поэтому они более экономичны. Схема подключения люминесцентной или светодиодной лампы в обеих случаях максимально проста – достаточно лишь вкрутить ее патрон в цоколь.

Подробно о способах подключения люминесцентных ламп смотрите на следующем видео:

5.5 Total Score

Для нас очень важна обратная связь с нашими читателями. Если Вы не согласны с данными оценками, оставьте свой рейтинг в комментариях с аргументацией Вашего выбора. Благодарим за ваше участие. Ваше мнение будет полезно другим пользователям.

БЕЗОПАСНОСТЬ

6

Оценки покупателей: 2 (1 голосов)

Для чего нужен дроссель в люминесцентных лампах: принцип работы

Дроссель для люминесцентных ламп – это обязательное устройство для нормального функционирования осветительного прибора. Разобравшись в принципе работы такого приспособления можно правильно подключить светильник к электрической цепи самостоятельно.

Для чего нужен?

Люминесцентная лампа не может работать по принципу простой лампы накаливания. Чтобы обеспечить ее функционирование необходимо дополнительное устройство, которое способно создать импульс для электрического пробоя наполненной газом среды. Таким элементом является дроссель. Он поддерживает требуемую мощность в процессе работы светильника.

Чтобы задействовать люминесцентную лампочку необходимо не только обеспечение доступа тока, а и подача напряжения к ней. Для этого подключают дроссель, который ограничивает нарастание движения электрического заряда при подключении к электросети.

Основными функциями ограничивающего ток устройства являются:

  • обеспечение беспрерывной работы лампы независимо от возникающих в электрической сети отклонений напряжения;
  • организация подачи оптимального и безопасного для конкретного светильника тока, способствующего быстрому разогреву при зажигании электродов;
  • стабилизация разрядов тока при номинальных показателях.

С помощью дросселя в люминесцентной колбе происходит формирование разряда за счет образования в обмотке импульса повышенного напряжения.

Принцип работы

Дроссель функционирует в лампе вместе со стартером. Принцип их действия имеет такую последовательность:

  • при возникновении напряжения в лампе электрические заряды поступают в стартер, который состоит из заполненного инертным газом баллона с контактами и конденсатора;
  • за счет напряжения газ ионизируется и по цепи дросселя проходит ток;
  • происходит возрастание силы тока до 0,5 Ампер за счет разогрева контактов из биметалла и газа;
  • далее происходит нагревание катодов, и освобождаются электроды, подогревая в трубке светильника ртутные пары;
  • ионизация завершается при мгновенном замыкании контактов завершение ионизации происходит при мгновенном замыкании контактов;
  • при понижении температуры стартера осуществляется их быстрое размыкание и прекращение подачи тока к катоду и стартеру.

Заряд, сформировавшийся в ртутных парах, обеспечивает ультрафиолетовое излучение, под воздействием которого возникает освещение видимое человеком.

Технические характеристики

Приобретая дроссель нужно внимательно изучать технические характеристики устройства. Он должен соответствовать параметрам газоразрядного осветительного прибора. Существенную роль играет индуктивность дросселя. Такая величина обозначает индуктивное сопротивление устройства, способствующее регулировке поступающего к светильнику электричества.

Немаловажной величиной является коэффициент потери мощности при поддержке необходимых параметров эклектического питания лампы. Также имеет значение качество изделия.

В основном технические данные отличаются в зависимости от мощности дросселя. Согласно такому значению приспособление делят на три группы – «B», «D» и «C». Некоторые электронные модели имеют показатели климатических условий использования.

Электромагнитный дроссель для люминесцентных ламп

Виды

Дроссели бывают двух видов:

  1. Электронный. Такое приспособление работает без подключения стартера. Основными его достоинствами считаются – высокая скорость включения, небольшие габариты и вес изделия, а также способность обеспечить равномерное свечение лампы без мерцаний. Работает электронный дроссель совершенно бесшумно.
  2. Электромагнитный. Такое устройство для люминесцентных светильников подсоединяется параллельно со стартером. Дроссель электромагнитный имеет несложную конструкцию и надежен в использовании. Такие изделия отличаются невысокой стоимостью. К недостаткам данного приспособления причисляют – длительное включение, наличие характерного шума во время работы, возможность мерцаний при запуске, необходимость установки конденсатора.

Согласно типу сетей, в которые подключаются светильники, дроссели различают:

  • бытовые однофазные устройства – 220 Вольт;
  • трехфазные приспособления для люминесцентных ламп промышленного применения – 380 Вольт.

В некоторых моделях дроссель располагается в специальном кожухе, что позволяет размещать его в светильниках наружного расположения. Многие устройства для обеспечения свечения размещены внутри лампу. Такой вариант позволяет надежно защитить дроссель от влияния различных внешних факторов.

Электронный дроссель для люминесцентных ламп

Устройство и схема

Конструкция дросселя вмещает в себя такие компоненты:

  • сердечник, на который намотана проволока из изолирующего материала;
  • специальная смесь для дополнительной защиты обмоточного провода, изготовлена из устойчивых к возгоранию веществ;
  • термоустойчивый корпус для размещения намотки.

Стандартная схема подключения со стартером – это наиболее простой и распространенный вариант подключения люминесцентных ламп. Несмотря на некоторые недостатки, такое подсоединения имеет хорошие показатели.

Стандартная схема подключения люминесцентных ламп

Подключение

Чтобы подключить дроссель по схеме со стартером следует выполнить несколько простых действий:

  • подсоединить стартер к контактам, которые находятся по бокам на выходе осветительного прибора;
  • на свободные выводы подключить дроссель;
  • конденсатор соединить с питающими контактами.

Подключение всех элементов проводится параллельно. За счет конденсатора можно значительно уменьшить сетевые помехи.

Подключение электромагнитного дросселя к люминесцентной лампе

Как проверить исправность?

Дроссель является достаточно прочным и надежным составным элементом люминесцентной лампы. Поэтому выходит из строя устройство очень редко.

Но все же иногда может возникать обрыв его обмотки или перегорание. Также при нарушении изоляционного слоя между витками дроссель перестает функционировать. Как определить исправность дросселя?

Проверка проводится мультиметром. Прибор, настроенный на величину сопротивления подключают к выводам дросселя. При нарушениях в обмотке на измерительном приборе высвечивается бесконечное сопротивление. Минимальные показатели этого значения свидетельствуют о непригодности изоляции или замыкании между витками.

При перегорании обмотки в катушке ощущается характерный паленый запах, который изначально исходит от детали в процессе ее работы. Все описанные характеристики неисправности дросселя в основном относятся к устройствам электромагнитного типа.

Как заменить?

Иногда при выходе дросселя из строя его начинают ремонтировать. Для этого требуются особые знания и навыки. Чаще всего деталь заменяется. Установку нового дросселя может сделать каждый:

  • полностью отключить подачу электроэнергии в доме;
  • снять дроссель;
  • разъединить крепежи и провода, проводящие к светильнику ток;
  • подключить к ним новый дроссель, вставляя на место старого.

Выполнять замену нельзя при простом отключении лампы, так как напряжение от этого не исчезнет.

Дроссель в люминесцентной лампе – это простой, но необходимый для создания свечения элемент. Имея представление о работе такого устройства можно подключать светильник и заменять в нем нерабочие детали без помощи специалиста.

Дроссели Для Люминесцентных Ламп коды ТН ВЭД (2020): 8504, 8504102000, 8504210000

Аппараты пускорегулирующие для люминесцентных ламп: балласты электронные (дроссели) 8504
Аппараты пускорегулирующие для люминесцентных ламп: балласты электронные (дроссели), 8504102000
Аппаратура электрическая, торговой марки ASD: дроссель люминесцентной лампы серии: 1И20, 1И40, 1И70, 1И125, 1И150, 1И250, 1И400; стартер для зажигания люминесцентных ламп, серии «S2», «S10» 8504102000
Дроссель напряжение питания 220 Вольт модели: индукционный 1И20-А, 1И40-А; пускорегулирующие аппараты для люминесцентных ламп, модели: ETL-118-А2, ETL-218-А2, ETL-136-А2, ETL-236-А2, ETL-418-А2, торговой марки LLT 8504102000
Дроссель-балластный элемент для люминесцентных ламп, на напряжение 120 вольт 8504102000
Аппараты пускорегулирующие для люминесцентных ламп напряжением 220 вольт: балласт (дроссель) индукционный, модель DSLF-36 и модель DSLF-30 8504102000
Дроссель для люминесцентных ламп, 8504102000
Электронные дроссели (балласты) для люминесцентных ламп, марка SHOWLIGHT. (Продукция изготовлена в соответствии с директивами № 2014/30/ЕС «Электромагнитная совместимость» от 26.02.2014 года и № 2014/35/ЕС «Низковольтное о 8504102000
Дроссели пускорегулирующие для люминесцентных ламп 8504102000
Дроссели для люминесцентных ламп тип ЛЛ, Дроссели для натриевых ламп тип ДНаТ/ДРИ, Дроссели для ртутных ламп тип ДРЛ 8504102000
Аппараты пускорегулирующие для разрядных, ртутных, ртутных в корпусе, люминесцентных ламп: дроссель, торговая марка «ALB». 8504102000
Оборудование электротехническое не бытового назначения напряжение 220 Вольт: дроссель,пускорегулирующие аппараты для люминесцентных ламп, моделей: 1И20-А, 1И40-А, ETL-118-А2, ETL-218-А2, ETL-136-А2, ETL-236-А2, ETL-418-А2 8504102000
Дроссель напряжение питания 220 Вольт, пускорегулирующие аппараты для люминесцентных ламп модели: индукционный 1И20-А, 1И40-А, ETL-118-А2, ETL-218-А2, ETL-136-А2, ETL-236-А2, ETL-418-А2 8504102000
Пускорегулирующие аппараты для люминесцентных ламп: дроссели 8504102000
Оборудование электротехническое не бытового назначения: дроссель,пускорегулирующие аппараты для люминесцентных ламп, 8504102000
Дроссель люминесцентной лампы серии: 8504102000
Электронные дроссели (балласты) для люминесцентных ламп, марка SHOWLIGHT, артикулы: GPU-0148, GPD-4209. (Продукция изготовлена в соответствии с директивами № 2014/30/ЕС «Электромагнитная совместимость» от 26.02.2014 года и 8504102000
Дроссель напряжение питания 220 Вольт модели: индукционный 1И20-А, 1И40-А; пускорегулирующие аппараты для люминесцентных ламп, модели: ETL-118-А2, ETL-218-А2, ETL-136-А2, ETL-236-А2, ETL-418-А2, 8504102000
Дроссель напряжение питания 220 Вольт торговая марка LLT модели: индукционный 1И20-А, 1И40-А; пускорегулирующие аппараты для люминесцентных ламп, торговая марка LLT, модели: ETL-118-А2, ETL-218-А2, ETL-136-А2, ETL-236-А2, 8504102000
Дроссель напряжение питания 220 Вольт модели: индукционный 1И20-А, 1И40-А; пускорегулирующие аппараты для люминесцентных ламп, модели: ETL-118-А2, ETL-218-А2, ETL-136-А2, ETL-236-А2, ETL-418-А2 8504102000
Дроссель напряжение питания 220 Вольт модели: 1И20-А, 1И40-А ; пускорегулирующие аппараты для люминесцентных ламп, модели ETL-118-А2, ETL-218-А2, ETL-136-А2, ETL-236-А2, ETL-418-А2 8504102000
Дроссель электромагнитный для люминесцентных ламп, 8504210000

Полное руководство по балластам для люминесцентных ламп

Люминесцентная лампа использует электричество, чтобы ртуть испускала ультрафиолетовый (УФ) свет. Когда этот ультрафиолетовый свет (который невидим невооруженным глазом) взаимодействует с покрытием из порошка люминофора внутри трубки, он светится и излучает свет, который мы видим и используем в наших домах.

Но всякий раз, когда мы используем электричество, мы должны контролировать его, иначе мы рискуем разрушить устройство и даже подвергнуть себя опасности. Чтобы регулировать ток, протекающий через люминесцентные лампы, мы используем так называемый балласт.

Что такое балласт в люминесцентном свете?

Балласт (иногда называемый пускорегулирующим аппаратом) — это небольшое устройство, подключенное к электрической цепи светильника, которое ограничивает количество электрического тока, проходящего через него.

Поскольку напряжение в электросети вашего дома выше, чем требуется для работы фонаря, балласт дает свету небольшое повышение напряжения для включения, а затем достаточное количество питания для безопасной работы.

Зачем нужны балласты?

Процесс, который происходит внутри люминесцентного света, включает в себя молекулы газообразной ртути, нагретые электричеством и делающие их более проводящими.Без балласта, чтобы контролировать это, свет будет пропускать слишком большой ток, и он перегорит и, возможно, даже загорится.

Как работает балласт люминесцентного света?

В люминесцентных лампах используется электронный или магнитный балласт. В настоящее время магнитные балласты — это довольно устаревшая технология, от которой производители постепенно отказываются, и поэтому они обычно встречаются только в старых типах фонарей.

Магнитные балласты

Они основаны на принципах электромагнетизма: когда электрический ток проходит по проводу, он естественным образом создает вокруг себя магнитную силу.

Магнитный балласт (также называемый дросселем) содержит катушку из медной проволоки. Магнитное поле, создаваемое проволокой, улавливает большую часть тока, поэтому флуоресцентный свет проникает только в нужном количестве. Это количество может колебаться в зависимости от толщины и длины медного провода. Если вы иногда слышите легкое жужжание или видите, как оно мерцает, причиной этого является изменение тока.

Менее совершенная по конструкции, чем электронные модели, некоторые магнитные балласты не могут работать без стартера.Этот небольшой цилиндрический компонент находится за осветительной арматурой и заполнен газом, который при нагревании позволяет свету включиться. Это называется методом предварительного нагрева.

Метод предварительного нагрева
  1. Включен выключатель света. Внутри обоих концов светильника находятся металлические электроды с прикрепленными нитями. Ток входит в нити, но на данный момент слишком слаб, чтобы зажечь свет, хотя его достаточно, чтобы нагреть газ (неон или аргон) внутри стартера.
  2. Нагретый газ заставляет компоненты внутри стартера пропускать полный ток в нити.Это быстро нагревает газообразную ртуть внутри светильника.
  3. По мере того, как стартер остывает, он блокирует путь тока к нити и заставляет его искать другой путь. Если газообразная ртуть нагревается в достаточной степени, она проводит ток, генерирует свет и затем продолжает гореть. Если он недостаточно горячий, электричество вернется через стартер и снова запустит процесс. Это то, что вызывает мерцание некоторых старых люминесцентных ламп.
  4. Теперь, когда поступает больше электричества, балласт начинает выполнять свою работу по его регулированию.

Поскольку для завершения этого процесса может потребоваться несколько секунд, вы можете увидеть задержку между моментом щелчка переключателя и моментом, когда флуоресцентный свет начинает светиться.

Метод быстрого запуска

Если в вашем осветительном приборе есть две или более люминесцентных лампы, скорее всего, он будет использовать другой метод, известный как быстрый запуск. Этот метод используется в старых пробирках T12 и некоторых T8 и работает без стартера.

  1. В отличие от предварительного нагрева, когда нити получают ток через стартер только для нагрева газообразной ртути, при быстром запуске балласт поддерживает небольшое количество тока, непрерывно протекающего через нити.
  2. Это приводит к ионизации ртутного газа, то есть к заряду, позволяющему проводить электричество.
  3. Поскольку это всего лишь слабый ток, сначала свет будет тускло светиться. Но по мере того, как балласт продолжает проталкивать ток через нити, газ становится все горячее и заряженным, и в результате свет становится ярче. Если ваш фонарь загорается сразу, но для полного его яркости требуется несколько секунд, значит, у него есть пусковой балласт для быстрого запуска.

Одним из преимуществ метода быстрого пуска является то, что, обеспечивая низкий постоянный ток, а не сильный скачок, он продлевает срок службы люминесцентного света.Однако он потребляет больше энергии.

Электронные балласты

Используя более сложные схемы и компоненты, балласты могут управлять током, протекающим через люминесцентные лампы, с большей точностью. По сравнению со своими магнитными аналогами они меньше, легче, эффективнее и — благодаря подаче питания на гораздо более высокой частоте — с меньшей вероятностью будут вызывать мерцание или жужжание.

Некоторые старые электронные балласты используют метод быстрого запуска, описанный выше, в то время как новые и более совершенные модели используют то, что известно как мгновенный запуск и запрограммированный запуск.

Метод мгновенного запуска

Эти балласты были разработаны таким образом, чтобы свет можно было включать и работать с максимальной яркостью при первом нажатии переключателя. Вместо предварительного нагрева электродов в балласте используется повышенное высокое напряжение (около 600 вольт) для нагрева и зажигания нитей, а затем ртутного газа. Хотя это делает их энергоэффективными, это также сокращает их жизнь, поскольку скачки напряжения каждый раз, когда они включаются, со временем повреждают их. По этой причине они обычно используются в помещениях, где свет остается включенным на длительное время, например, в офисах, магазинах и на складах.

Метод запрограммированного запуска

Эти балласты, разработанные для областей, в которых освещение постоянно включается и выключается, предварительно нагревают электроды контролируемым током перед подачей более высокого напряжения для включения света. Часто это функция освещения, которая активируется датчиками движения (например, в туалетах на рабочих местах или в общественных местах) и позволяет люминесцентному свету длиться долгое время.

Признаки выхода из строя магнитного балласта

Когда ломаются магнитные балласты, в этом часто винят лампочку.Обратите внимание на знаки, указывающие на то, что это ваш балласт:

  • Отложенный старт
  • Жужжание
  • Мерцание
  • Низкая мощность
  • Несоответствие уровней освещения

Вы можете узнать, связана ли проблема с балластом, стартером или лампой, с помощью нашего руководства — Простые решения для медленного запуска, мерцания или неисправных люминесцентных ламп.

Проверка балласта мультиметром / вольт-омметром

Чтобы убедиться, что проблема в балласте, вам нужно проверить его с помощью мультиметра.Мультиметр предназначен для измерения электрического тока, напряжения и сопротивления. Они недорогие, и их можно найти в большинстве магазинов электроники.

Эти инструкции предназначены только для ознакомления — убедитесь, что вы ссылаетесь на электрические схемы производителя. Если вам не хватает инструкции по эксплуатации, большинство крупных производителей разместят опи на своих сайтах.

Для проверки вашего балласта:

Вам понадобится

Как к

  1. Отключить питание светильника
  2. Снять кожух фары
  3. Снимите лампочки
  4. Снять балласт с приспособления
  5. Если балласт выглядит сгоревшим, его обязательно нужно заменить
  6. Установите мультиметр на сопротивление
  7. Вставьте первый щуп мультиметра в провод, соединяющий красные провода вместе
  8. Коснитесь вторым щупом зеленого и желтого проводов
  • Если мультиметр не двигается, значит, балласт мертв
  • Если мультиметр все еще работает, стрелка мультиметра должна переместиться вправо.

Если проблема не в балласте, возможно, вам потребуется заменить люминесцентную лампу.Вы можете узнать, как это сделать безопасно, из Руководства по безопасной замене и переработке люминесцентных трубок.

Могу ли я сам заменить балласт?

Да, если у вас есть немного технических ноу-хау, хотя, если вы не уверены, лучше всего попросить электрика сделать это за вас, так как это может быть сложная работа. Более дешевые балласты, вероятно, потребуют большего количества переустановок, чем фитинг с фирменным балластом. Стоит потратить немного больше, чтобы сэкономить деньги и силы в будущем.

Фирменные балласты могут служить долго, поэтому, если вы их замените, вам, вероятно, не придется менять его снова в течение 10 или более лет.

Замена магнитных балластов на электронные

Процесс замены магнитных балластов на электронные балласты довольно прост и понятен. Это направление, в котором движется индустрия освещения, так почему бы не поменять их раньше, чем позже, чтобы оптимизировать свое пространство с помощью лучшего и более тихого освещения?

Вам понадобится:

  • Электронный балласт
  • Кусачки
  • Проволочные гайки

Как пройти

  1. Отключить питание прибора
  2. Открыть приспособление и снять лампу и кожух балласта
  3. С помощью кусачков перережьте оба провода питания (коричневый) и нейтральный (синий), входящие в приспособление.
  4. Закройте провода проволочными гайками.
  5. Используйте кусачки, чтобы отрезать провода, подключенные к розеткам.
  6. Снять магнитный балласт
  7. Вкрутите ЭПРА в приспособление, там же, где был магнитный.
  8. Используйте гайки для соединения проводов розетки.
  9. Подключите силовой и нейтральный провода к соответствующим проводам балласта
  10. Закрепите провода проволочными гайками.
  11. Установить лампу и корпус балласта обратно
  12. Снова включите питание.

При замене балласта существует риск поражения электрическим током, поэтому, если вы не уверены, попросите электрика сделать эту работу за вас.

Нужен ли моей люминесцентной лампе как пускатель, так и балласт?

Отдельные стартеры встречаются только в более старых механизмах управления, поэтому, если приспособлению меньше 15 лет, у него, вероятно, не будет стартера. В более новых лампах процесс, обеспечиваемый стартером, встроен, что делает функцию отдельного стартера избыточной. Если в светильнике есть стартер, это будет очевидно.Вы должны найти маленький серый цилиндр, подключенный к осветительной арматуре.

В чем разница между пусковым переключателем и высокочастотным ПРА?

Высокая частота

Высокочастотный пускорегулирующий аппарат — это современный одиночный балласт, который выполняет функции всех различных компонентов в стандартной пусковой цепи переключателя. Лампы, работающие с высокочастотным балластом, не мерцают, а вместо этого загораются мгновенно из-за того, что частота намного выше.

Выключатель запуска

Switch start — это устройство управления, которое используется в промышленности в течение многих лет.Обычно они считаются устаревшими технологиями, и их создают все меньше производителей. Для запуска выключателя требуется дроссель балласта с проволочной обмоткой. Для запуска переключателя можно заменять различные части, а не весь блок, что можно рассматривать как преимущество.

Люминесцентная лампа — электрическая волна

Принцип работы — Люминесцентные лампы работают за счет ионизации паров ртути в стеклянной трубке. Это заставляет электроны в газе испускать фотоны на УФ-частотах. УФ-свет преобразуется в стандартный видимый свет с помощью люминофорного покрытия внутри трубки.

Рабочий — Трубчатый светильник / стержень, если он состоит из стеклянной трубки длиной 4 фута, внутренняя сторона которой покрыта люминофором и заполнена парами ртути. Он имеет два металлических электрода / нити на обоих концах. Для его работы требуются еще два элемента — 1) Дроссель и 2) Стартер.

Когда мы включаем свет, ток проходит через дроссель, затем один из электродов доходит до стартера. Изначально через стартер ток не течет, поскольку контакты стартера разомкнуты, эти контакты окружены газом.Этот газ начинает нагреваться и ионизирует газ, и через него течет ток. Когда ток начинает течь через стартер, газ начинает охлаждаться, что останавливает прохождение тока, поскольку он деионизирует газ в стартере. Этот процесс повторяется. Во время процесса ионизации / деионизации газа в стартере дроссель генерирует высокое напряжение, которое вызывает ионизацию инертного газа в трубке.

За несколько попыток газ внутри трубки полностью ионизируется (возникает дуга) между двумя электродами, и ток начинает течь от одного электрода к другому, и световые индикаторы трубки светятся (или излучается свет).Как только газ ионизируется, высокое напряжение в значительной степени снижается для нормальной работы лампового освещения, ток через стартер не течет.

Ионизация газообразной ртути заставляет электроны в газе испускать фотоны в ультрафиолетовом свете (или частотах, или излучении). Ультрафиолетовый свет попадает на люминофорное покрытие внутри него, и покрытие светится, давая видимый свет.

НАЗНАЧЕНИЕ ДРОССЕЛЯ

В люминесцентных лампах используются два типа дросселей — электромагнитные и электронные.

Дроссель (или Магнитный дроссель / балласт) — Дроссель предназначен для создания очень высокого напряжения между двумя электродами (на двух концах трубки). Как только газ ионизируется, создается путь (возникает дуга) между двумя электродами, и через него начинает течь ток, тогда ток через стартер не будет. Пускатель перестает работать, а дроссель дает низкое напряжение.

Дроссель ограничивает ток также при возникновении дуги между двумя электродами, чтобы предотвратить перегорание лампы или отказ источника питания.

Дроссель

может вырабатывать высокое напряжение с помощью стартера . Стартер очень часто включает и выключает ток (проходящий через дроссель) (вызывает мерцание света), что создает очень высокое напряжение на дросселе и, следовательно, между концами трубки.

Стартер будет продолжать работать до тех пор, пока газ не будет ионизирован внутри трубки.
Поскольку пусковой механизм прекращает работу, на дросселе больше нет высокого напряжения. И напряжение на дросселе (и между нитями накала) очень сильно снижается.

Электронный балласт — Электронный балласт выполняет функцию как дросселя, так и стартера. Когда электронный дроссель используется со светом, стартер не требуется. Электронный балласт преобразует переменный ток в постоянный, а затем обратно в переменный с более высокой частотой для работы лампы. Электронный балласт выполняет две основные функции:

  1. Для обеспечения начального высокого напряжения, необходимого для ионизации газа, тем самым создавая дугу между двумя электродами.
  2. Для ограничения тока через трубку после ее запуска. Если ток не контролируется, это может привести к скачку напряжения, что приведет к повреждению лампы.

Другие функции электронного балласта включают зажигание, прогрев, постоянный контроль мощности, коррекцию коэффициента мощности и защиту от любых неисправностей лампы и балласта. Электронный балласт работает на частотах от 20 до 80 кГц, в отличие от магнитного балласта, который работает при 50 — 60 Гц. На высокой частоте лампа требует меньше входной мощности, что увеличивает эффективность.Электронный балласт используется для управления люминесцентной лампой, неоновой лампой или газоразрядной лампой высокой интенсивности (HID).

Схема подключения люминесцентной лампы с ЭПРА —

ФУНКЦИЯ СТАРТЕРА

Стартер состоит из небольшой колбы, содержащей газ (обычно аргон) и биметаллического контакта (обычно не соприкасающегося друг с другом). Когда питание подается на приспособление и ток не может проходить через люминесцентную лампу, в пускателе возникает дуга (через газообразный аргон), в нем течет ток, и газ в пускателе нагревается, и один из металлических контактов начинает изгибаться.Когда газ достаточно нагревается, биметалл выходит из положения и создает прямой путь для тока в пускателе. Теперь через нити / электроды люминесцентной лампы протекает максимальный ток, который нагревает газ в лампе.

Между тем, в этой ситуации в стартере не возникает дуги, и стартер начинает охлаждаться, а биметаллический контакт начинает изгибаться обратно в исходное положение. Этот процесс повторяется до тех пор, пока пары ртути не ионизируются в лампе и через них не начинает течь ток.После успешного запуска люминесцентной лампы лампа стартера продолжает охлаждаться, и в конечном итоге биметаллический контакт возвращается в свое положение «покоя». Стартер специально разработан так, чтобы иметь более высокое напряжение пробоя, чем люминесцентная лампа с гораздо большей длиной. У стартера также есть сопротивление двух нитей накала люминесцентной лампы как части его электрической цепи.

Некоторые стартеры также содержат конденсатор (также известный как конденсатор), который может снизить электрические помехи и помочь в процессе запуска.

ДИАПАЗОН ЯРКО-ЛАМП

Люминесцентные лампы доступны в различных формах и размерах — T5, T8 и T12. Где T обозначает трубчатую форму, а число обозначает диаметр трубки. Например, — T5, где 5 означает 5/8 ”. Трубчатые фонари T12 были первыми трубчатыми фонарями диаметром 38 мм (= 12/8 дюйма). Лампы T8 имеют диаметр (25 мм = 8/8 дюйма) меньше, чем T12, в то время как лампы T5 (16 мм) имеют меньший диаметр, чем T8. В наши дни T12 больше не производятся из-за неэффективности.На рынке доступны лампы следующих типов —

.
  • По длине — 4 фута и 2 фута
  • По диаметру — Т12, Т8 и Т5,

Доступны следующие мощности — 36 Вт при длине 4 фута, 18 Вт при длине 2 фута и т. Д.

Некоторые измерения флуоресцентной лампы и ее магнитного балласта

Некоторые измерения флуоресцентной лампы и ее магнитного балласта

Введение

Люминесцентные лампы повсюду; они надежны и энергоэффективны.Даже если сегодня (2017) светодиоды заменяют многие источники света, лампы все еще остаются рентабельны и имеют почти такой же хороший КПД, если не лучше. Старый магнитный (индуктивный) балласт в настоящее время часто заменяют на электронный для большей эффективности, но есть еще очень много старых балласты, которые я думаю, стоит взглянуть на этот простой и эффективная схема.


Подземный паркинг с большим количеством люминесцентных ламп (нажмите для увеличения).

Найти подробные данные о люминесцентных лампах очень сложно и удивительно. достаточно, поисковые системы в Интернете мало помогают. Несмотря на то, что подавляющее большинство электронных компонентов производители детально указывают все электрические характеристики, для люминесцентных ламп трудно найти какое-либо техническое описание с более чем номинальная мощность и механические размеры. Поэтому очень сложно ответить на такие вопросы, как: что бросается в глаза? Напряжение? Какое напряжение горения лампы? Как выглядит ток при включенной лампе? Эти вопросы были у меня в голове много лет, пока я не решил подключить лампу к пробнику высоковольтного осциллографа и сам посмотрю, что продолжается.

Чтобы провести эти измерения с помощью осциллографа, некоторые необычные оборудование чрезвычайно полезно (если не обязательно), например, высокое напряжение дифференциальный зонд и токовый зонд. Поскольку не у всех есть доступ к этим инструментам, я решил поделиться своими измерения на этой странице, потому что я думаю, что они могут быть интересны.

Прямое подключение осциллографа к сети крайне плохое и опасная идея, всегда используйте подходящие и безопасные пробники высокого напряжения.

На этой странице вы не найдете никаких ракетостроительных технологий, а только некоторые измерения и некоторые мысли о люминесцентных лампах, пускателях и их старые индуктивные балласты.

Здесь обсуждаются только люминесцентные лампы с «горячими электродами»; эти лампы в основном используются для освещения. У них есть две клеммы с каждой стороны, чтобы обеспечить циркуляцию тока в электроды для их нагрева. С другой стороны, трубки с «холодными электродами», также называемые CCFL (Cold Катодные люминесцентные лампы) вроде тех, что используются в «неоновых вывесках». имеют только одну клемму с каждой стороны: у них разные электрические характеристики, требуют другой системы питания и не обсуждается на этой странице.


Базовая схема

Базовая схема показана на схеме ниже. Его поведение неоднократно описывалось в литературе и в Интернете. поэтому здесь я дам лишь краткий обзор, чтобы прояснить, о чем я говорю о.


Принципиальная схема.

Схема очень проста и состоит только из люминесцентной лампы, стартер и индуктивный балласт.

Важно отметить, что данная схема типична для сети 230 В. В сети 120 В пиковое напряжение обычно недостаточно велико, чтобы лампы горения и балласты часто проектируются как автотрансформаторы с немного другая схема. Соображения относительно напряжений и токов ламп, вероятно, останутся актуальными, но схема, балласт и возможно также характеристики стартера разные. Поскольку у меня никогда не было возможности поиграть с люминесцентным оборудованием на 120 В, Я не буду обсуждать это здесь, а все соображения на этой странице только действительно для сети 230 В.

В этой схеме отсутствует фазирующий конденсатор и она будет иметь значительную индуктивную реактивное сопротивление. Это было сделано специально, чтобы измерить его cos (φ) . Конечно, в нормальных ситуациях добавляется подходящая схема для компенсация и приведение cos (φ) очень близко к 1. Часто бывает достаточно конденсатора, подключенного параллельно к сети.

Светильник

Люминесцентная лампа обычно состоит из стеклянной трубки с низким смесь газов под давлением, обычно паров ртути и некоторого количества аргона.Давление составляет порядка 5 мбар. Добавление небольшого количества благородного газа к ртути значительно снижает поражающее напряжение (эффект Пеннинга). На концах трубки две вольфрамовые нити, похожие на нити обычных лампы накаливания, которые действуют как электроды для передачи тока в газ и часто называются катодами. Нити часто покрываются веществами с высоким коэффициентом излучения электронов, такими как соединения бария. Ток, протекающий в этих нитях, будет нагревать их, увеличивая их способность испускать электроны еще больше и, следовательно, снижение напряжения требуется для ионизации газа и зажигания лампы.Вот почему эти элкотроды есть два терминала. Когда лампа включена, нити накаливания остаются достаточно горячими, даже если лампа включена. ток, и нет необходимости форсировать дополнительный ток, поэтому другой конец каждой нити накала можно отсоединить.


Внутренняя структура люминесцентной лампы хорошо видна в эта маленькая прозрачная УФ-лампа (нажмите, чтобы увеличить). Внимательно посмотрев на большую версию изображения, можно заметить, что маленькие капельки ртуть на внутренней стенке стакана хорошо видна, особенно в близость электродов.

Ток, протекающий через газ, — очень сложное явление, но, вкратце, Короче говоря, если газ не ионизирован, он ведет себя как изолятор. Если между электродами приложить достаточно большое напряжение, газ ионизируется. и ток течет из-за свободных электронов и положительных ионов (атомов, потерявших один электрон) подпрыгивает. Препятствия между электронами, ионами и нейтральными атомами передают часть кинетической энергия атомам, которые «возбуждаются».Затем энергия переизлучается в виде фотонов, когда они вскоре после этого расслабляются. Активным газом практически любых обычных люминесцентных ламп являются пары ртути: излучает невидимый и вредный свет в ультрафиолетовом (УФ) диапазоне для наших глаз и кожи. Покрытие из флуоресцентных материалов внутри трубки поглощает УФ-свет и преобразует его в видимый свет. Тщательно подобрав подходящее флуоресцентное покрытие, можно получить практически любой цвет свет можно получить.Кроме того, стекло, из которого состоит трубка, непрозрачно для ультрафиолета. радиации и не дает ей выйти наружу.


Трубка, использованная для этих тестов, IBV L36W 4200K, (щелкните, чтобы увеличить).

Для этих измерений я использовал трубку IBV T8 (Ø25,4 мм), 4 фута. (1,2 м) в длину, 36 Вт, холодный белый. На этой конкретной лампе сопротивление постоянному току двух нитей нити равно 5,9 Ом и 5,3 Ом в холодном состоянии. Я также измерил кучу других трубок и нашел аналогичные значения: несколько Ω.

Два следующих графика показывают напряжение и ток в горящем фонарь. Это трубка IBV 4 ‘(1,2 м) T8 (Ø25,4 мм) 36 Вт. Конечно, индуктивный балласт включен последовательно. Обратите внимание, что эта лампа уже горит и ее нити горячие (из-за ток лампы).

На первом графике, где представлены напряжение и ток отдельно интересно отметить, что оба находятся в фазе, даже если не идеально синусоидальной формы.Это показывает, что лампа эффективно поглощает активную мощность. Также стоит отметить, что напряжение близко к прямоугольной. Это типично для газоразрядных трубок, поведение которых очень похоже на поведение газоразрядных трубок. Стабилитрон, где напряжение примерно постоянное независимо от тока. Присмотревшись, можно увидеть, что на самом деле напряжение немного падает, так как ток увеличивается (прямоугольная волна не совсем плоская, но немного понижается посередине, когда ток максимален).Это показывает поведение отрицательного сопротивления, еще одну типичную характеристику газоразрядная трубка. В нормальном резисторе при увеличении тока падение напряжения также увеличивается; здесь все наоборот.


Напряжение лампы (Ch2) и ток лампы (Ch3) горящей трубки 4 ‘(1,2 м) T8 (Ø25,4 мм) 36 Вт.

В конце каждого полупериода ток падает до нуля и лампа гаснет.Как только это произойдет, лампа снова загорится, импульс противоположной полярности появляется на графике, и цикл повторяется. Этот импульс не из-за индуктивного балласта (поскольку ток уже был ноль), это просто сетевое напряжение, которое перезагружает лампу: это работает потому что нити еще горячие (подробнее здесь).

Форма волны напряжения не идеально гладкая: есть небольшие колебания колебания, в данном случае около 20 В pp при 4 кГц.Это еще одно типичное поведение отрицательного сопротивления и газа. разрядная трубка. Даже если я не буду проводить никаких дальнейших измерений, это не должно быть проблема для этой схемы как амплитуда и частота колебания достаточно низки, чтобы беспокоить электромагнитные совместимость.

То же измерение может быть показано в режиме XY (ниже), где по оси X есть напряжение лампы, а по оси Y — ток лампы.Точка с нулевым напряжением и нулевым током находится в центре сетки. Когда лампа горит, напряжение составляет около 100 В (положительное или отрицательное). Также видны паразитные колебания.

Следует отметить один интересный факт: ток лампы немного увеличивается. еще до того, как загорится лампа. На сюжете не идеально горизонтальная линия, а скорее наклонная. «S»: при увеличении напряжения небольшой ток течет прямо далеко.Я не уверен в этом, но я думаю, что это из-за горячих электродов и газ все еще частично ионизирован, что позволяет протекать току. Затем, конечно, когда загорается лампа, ток внезапно увеличивается, и напряжение падает примерно на 100 В.


Зависимость тока лампы (по вертикали) от напряжения (по горизонтали) горящей трубки 4 ‘(1,2 м) T8 (Ø25,4 мм) 36 Вт.

Было бы интересно провести такие же измерения с холодной лампой и посмотрите, что нужно, чтобы ударить по нему без предварительного нагрева нитей.К сожалению, у меня нет подходящего источника переменного тока высокого напряжения, достаточного для зажгите лампу.

Индукционный балласт

Индуктивный балласт — это просто большой индуктор, намотанный на многослойный железный сердечник. Он выполняет две функции: ограничивает ток и генерирует высокое напряжение для зажгите лампу. Люминесцентные лампы имеют отрицательные характеристики сопротивления и, следовательно, нельзя напрямую подключать к сети.Другими словами, если ток в лампе увеличивается, эквивалент сопротивление уменьшается, дополнительно увеличивая ток. Балласт ограничивает ток и предотвращает самоуничтожение лампы.

Индуктивные балласты являются индукторами и поэтому зависят от частоты. Балласт, рассчитанный на 50 Гц, будет иметь слишком большое реактивное сопротивление при 60 Гц. и наоборот.

В лампах малой мощности (несколько ватт) можно также использовать простой резистор; в этом случай, когда импульс высокого напряжения возникает из-за сбоя в электросети индуктивность.Как ни странно, это работает. Обратной стороной является то, что резистор преобразует в тепло примерно такое же количество тепла. мощность как у лампы, что приводит к очень плохому КПД.

Емкостные балласты будут иметь значительно меньшие потери, но из-за нелинейное поведение лампы, это приведет к очень высоким пикам в лампе. Текущий. Кроме того, конденсаторы не могут генерировать пик высокого напряжения, необходимый для зажгите лампу. Емкостные балласты используются только (и часто) в высокочастотной электронике. балласты.


Изображение индуктивного балласта, используемого здесь, IBV 230 В переменного тока 50 Гц 40/36 Вт (2 × 18) 0,43 А (щелкните, чтобы увеличить).

Используемый здесь балласт рассчитан на 230 В, 50 Гц, 40/36 Вт, 0,43 А. Я измерил индуктивность 1,097 Гн и последовательное сопротивление 36,8 Ом в холодном состоянии.

С этим сопротивлением, если короткое замыкание в сети (предполагается, что 230 В 50 Гц), этот балласт будет ограничивать ток на уровне 0.66 А рассеивающий 16,2 Вт. Это выходит за рамки технических характеристик и может перегреться, но наверняка этого не произойдет. мертвая короткая.

Стартер


Куча старых стартеров. Здесь для тестирования используется тот, который находится на внизу слева, FZ FS-U 180-250V ~ 4-65W (щелкните, чтобы увеличить).

Стартер представляет собой небольшую стеклянную трубку, заполненную смесью низких благородные газы под давлением, обычно аргон, неон и гелий под давлением порядка 50 мбар.Внутри трубки два биметаллических электрода, которые изгибаются навстречу друг другу. когда жарко. В холодном состоянии два электрода находятся близко друг к другу, но не соприкасаются. При приложении достаточно высокого напряжения газ ионизируется, ток около 30 мА начинает течь, и газ светится. Примерно через полсекунды тепло, выделяемое свечением, мягко сгибает электроды, которые соприкасаются, закорачиваются вместе, и свечение гаснет. В горячем состоянии стартер ведет себя как при коротком замыкании.Так как закороченный стартер больше не светится, он остывает и контакты снова размыкаются примерно через полсекунды.


Посмотрите фильм, показывающий, как стартер светится, а электроды замыкаются: светящийся-стартер.mp4 (1870811 байт, 14 с, h364, 640 × 480, 15 кадров в секунду).

С помощью стартера и лампочки можно сделать очень красивый и грубый мигалка.

Используемый здесь стартер — FZ FS-U, мощностью 180-250 В ~ 4-65 Вт.Чтобы лучше понять характеристики стартера, его ток как функция приложенного напряжения было измерено и видно на графике ниже:


Зависимость тока стартера (по вертикали) от напряжения (по горизонтали) для пускателя FZ FS-U.

По горизонтальной оси отложено приложенное напряжение, по вертикальной оси — результирующий ток. Ноль для обеих осей находится в центре экрана.Начиная с нуля, по мере увеличения напряжения (в положительном или отрицательном отрицательное направление), ток через пускатель не течет, в результате горизонтальная линия. Как только напряжение станет достаточно высоким (скажем, +220 В или –240 В в этом случае) газ ионизируется и становится проводником; напряжение падает на около 50 В и начинает течь ток (наклонные участки). Если теперь напряжение уменьшается, ток также уменьшается до минимума. напряжение горения пересекается (скажем, ± 180 В в этом случае), где ток падает до нуля (снова на горизонтальной линии).

Для выполнения этого измерения вы должны действовать быстро: как только стартер горячий, он замкнется, и вы будете измерять только вертикальную линию. Вы должны сделать снимок экрана, пока стартер еще светится (нагрев вверх).

Поведение этого (и почти любого стартера, которое мне удалось измерить) является не симметричный. Пороговые напряжения и динамическое сопротивление (наклон наклонных участков) не одинаковы для положительной и отрицательной полярностей.Думаю, из-за несимметричной формы электродов.

Очень часто конденсатор из полистирола подключается параллельно к стартер, который помогает снизить коммутационный шум. К сожалению, я ни разу не видел маркировки на этих конденсаторах, но они обычно измеряют около 5 или 6 нФ. Для проведения вышеуказанного измерения этот конденсатор был временно удален, в противном случае сегменты больше похожи на эллипсы.


Поразительная последовательность

Газ в лампе обычно является изолятором.Чтобы включить его, электроды предварительно нагревают в течение нескольких секунд, затем Импульс напряжения ионизирует газ внутри трубки и запускает лампу. Этот процесс состоит из следующих шагов:

Нулевой уровень

Выключатель питания SW1 разомкнут, лампа выключена и холодная. И лампа LN1, и стартер ST1 не ионизируются и ведут себя как изоляторы. Пока не очень интересно … Теперь мы замыкаем SW1 и подаем питание на схему.

Шаг первый

SW1 замыкается и через балласт L1 появляется напряжение сети. лампа и стартер, которые работают параллельно (через нагреватель нити). Напряжение в сети недостаточно велико для ионизации газа в лампе, который по-прежнему ведет себя как изолятор, но этого достаточно, чтобы ионизировать газ внутри стартер, который ведет себя примерно как неоновое свечение фонарь. Теперь в цепи протекает небольшой ток, который нагревает стартер.Это часто можно наблюдать, поскольку стартер обычно светится слабым синим светом. свет.


Стартер светится при нагреве (нажмите, чтобы увеличить).

На этом этапе был измерен ток 38,5 мА. Слишком низкий для предварительного нагрева электродов в трубке, которые остаются темными; только стартер светится. Из-за индуктивности балласта этот ток является реактивным: cos (φ) из 0.79 было измерено, что соответствует углу φ 38 °. При сетевом напряжении 237 В полная полная мощность составляет 9,1 ВА. а активная мощность — 7,2 Вт.

Продолжительность этой фазы непостоянна и зависит от многих факторов, таких как напряжение в сети, температура окружающей среды, возраст стартера и т. д., но это полсекунды диапазона. Измеренная здесь длительность составила 550 мс.


Напряжение и ток лампы (стартера) при разогреве стартера (светится).

Кривые выше показывают напряжение на пускателе (и, следовательно, также поперек лампы) на этом этапе. Сбои в синусоиде напряжения указывают на каждом цикле, когда именно стартер начинает светиться и при выключении. Здесь стартер ионизируется примерно при 230 В и деионизируется примерно при 180 В. Конечно, каждую половину цикла переменного тока напряжение падает до нуля, и газ в стартер деионизируется. Он снова будет ионизироваться в следующем полупериоде, как только напряжение станет высоким. достаточно.График тока (синий) показывает, что проводимость стартера не нарушена. симметричный: положительные пики имеют более высокий ток, чем отрицательные. Я не знаю точно, почему это происходит, полагаю, это из-за несимметричная форма электродов внутри стартера. В любом случае этот ток небольшой и используется только для нагрева стартера: он не обязательно быть симметричным.

Шаг второй

Стартер нагревается, и внутри него биметаллический переключатель в конце концов замыкается.Теперь у стартера произошло короткое замыкание, он перестает светиться и начинает остывать. Когда стартер замыкается, через нити лампы протекает больший ток, который теперь подключены последовательно через закороченный стартер и нагреваются. Нагревание электродов трубки значительно снижает напряжение зажигания лампы. Кстати, по этой причине запускать холодные лампы в холодную среду не рекомендуется. намного сложнее, чем повторно зажигать горячие лампы. Итак, нити теперь раскалены докрасна, и этот красноватый свет часто может быть наблюдается на концах трубки во время этой фазы.Из-за высокой излучательной способности электродов (белое) свечение Также часто наблюдается флуоресцентное покрытие концов трубок.

Во время этой фазы ток составляет 589 мА. Было измерено cos (φ) , равное 0,23, что соответствует углу φ 77 °. При сетевом напряжении 236 В полная полная мощность составляет 139 ВА. и полная активная мощность 31,5 Вт.


Напряжение и ток лампы при нагреве (короткое замыкание стартера), измеренные через обе нити последовательно.

Обе нити теперь включены последовательно и имеют одинаковый ток и половину Напряжение. Среднеквадратичное значение напряжения на каждой нити накала составляет около 11 В. Каждая нить накала получает около 6,5 Вт, поэтому из 31,5 Вт 13 Вт нагревают электроды, а 18,5 Вт теряется в балласте. Ток и напряжение в нити совпадают по фазе, низкий общий cos (φ) возникает только из-за реактивного сопротивления балласта.

Как и раньше, продолжительность этой фазы также в какой-то степени неустойчива и зависит от много факторов, но это также в диапазоне полсекунды.Измеренная здесь длительность составила 400 мс.

Шаг третий

Когда стартер остывает, биметаллический переключатель снова размыкается, прерывая Текущий. Поскольку катушки индуктивности не «любят» резкие изменения тока, балласт отвечает на это прерывание с помощью всплеска высокого напряжения, который вероятно, ионизируйте лампу и зажгите ее. Поскольку точным моментом открытия стартера в этой контура (определяется охлаждением стартера, его возрастом, общим температура ,…), это может произойти в неподходящий момент цикла переменного тока, когда ток уже довольно низкий; произойдет скачок низкого напряжения и лампа может не ударить. В этом случае на пускателе снова появится полное сетевое напряжение. и весь процесс начнется снова с первого шага. Старые и холодные лампы также требуют более высокого напряжения, и их сложнее наносить удар.


Пусковой импульс высокого напряжения (–2,78 кВ). Некоторые паразитные импульсы высокого напряжения также видны до того, как лампа загорится и возникают из-за плохих контактов стартера.

Яркие плюсы очень разнообразны. Они не всегда попадают в лампу, могут быть положительными или отрицательными и сильно зависят от времени фазового соотношения при открытии, которое является термомеханическим процесс и не синхронизирован с частотой сети. Другими факторами, влияющими на амплитуду импульсов, являются скорость, с которой биметаллические электроды ломаются, газ, заполняющий стартер, его возраст и возможно другие.Показанный здесь — –2,78 кВ, но импульсы от 1 до 3 кВ, как положительные, так и отрицательные стороны наблюдались с помощью одной и той же установки (лампа, стартер и балласт).

Шаг четвертый

Когда лампа загорается, напряжение на ней падает, и именно в этом Трубка держит напряжение около 100 В. Каждую половину цикла переменного тока ток падает до нуля, и лампа должна снова загореться. каждый раз. Из-за фазового сдвига, вносимого индуктивным балластом, когда ток пересекает ноль и меняется на противоположное, напряжение не равно нулю, так что лампа может немедленно возобновить зажигание только с помощью сетевого напряжения, пока лампа горячий и газ не деионизируется слишком долго, нет дополнительного высокого напряжения необходимы импульсы.Если лампу выключить, электроды остынут и почти все ионы в газе рекомбинируют: теперь требуется новая последовательность запуска для снова зажгите лампу.


Напряжение на стартере (а также на лампе) и ток лампы при включенной лампе.

Кривая на рисунке выше показывает, что ток лампы и напряжение лампы находятся в фаза, что имеет смысл, поскольку лампа потребляет активную мощность.Напряжение в сети здесь не показано (к сожалению, у меня нет двух высоких датчики напряжения), но не в фазе из-за реактивного сопротивления балласта. Другими словами, ток лампы и напряжение лампы совпадают по фазе, но из-за балласта, тока лампы и сетевого напряжения нет. Каждый раз, когда лампы выключаются (ток падает до нуля), напряжение сразу же подскакивает до значения более 300 В при противоположной полярности. Это просто напряжение сети, которое появляется на лампе.Из-за значительного фазового сдвига балласта сетевое напряжение составляет близко к своему пику, когда это происходит, что объясняет внезапный всплеск. Поскольку трубка сейчас горячая (и, вероятно, также имеет более низкое напряжение зажигания, чем стартер), он сработает первым, быстро вернув напряжение к напряжение горения (около 100 В) и предотвращение накала стартера.

Если лампа погаснет, напряжение повысится, и стартер ионизируется. начиная с первого шага.Вот что происходит со старыми или поврежденными лампами, которые постоянно мерцают. «надежда» снова включиться в один прекрасный день.


Напряжение и ток сети при включенной лампе. Фазовый сдвиг хорошо виден.

При сетевом напряжении 236 В общий ток составляет 385 мА и cos (φ) составляет 0,49, что соответствует углу φ 60 °. Полная мощность составляет 90,9 ВА, а активная мощность — 44.9 Вт. Мощность, теряемая в балласте, составляет 5,5 Вт, а трубка поглощает 39,4 Вт. приводит к КПД 88%: неплохо для такой простой схемы. Более высокая эффективность может быть достигнута с помощью лучшего индуктивного балласта (встроенный с большим количеством меди и большего количества железа, чтобы минимизировать его потери) или с электронным балласт. Конечно (и к сожалению) лампа не может преобразовать всю энергию в свет.

Краткое описание последовательности поражений

Теперь, когда мы прошли все этапы поразительной последовательности, давайте резюмируйте это и посмотрите, что происходит в более общем плане.На графике ниже можно наблюдать напряжение на пускателе:


Напряжение на стартере (а также на лампе) при всех пусках процесс. Поскольку это измерение проводится на стороне запуска нитей, напряжение нагрева не видно и появляется как короткое замыкание.

Хорошо видны различные шаги. На нулевом шаге (лампа не горит) нет напряжения. Когда SW1 замкнут (первый шаг), стартер ионизируется и начать нагреваться.Примерно через полсекунды закорачивает стартер (шаг два) и электроды лампы начинают нагреваться, пока стартер остывает вниз. Поскольку лампа закорочена стартером, напряжение на стороне стартера нити, измеренные здесь, показывают ноль. Конечно, на нити накала, которые сейчас светятся, есть напряжение, но они не могут соблюдать здесь. Еще через полсекунды стартер снова остывает и открывается. (шаг 3) создание скачка высокого напряжения, который зажигает и включает лампу (шаг четвертый).

Также интересно посмотреть напряжение на балласте (внизу), где эти же шаги можно наблюдать снова. Обратите внимание, что это измерение было проведено на том же оборудовании, но несколько минут спустя, поэтому продолжительность различных шагов будет разные.


Напряжение на балласте во время всего процесса пуска.

Амплитуда этого напряжения дает приблизительное представление о токе, протекающем в схема.

Присутствуют паразитные импульсы, когда предполагается, что стартер закорочен. Это означает, что его контакты не совсем надежны, и иногда он открывается для крошечная доля секунды. Даже если эти импульсы достаточно сильны, чтобы поразить лампу, этого не происходит. потому что при повторном замыкании контактов лампа закорачивается и не может включиться. Он включится только после последнего импульса, когда стартер наконец откроется. и остается открытым.Блуждающие импульсы не вредят, и схема работает нормально.


Посмотрите фильм, в котором показана полная поразительная последовательность: люминесцентная лампа.mp4 (3781910 байт, 11 с, h364, 960 × 540, 24 кадра в секунду).


Прочие соображения

До сих пор мы обсуждали, как запускается лампа и ее электрические характеристики. Давайте теперь посмотрим на некоторые другие соображения, такие как коэффициент мощности или спектр света.

Фазирующий конденсатор

Из-за индуктивности балласта эта схема имеет плохое питание. коэффициент: я измерил cos (φ) , равный 0,49. Поскольку все нагрузки, подключенные к сети, должны иметь cos (φ) как как можно ближе к 1, нужно что-то улучшить. Есть несколько разных решений этой проблемы, но самый простой. (и единственное, что здесь обсуждается) — просто подключить подходящий конденсатор в параллельно с электросетью.

Чтобы узнать необходимую емкость, нам сначала нужно рассчитать реактивную мощность, которую нам нужно компенсировать. Ранее мы обнаружили, что полная мощность S составляет 90,9 ВА, в то время как активная мощность P составляет 44,9 Вт. Если вам интересно, как их измерить, определение кажущейся мощности довольно просто: просто измерьте среднеквадратичный ток сети (здесь I = 385 мА ) и напряжение (здесь U = 236 V ) мультиметром и умножьте их все вместе: S = U · I = 90.9 ВА . Определить активную мощность сложнее: если у вас есть измеритель мощности переменного тока, он сразу выдаст вам P , и это то, что я сделал. В противном случае вы можете измерить фазовый угол φ либо с помощью осциллографом (как и я) или кософиометром (если он у вас есть) и затем вычислить P = S · cos (φ) . Но если у вас нет этого модного оборудования, вы все равно можете использовать метод трех вольтметров.

Зная S и P , можно рассчитать реактивную мощность Q по формуле ниже.Жалко, что в электронике le буквенное обозначение Q используется как для реактивная мощность цепи переменного тока и добротность цепи LC: на этой странице Q — реактивная мощность.

Это не что иное, как теорема Пифагора, где S — это гипотенуза и P и Q — две другие стороны правой треугольник. Со значениями S и P , которые были измерены ранее, мы находим Q = 79.0 var .

Напоминаем, что активная мощность P измеряется в ваттах (Вт), полная мощность S измеряется в вольт-амперах (ВА), а реактивная мощность Q измеряется в реактивных вольт-амперах (вар). Это просто, чтобы различить их и избежать путаницы, даже если физически все эти три единицы имеют измерение силы.

Чтобы компенсировать эту индуктивную реактивную мощность, мы вводим равное количество емкостная реактивная мощность, с конденсатором, включенным параллельно сети.Реактивное сопротивление X , создающее такую ​​реактивную мощность, определяется как:

Где U — напряжение сети. Находим X = 705 Ом . Наконец, с определением необходимой емкости C со следующими уравнение:

Где f — частота сети (в данном случае 50 Гц). Находим 4,5 мкФ. Этот конденсатор должен быть рассчитан на прямое подключение к сети: используйте только конденсаторы класса X (или Y).

ПРА прочие

Доступны не только индуктивные балласты. Индуктор простой серии работает только при напряжении сети 230 В. В странах с сетевым напряжением 120 В, в зависимости от длины трубки и мощность, напряжение может быть слишком низким, чтобы лампа продолжала гореть, поэтому балласты немного отличается и работает как автотрансформатор для увеличения напряжения и ограничить ток в то же время.

Некоторые балласты автотрансформаторного типа могут также работать без стартера, с или без подогрева электродов.Импульс высокого напряжения, необходимый для зажигания лампы, может генерироваться резонансный контур, состоящий из дополнительного конденсатора. Дополнительные обмотки в балласте могут использоваться для предварительного нагрева нитей, если обязательный. Запуск трубки без предварительного нагрева нитей возможен, но чем выше требуемое напряжение обычно вызывает разбрызгивание электродов, которое изнашивается преждевременно.

В настоящее время электронные балласты заменяют старые индуктивные, особенно из-за их более высокой эффективности, лучших пусковых характеристик и возможность приглушить свет.Кстати, диммирование люминесцентных ламп индуктивным балластом возможно. до некоторой степени, но когда яркость ниже заданного порога, основной ток слишком низкий, чтобы нити оставались достаточно горячими, и дополнительный ток нагрева должны циркулировать в электродах, например, с дополнительным трансформатор. К сожалению, снижение яркости до 0% невозможно.

Посмотрите на спектр света

Как объяснялось выше, свет, излучаемый флуоресцентными трубки обычно преобразуются из ультрафиолетового в видимое излучение за счет сочетания флуоресцентные пигменты.При наблюдении с помощью светового спектрометра излучаемый спектр не меняется. непрерывен, как лампа накаливания, но состоит из несколько пиков, каждый из которых более или менее соответствует определенному пигменту. Это объясняет, почему некоторые объекты при флуоресцентном освещении выглядят другого цвета. освещение.


Спектр излучаемого света, пики различных флуоресцентных материалов хорошо видны. Свет кажется холодным белым и имеет температуру 4 200 К.

По горизонтальной оси отложена длина волны в нанометрах, по вертикальной оси. интенсивность света в произвольной, но линейной единице. Эта конкретная трубка имеет холодное белое покрытие и рассчитана на цветовая температура 4’200 тыс.


Заключение

Некоторые измерения и рекомендации по люминесцентным лампам (с горячим катодом) были представлены.На этой странице нет ракетостроения, но есть только некоторые необычная электрическая информация о люминесцентных лампах и их свечении закуски. Надеюсь, вы найдете это полезным.


Библиография и дополнительная литература

[1] А. Даешлер, Г. Кампоново. Elettrotecnica. Edizioni Casagrande SA, Беллинцона, 1974 г., sezione 11.3.
[2] Техническое руководство по применению — люминесцентные лампы. Philips Lighting, 2006 г.
[3] Руководство для начинающих. OSRAM GmbH, 2010 г.


Люминесцентная лампа — обзор

7.6.3 Сравнение с люминесцентными трубками

В случае светодиодных «ламповых» ламп и люминесцентных ламп T8 (или T5) уравнение становится сложнее, но улучшается.В начале 2013 года поступали сообщения о лампах> 100 лм / Вт (светодиодные лампы Green Ray, например, www.greenrayled.com), однако замена лампы по-прежнему не рекомендуется, поскольку светильники разработаны с учетом флуоресцентных ламп и не являются оптимальными. для светодиодных (направленных). Хотя светодиодные чипы достигли эффективности> 200 лм / Вт, эти диоды еще не производятся серийно, а светодиодная лампа будет иметь все компоненты, упомянутые в предыдущих разделах, и « неэффективность » этих компонентов снизит общую эффективность светильника. (в данном случае светильник — светодиодная трубка).Светодиодные лампы улучшаются [19], и ожидается, что в ближайшие два года или около того, их замена станет возможной. Сегодня есть много предприятий, которые решили провести модернизацию светодиодных трубок и довольны результатами. При использовании современных светодиодных трубок оптимистическая экономия составляет 20%, а при довольно большой разнице в ценах окупаемость более длительная, чем приемлемая (если отсутствуют привлекательные местные стимулы). Кроме того, срок службы люминесцентных ламп хорошего качества может достигать 30 000 часов.

Хотя замена ламп всегда будет предпочтительнее для предприятий, которые ограничены в средствах, лучший способ замены флуоресцентных troffers (прямоугольных встраиваемых люминесцентных светильников) на светодиоды — это замена целого светильника на светодиодный. Это в основном связано с тем, что призматические линзы и параболические светильники оптимально разработаны для люминесцентных ламп и формируют световую диаграмму светильника в соответствии со световой диаграммой от ламп, которая является всенаправленной. Светодиоды однонаправлены (как объяснялось в предыдущих разделах), и поэтому эти люминесцентные светильники плохо работают со светодиодами.Замена светодиодных светильников 2 фута x 4 фута (60 см x 120 см) или 2 фута x 2 фута (60 см x 60 см), которые подходят к потолочной плитке, имеют отличные характеристики (100 лм / Вт от Cree, например [20]), эстетичны, имеют индекс цветопередачи 92 (что отлично подходит для замены в розничной торговле), легко управляемы (с регулировкой яркости и с датчиком) и превосходят характеристики типичного люминесцентного светильника. Дополнительную экономию часто можно получить, используя элементы управления, встроенные в светодиодные светильники, которые сложнее для люминесцентных ламп.Экономическое уравнение остается немного сложным для проектов чистой модернизации, если кто-то хочет изменить приспособление, но для новых или реконструируемых проектов окупаемость может быть <3 лет по сравнению с эквивалентным приспособлением T8.

Одна из основных экологических причин, по которым некоторые потребители могут отказаться от люминесцентных ламп (КЛЛ или лампы), заключается в том, что эти лампы содержат ртуть, и, хотя переработка и приветствуется, она, к сожалению, не так распространена, как хотелось бы. Вместо этого использование светодиодов устраняет эту проблему.

Еще один побочный комментарий о лампах: применение, в котором замена светодиодов T8 была чрезвычайно успешной, — это холодильники (в продуктовых магазинах) и складские помещения, где из-за низких температур экономия значительна. Проникновение светодиодных «палочек для холодильников», как их называют, в США почти 100%. Если вы войдете в Walmart, Target, Walgreens, Whole Foods и многие другие крупные сети, вы увидите только светодиоды в их холодильниках. В Великобритании Tesco также оснастила все свои холодильники светодиодами.

Хотя это не является основной темой данной главы, я хотел бы вкратце остановиться на заменах галогенидов металлов, поскольку они становятся все более распространенными. Уличные фонари, прожекторы и настенные светильники, в которых используются металлогалогенные лампы, получают хорошую конкуренцию со стороны светодиодных светильников. В этом случае заменой редко (если вообще когда-либо) является светодиодная лампа, так как мощность, необходимая для светодиодных ламп, высока (> 30 Вт для прожекторов и> 100 Вт для уличных фонарей), а радиатор должен быть хорошо спроектирован и должен получить достаточную циркуляцию воздуха, это светодиодный светильник.Есть несколько светодиодных светильников, которые могут поместиться в существующий MH (металлогалогенный) светильник (например, голова кобры), но только некоторые из них хорошо спроектированы. Обычно экономия составляет 50%. Несколько городов по всему миру проводят большие испытания светодиодного уличного освещения, чтобы определить, какие типы являются оптимальными, включая Лондон, Лос-Анджелес, Сан-Диего, Роли, Нью-Йорк и несколько крупных городов Китая. Самые большие проблемы возникают в местах с очень высокими температурами, например, в регионе Персидского залива на Ближнем Востоке или в Аризоне и Неваде в США.В этих регионах ночные температуры могут оставаться довольно высокими, и поэтому износ светодиодных светильников, вероятно, будет более быстрым, поэтому необходимо выбирать соответствующие светильники. Абу-Даби в ОАЭ (Объединенные Арабские Эмираты) планирует заменить свои традиционные уличные фонари на светодиодные и туннельные светильники после 18-месячного тестирования, которое дало очень удовлетворительные результаты.

Основной момент, который следует понять из этой главы, заключается в том, что существует множество модификаций светодиодов и светильников, которые являются отличной заменой для существующих галогенных ламп / ламп накаливания, а также других технологий, но, как указано в ссылке [19] и ранее в этом документе. глава, покупатель, будьте осторожны! Убедитесь, что для светильника доступны данные LM-79, а также данные о сроке службы, если возможно, этикетка с фактами освещения или рейтинг Energy Star (если нет, то еще один хороший вариант — Design Lights Consortium).

Электронные и электромагнитные балласты для питания люминесцентных ламп, балласты, электронные балласты, электронные балласты, электромагнитные балласты, блок пусковых люминесцентных ламп, электронный балласт, источник питания, ламповый свет, дроссель для ламп, контактор для ламп

Электронный и электромагнитный источник питания (ПРА) для запуска люминесцентных ламп

Электронные балласты

Электронный балласт, или балласт, предназначен для перезапуска цепей люминесцентных ламп.Этот метод обеспечивает более высокую надежность и долговечность ламп. Также при использовании электронного балласта при пуске электросхемы часто не возникает гула и мерцания. Еще одним преимуществом использования электронных балластов является их относительно небольшой вес и габариты.

Схема подключения ЭПРА

Дроссели электромагнитные

ПРА электромагнитные для люминесцентных ламп предназначены для подключения ламп с использованием стартера.Стартер работает только в момент подачи питания на систему зажигания лампы, а после того, как он замкнул цепь и загорелась лампа, напряжение, подаваемое на стартер, снижается. Эта схема подключения менее надежна по сравнению с использованием электронных балластов для ламп, поскольку стартерные двигатели не имеют достаточно длительного срока службы и их необходимо часто менять. А без исправного стартера в этой схеме невозможно зажигание лампы. Также частое включение / выключение ламп создает большую нагрузку на нить накала, что сокращает срок службы ламп.Другими недостатками использования электромагнитных балластов являются: возможное мерцание ламп, относительно длительный срок службы, более высокое потребление энергии по сравнению с электронным балластом, возможное грохотание дроссельной заслонки.

Схема подключения электромагнитного индуктора

Helvar L15A 1×15, круглый дроссель

Helvar L15A 1×15, круглый дроссель — работает с люминесцентной лампой T8 1×15 Вт

Мы иногда используем файлы cookie на наших веб-сайтах, чтобы улучшить ваше взаимодействие с Интернетом.Большинство крупных веб-сайтов тоже так поступают! Чтобы узнать больше о том, как мы используем файлы cookie, ознакомьтесь с нашей Политикой конфиденциальности Хорошо, спасибо

Похоже, в вашем браузере отключен JavaScript. Для наилучшего взаимодействия с нашим сайтом обязательно включите Javascript в своем браузере.

  • Дом
  • Helvar L15A 1×15 Wire Round Choke — работает с люминесцентной лампой T8 1×15 Вт

Tridonic 3 / 4×18 / 33 COMBO 220-240V Балласт (Tridonic 89818236) Описание Работает с 3 люминесцентными лампами T8 мощностью 18 Вт или люминесцентными лампами T8 4×18 Вт Для использования с 3-элементным аккумуляторным блоком Tridonic PC 3 / 4×18-33 COMBO представляет собой комбинацию блок ЭПРА и аварийного освещения для линейных люминесцентных ламп Т8 мощностью 18 Вт

  • Helvar L15A 1×15 Магнитный балласт дросселя с проволочной обмоткой — работает 1 люминесцентная лампа T8 мощностью 15 Вт
  • Работает 1x 15 Вт люминесцентная лампа T8
  • Магнитный балласт с проволочной обмоткой
  • Средний срок службы 100 000 часов
  • Защитное отключение в конце срока службы
Дополнительная информация
Длина (мм) 450
Цвет Черный
Марка Helvar
Тип крышки НЕТ
MPN L15A
Напряжение 220–240 В
Мощность 5 Вт

Как работает люминесцентный стартер?

Флуоресцентный свет не имеет обычной светящейся нити накаливания, но вместо этого содержит пары ртути , которые при ионизации испускают ультрафиолетовый свет.Ультрафиолетовый свет заставляет частицы, которые покрывают внутреннюю часть трубки, светиться или флуоресцировать (подробнее см. Как работают люминесцентные лампы).

Флуоресцентные стартеры используются в нескольких типах люминесцентных ламп. Стартер помогает лампе зажигать. Когда на люминесцентную лампу подается напряжение, происходит следующее:

  1. Стартер (который представляет собой просто таймер) позволяет току течь через нити на концах лампы.
  2. Ток вызывает нагрев и размыкание контактов пускателя, тем самым прерывая прохождение тока. Трубка загорается.
  3. Поскольку люминесцентная лампа с подсветкой имеет низкое сопротивление, балласт теперь служит ограничителем тока.

При включении люминесцентной лампы стартер замыкает выключатель . Нити на концах трубки нагреваются электричеством, и они создают облако электронов внутри трубки. Флуоресцентный стартер представляет собой выключатель с выдержкой времени , который размыкается через секунду или две.Когда он открывается, напряжение на трубке позволяет потоку электронов течь по трубке и ионизировать пары ртути.

Без стартера между двумя нитями нити никогда не будет постоянного потока электронов, и лампа будет мерцать. Без балласта дуга представляет собой короткое замыкание между нитями накала, и это короткое замыкание содержит большой ток. Ток либо испаряет нити, либо вызывает взрыв лампы.

Согласно Sam’s F-Lamp FAQ:

Самый распространенный люминесцентный стартер называется «стартер с тлеющей трубкой» (или просто стартер) и содержит небольшой газ (неон и т. Д.).) заполненная трубка и дополнительный конденсатор подавления радиочастотных помех (RFI) в цилиндрическом алюминиевом корпусе с 2-контактным основанием. Хотя все стартеры физически взаимозаменяемы, номинальная мощность стартера должна соответствовать номинальной мощности люминесцентных ламп для надежной работы и длительного срока службы.

В лампе накаливания есть нормально разомкнутый переключатель.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *