Для чего ставят конденсатор на электродвигатель: Для чего нужен конденсатор в электродвигателе220 вольт

Содержание

Устройство и принцип работы преобразователя частоты

15050

Преобразователи частоты (ПЧ, частотники, частотные преобразователи), которые сейчас используются с асинхронными двигателями, как правило, строятся по схеме двойного преобразования электроэнергии. Первое преобразование осуществляется выпрямителем, второе инвертором.

Основные составные части ПЧ: выпрямитель, звено постоянного тока, инвертор

Рис. 1. Принципиальная схема ПЧ

Выпрямитель строится на выпрямительных диодах либо, что бывает реже, по диодно-тиристорной схеме. Остановимся на самом простом – диодном выпрямлении.

Трехфазное сетевое напряжение с частотой 50 Гц и напряжением 380 В поступает на вход выпрямителя. После выпрямления мы получаем пульсирующее напряжение, оно уже имеет определенного рода пульсации, но постоянным еще не является. Постоянным напряжение становится после попадания на звено постоянного тока и сглаживания пульсаций. Между выпрямителем и звеном постоянного тока расположен так называемый резистор предзаряда.

Резистор предзаряда ограничивает ток заряда конденсаторов в первый момент времени, таким образом предохраняя диоды выпрямителя и сеть от большого броска тока. По мере заряда конденсатора этот резистор отключается и в дальнейшей работе участия не принимает.

Звено постоянного тока представляет собой, как правило, набор конденсаторов довольно большой емкости. Задача этого элемента максимально сгладить пульсации напряжения, привести его к постоянному значению. В нормальной ситуации, когда сетевое переменное напряжение 380 В, значение на звене выпрямленного постоянного тока составляет 540 В. Если сетевое напряжение больше или меньше, то величина выпрямленного напряжения пропорционально увеличивается или уменьшается.

Структура и особенности работы инвентора

После выпрямителя напряжение поступает на инвертор. Инвертор является самой сложной и важной частью преобразователя частоты.

С выхода инвертора сигнал поступает уже непосредственно на электродвигатель. Форма напряжения на выходе инвертора представляет собой набор прямоугольных импульсов разной ширины и определенной длительности. Так строится силовая часть преобразователя частоты.

Схема прибора включает в себя также слаботочные цепи, которые помогают взаимодействию всех основных частей ПЧ. В частности, есть центральный процессор, который является, по сути, мозгом преобразователя, управляет как работой инвертора, так и других частей устройства. Информацию о выходном токе процессор получает от датчиков тока, расположенных на выходных цепях ПЧ. Сигнал с датчиков тока обрабатывается, и процессор далее формирует управляющий алгоритм, чтобы преобразователь мог функционировать в заданных пользователем условиях. Также еще есть источник питания собственных нужд, он питает как процессорную часть, так и часть, отвечающую за измерения выходного тока и измерение напряжения на звене постоянного тока. Помимо этого, есть блок драйверных микросхем, которые в свою очередь управляют транзисторами инверторной части, и еще ряд вспомогательных элементов.

Рис. 2. Принципиальная схема инвертора

Рассмотрим принципиальное устройство инверторной части. Основными элементами силовой части инвертора являются IGBT-транзисторы – мощные, специально спроектированные для работы в ключевом режиме. Это гибрид полевого и биполярного транзисторов. Управляющая часть представляет собой изолированный затвор (как у полевого), а силовая часть повторяет устройство биполярного, у которого имеется коллектор–эмиттер.

Силовые элементы выпускаются в виде сдвоенного модуля, состоящего из двух силовых транзисторов, включенных последовательно. Каждый из транзисторов шунтируется диодом в обратном направлении. Поскольку на выходе должно быть 3 фазы, в конструкции инвертора имеется 3 плеча (см. рис 2).

Рис. 3. Эквивалентная схема работы транзисторов

Чтобы лучше понять принцип работы, рассмотрим эквивалентную схему, где каждый транзистор заменен обычным выключателем. На схеме (рис. 3) условными обозначениями показаны 6 выключателей (транзисторов) и электродвигатель.

Изучим, как формируются выходные токи в обмотках двигателя. За управление транзисторами (переключателями на схеме) отвечает центральный процессор. Он переключает их строго по определенной программе, которая задается изначально алгоритмом его действия.

На схеме показано срабатывание ключей № 1, № 4, № 6. Обратите внимание, категорически не допускается ситуация, когда в одном плече замкнут и верхний ключ, и нижний – это короткое замыкание и отказ изделия. В ситуации, показанной на схеме, ток протекает через открытый ключ № 1, далее заходит в обмотку А электродвигателя, выходит из обмоток B и C, и через открытые нижние ключи №4 и № 6 уходит в минусовое звено.

Для того чтобы поменять ток в обмотке C, нужно переключить ключи среднего плеча. Ток по-прежнему будет протекать через открытый ключ № 1, а уходить через обмотку B и ключ №6 в минусовое плечо. При этом, одновременно, через замкнутый ключ № 3 и втекающий ток через обмотку C уходит в минус. Меняя положение открытых и закрытых ключей можно менять ток в обмотках двигателя. Если это делать по определенной программе, то получится изменяемый ток, как при работе двигателя от сети, то есть будет происходить плавное перетекание одной фазы в другую.

Рис. 4. Протекание тока в инверторе

Теперь вместо упрощенной схемы с выключателями рассмотрим, как протекает ток в цепи транзисторов на примере реального инвертора (рис. 4). По своей сути этот процесс ничем не отличается от рассмотренного ранее ключевого режима, за исключением того, что мы имеем дело с реальным двигателем, который, в принципе, является индуктивной нагрузкой.

В момент закрытия ключа индуктивность двигателя не позволит току мгновенно прекратиться за счет явления самоиндукции. Этот остаточный ток гасится обратными диодами, которые подключены к закрытым транзисторам (см. рис. 4), т.е. в момент выключения (закрывания) транзисторов остаточный ток протекает через обратные диоды, таким образом предотвращаются выбросы напряжения на ключе.

Но поскольку транзистор работает как ключ, он может выдать либо полное напряжение на двигатель, либо не выдать вообще. На практике же нужно получить некое плавное напряжение синусоидальной формы, причем изменяемое как по величине, так и по частоте, для того чтобы иметь возможность управлять скоростью вращения асинхронного двигателя.

Алгоритм работы ШИМ

Далее рассмотрим, как формируется выходное напряжение методом широтно-импульсной модуляции (ШИМ). Для примера возьмем некую гидравлическую модель, которая нам поможет понять, что происходит.

Рис. 5. Гидравлическая модель

Представим себе, что имеется ряд емкостей сосудов. В нижней части у каждого есть отверстия. С помощью некого устройства, которое выдает капельки воды определенных размеров с неизменной частотой, начинаем наполнять эти сосуды. Понятно, что там, где размер капель небольшой, уровень жидкости установится на низком уровне, а чем больше размер капель, тем более высокий уровень будет иметь жидкость в сосуде. Подобрав определенным образом размер капель, можно получить огибающую этих уровней (см. рис. 5). Таким образом получилось изобразить статическую картину, которая дает понимание процесса, как можно из дискретных частей сделать некое подобие аналоговых.

Теперь перейдем к работе в динамике. Представим, что сосуд один, но меняем размер капель, которыми он заполняется. В нижней части рис. 5 показан процесс в этот момент времени – по оси x время (t), по оси y напряжение (U) или, по-другому – уровень воды в сосуде. По мере того, как изменяется размер капли, изменяется и средний уровень жидкости, он возрастает, а затем начинает падать. Это уже динамический процесс. Теперь проводим аналогию с электричеством.

Рис 6. Преобразование дискретного сигнала в аналоговый

На рис.

6 наглядно показано, что происходит с дискретным сигналом, если мы будем открывать ключ и закрывать с определенной частотой и на определенное время: чем шире импульс открытия транзистора, тем выше некий средний уровень напряжения (красная огибающая сигнала).

Введем несколько параметров и объясним их.

  • Период сигнала ШИМ – это время между импульсами. Параметр строго задан и не меняется (из ранее описанного примера это когда капельки все капают с одинаковой частотой, только разного размера).
  • Частота ШИМ-модуляции — обратно пропорциональна длительности периода, это то, что мы имеем как один из параметров при программировании преобразователя частоты. Определяет частоту следования импульсов на выходе каждого из каналов IGBT-модуля.
  • Длительность импульса (t-импульса). Определяется уже самим процессором. То есть процессор в зависимости от заданного значения выходного сигнала в данный момент определяет, на какое время нужно открыть каждый ключ.
    Если рассмотреть общий период изменения этих колебаний, будем иметь период выходной частоты (t-выходная). Это выходная частота, которая будет у нас на выходе преобразователя частоты. От нее прямо пропорционально зависит скорость вращения двигателя.

За тем, чтобы двигатель не перегружался, и напряжение, которое подводится к нему на этой частоте, пропорционально уменьшалось или увеличивалось, следит преобразователь частоты. Он сам определяет необходимое время открытия каждого ключа, то есть определяя t-импульс. И такая ситуация происходит одновременно на трех каналах, ведущих на выход преобразователя на электродвигатель.

Из рисунка видно, что чем чаще будут идти импульсы, тем ближе форма напряжения будет к синусоидальной.

Критерии выбора частоты

На практике частота ШИМ может задаваться пользователем, как правило, в пределах от 1 до 15 килогерц. Для того чтобы получить напряжение по форме более-менее близкой к синусоидальной, частота ШИМ должна быть в 20-30 раз больше максимальной выходной частоты, которую вы хотите получить.

Вы можете выбрать частоту ШИМ произвольно под свою конкретную задачу. Есть несколько параметров, которые определяют выбор.

Рис.7. Параметры, влияющие на выбор частоты ШИМ

1. Длина кабеля до двигателя. Чем длиннее кабель, тем меньшую частоту ШИМ можно задать. Например если у вас длина кабеля 100 метров и больше, то частоту ШИМ больше 2,3 килогерц нет смысла ставить, иначе на этой длине будут большие потери и напрасный расход мощности.

2. Акустический шум двигателя. При питании двигателя от преобразователя частоты слышится посторонний шум. Он зависит именно от частоты ШИМ, которую вы задали. Чем она выше, тем выше тон звука. Если задана чистота более 8,10 килогерц, шума практически не слышно. На более низких частотах (1,3,5 килогерц) этот шум значителен и вызывает дискомфорт.

3. Максимальная выходная частота. Большинство двигателей используют максимальную выходную частоту инвертора 50 гц, поэтому здесь частота ШИМ должна быть не менее чем в 20 раз выше. Здесь можно задавать частоту 1, 2, 3, 5 килогерц из всего диапазона.

Если вы используете высокоскоростной двигатель, например 400-герцевый, то здесь уже частоту ШИМ 1,3,5 килогерц ставить не стоит: на выходе будет не синусоида. Для таких скоростных двигателей частота ШИМ выбирается максимально возможной для данного инвертора, скажем, 15 килогерц.

4. Тепловыделение инверторной части преобразователя. Оно связано с тем, что IGBT-транзисторы, которые формируют выходное напряжение, не идеальны, подвержены разогреву в процессе работы. Для того чтобы эффективно отводить тепло, надо применять соответствующие радиаторы, вентиляторы охлаждения. Чем больше тепловыделение в этой инверторной части, тем более мощные приборы для охлаждения надо использовать.

Потери энергии в частотном преобразователе и способы их снижения

Рассмотрим вопрос тепловыделения в инверторной части преобразователя. Чем определяются потери транзистора?

Рис. 8. Потери энергии

Возьмем условный IGBT-транзистор, который включен в цепь с напряжением 500 вольт, ограничивающий резистор.

Закрытое состояние: на затворе напряжения нет, напряжение на коллекторе равно сетевому напряжению, ток отсутствует, утечки мизерные, тепловыделения никакого нет. Открываем транзистор с помощью напряжения 10 вольт на затворе, это стандартное напряжение практически для всех транзисторных модулей. Транзистор переключается в открытое состояние не мгновенно, у каждого транзистора есть параметр, который называется время включения или время выключения. Типичное значение для самых распространенных транзисторов — 0,2 микросекунды. Время небольшое, но за это время на кристалле транзистора присутствует как напряжение, которое быстро спадает, так и нарастающее значение тока, которое тоже нарастает не мгновенно. В этот момент происходят потери. И чем выше частота ШИМ, про которую мы раньше говорили, чем чаще включается и выключается транзистор, тем больше идет тепловыделения за счет потерь переключений.

Когда транзистор открылся, установился статический режим на какое-то небольшое время, тепловыделение продолжается: оно происходит за счет того, что в момент состояния открытия, напряжение на транзисторе тоже не равно нулю, он определяется потерями на кристалле в открытом состоянии. Типичное его значение 1,5 вольта. Оно может незначительно варьироваться в зависимости от технологии изготовления транзистора и пр.

В этот момент тепловыделение тоже существует, но с потерями в открытом состоянии мы ничего не можем сделать, максимум — применить транзисторы с меньшим напряжением в открытом состоянии. С потерями при переключении мы можем бороться путем уменьшения частоты ШИМ. Это бывает полезно, если преобразователь находится в закрытом шкафу, где он греется больше. Понизив частоту ШИМ, мы можем снизить потери на преобразователе и снизить его температуру.

Общие потери преобразователя частоты в виде тепла составляют около 3%.

Потери на выпрямителе происходят через открытые диоды. Падение напряжения на открытом диоде, а также протекающий через него выпрямленный ток приводят к его нагреву. Звено постоянного тока, состоящее из электролитических конденсаторов большой емкости, тоже нагревается, потому что постоянно происходит процесс заряда и разряда. Также к потерям можно отнести собственные нужды преобразователя частоты: работу вентиляторов охлаждения, электронной схемы, вторичного источника питания и так далее.

Состав типового частотного преобразователя (на примере 75 кВт)

Рис.9. Состав типового преобразователя частоты

Рассмотрим некий преобразователь частоты мощностью 75 кВт с выходным током 150 ампер. В таком преобразователе используются выпрямительные диоды с номинальным током 200 ампер на рабочее напряжение 1600 вольт, их здесь 6 штук. Звено постоянного тока состоит из набора электролитических конденсаторов, они обычно включаются параллельно и последовательно для получения необходимой емкости и рабочего напряжения.

В данном случае суммарная емкость будет равна 6800 микрофарад и рабочее напряжение батареи — 800 вольт. Инверторная часть состоит из IGBT-транзисторов с током в открытом состоянии 300 ампер и рабочим напряжением 1200 вольт. Ниже фотографии некого типичного диодного модуля, он состоит из двух диодов в верхней и нижней части (верхнее и нижнее плечо). И IGBT-транзистор точно также состоит из двух транзисторов, верхнего и нижнего плеча.

В преобразователях малой мощности (до 15, 22 киловатт и меньше) в качестве силового элемента используется матрица IGBT. Выпрямительная часть собрана в виде готового модуля с тремя выводами для подключения переменного напряжения и выходом на плюс-минус звена постоянного тока. Здесь включается резистор предзаряда либо другие элементы между выпрямительной частью и инверторной. Инверторная часть собрана на 6 транзисторах, шунтированных диодами, то есть готовых выходов для подключения на двигатель.

Один из обязательных элементов матрицы IGBT — ключ для управления тормозным резистором. Как правило, матрица IGBT снабжается встроенным терморезистором, который позволяет преобразователю частоты оценивать температуру силовых элементов и соответственно управлять вентиляторами для обдува радиатора.

Реверс однофазного двигателя 220В с конденсатором

Содержание

  • 1 Устройство и принцип работы однофазного асинхронного двигателя 
    • 1.1 Как работает
    • 1.2 Как запускается
    • 1.3 Включение в сеть
    • 1.4 Подбирайте конденсаторы грамотно
  • 2 Разница между асинхронными и коллекторными электродвигателями
    • 2.1 Устройство коллекторных движков
    • 2.2 Устройство асинхронных движков
  • 3 Реверс однофазного асинхронного двигателя с конденсатором
    • 3.1 Смена направления движения привода
    • 3.2 Реверсивное подключение однофазного асинхронного двигателя своими руками
      • 3.2.1 Решение первое: переподключить главную обмотку
      • 3.2.2 Вариант 2: переподключить вспомогательную обмотку
  • 4 Реверс трехфазного двигателя, подключенного к сети с одной фазой
  • 5 Пример реверсивного двигателя

Без однофазных двигателей и их реверса многие бытовые приборы не могут существовать. А узнать о том, как работают повседневные вещи всегда интересно, не так ли? Сегодня поговорим о реверсе однофазных двигателей 220В, приводящих в работу стиральные машины, мясорубки и некоторые инструменты для маникюра.

Однофазный двигатель

Перед тем, как говорить об изменении направления вращения любого двигателя, нужно четко понимать как устроен он и его работа. Поэтому сначала мы поговорим о принципе действия и строении однофазного асинхронного двигателя.

Как работает

Однофазный двигатель на 220В с конденсатором может обладать мощностью от 5 Вт до 10 кВт. Все зависит от конструктивных особенностей машины. Ротор такого привода, как правило, представляет собой короткозамкнутую обмотку по типу «беличьей клетки». Это алюминиевые стержни, залитые в пазы и замкнутые накоротко. 

Обмотки в таком приводе две, несмотря на его название. Они всегда смещены относительно друг друга на 90°. При этом больше места в статоре занимает так называемая главная обмотка.  

Однофазный двигатель получил такое имя из-за того, что вместе с двигателем работает только одна, главная (или рабочая), обмотка. По ней протекает переменный ток, создающий магнитное поле, которое время от времени меняется. Можно сказать, что оно состоит из двух полей, которые вращаются навстречу друг другу, а их амплитуда при этом одинаковая.

Схематическое расположение обмоток

Закон электромагнитной индукции говорит о том, что магнитные потоки в замкнутых роторных витках вызывают появление индукционного тока. Последний, в свою очередь, взаимодействует с тем полем, которое его порождает. Если все моменты сил, которые действуют на ротор равны нулю, деталь не двигается. 

А с началом вращения описанное равенство будет тут же нарушено. Это связано со скольжением витков ротора. Оно будет отличным относительно вращающегося магнитного поля. Следовательно, сила Ампера, которая действует на замкнутые роторные витки со стороны прямого магнитного поля станет больше, чем со стороны обратного магнитного поля.

Возникновение индукционного тока в замкнутых роторных витках возможно только в случае, когда витки пересекают силовые линии поля. Чтобы это произошло, скорость вращения витков должна быть немного меньше той, с которой вращается поле. 

Это и послужило источником названия электроприводов такого типа. Их именовали асинхронными. 

Механическая нагрузка обратно пропорциональна скорости вращения. Это значит, что если увеличивается величина нагрузки, уменьшается скорость вращения. Величина индукционного тока в роторных витках при этом увеличивается. Из этого следует увеличение и механической мощности привода, а также мощности переменного тока, который он потребляет.

Внешний вид обмотки

Подведем небольшой промежуточный итог:

  1. Электроток – причина возникновения пульсирующего магнитного поля в статоре двигателя. Его можно рассматривать как два отдельных поля, которые вращаются навстречу с равной амплитудой.
  2. Если ротор не двигается, оба поля становятся причиной появления моментов, равных нулю, но разнонаправленных.
  3. Когда ротор начинает вращаться в одну из сторон, один из моментов будет преобладать над другим, то есть, вращение двигателя будет происходить только в заданную сторону.
  4. При отсутствии специальных механизмов пуска в двигателе, во время старта соответствующий момент будет нулевым, то есть привод не начнет вращаться.

Как запускается

  1. Фактически, двигатель запускает магнитное поле. Оно начинает вращать ротор – подвижный элемент мотора. Создается оно с помощью двух обмоток: рабочей и пусковой. Пусковая (вспомогательная) по размеру меньше. К электросети ее подключают через индуктивность или емкость. Включается она только в момент запуска. Маломощные моторы обладают замкнутой накоротко пусковой обмоткой.
  2. Осуществление запуска делается с помощью нажатия на кнопку пуска. Ее удерживают несколько секунд, пока ротор разгоняется.
  3. Когда кнопка запуска отпускается, перестает работать пусковая обмотка, то есть двигатель переходит в двухфазный режим работы. Его поддерживает соответствующая компонента переменного магнитного поля.
  4. Пусковая обмотка работает достаточно малое количество времени. Обычно, не более трех секунд. Если увеличить время работы вспомогательной обмотки, двигатель перегреется, что станет причиной возгорания изоляции или поломки всего мотора. Своевременное нажатие пусковой кнопки очень важный момент в работе с однофазным двигателем.
  5. В электродвигателях обычно имеется центробежный выключатель или тепловое реле. Это повышает надежность корпуса машины.
  6. Центробежный выключатель нужен для отключения вспомогательной обмотки во время набора скорости ротором. Пользователь в это не вмешивается, так как процесс полностью автоматизирован.
  7. Тепловое реле нужно, чтобы отключить обе обмотки в случае их перегрева.

Включение в сеть

Чтобы устройство работало, нужна однофазная сеть, напряжение в которой составляет 220 В. То есть, такой двигатель легко подключается в обычную бытовую розетку. Это и является одной из основных причин распространенности таких механизмов. Все бытовые приборы, от мясорубки до соковыжималки, обладают именно такими электроприводами.

Все однофазные асинхронные двигатели на 200 В можно разделить на две подгруппы:Существует 2 типа электромоторов: с пусковой обмоткой и с рабочим конденсатором:

  1. Машины с пусковой фазой. В таких моторах обмотка работает так, как описано выше (отключается, когда двигатель набирает нормальную скорость и работает с одной обмоткой).
  2. С рабочим конденсатором. Тут вспомогательная обмотка не отключается, а работает на протяжении всего времени работы двигателя. Она подключается через конденсатор.

Однофазный двигатель с пусковым конденсатором

Электромотор от одного прибора можно подключить к другому, здесь нет никакой разницы. К примеру, его можно снять с поломанной стиральной машины (если причина поломки не в двигателе, конечно) и поставить в пылесос, газонокосилку или какой-либо станок для обработки.

Мы уже говорили о том, что пусковая и рабочая обмотки перпендикулярны друг другу. Исходя из этого, чтобы появилось вращающееся магнитное поле, ток вспомогательной обмотки должен быть сдвинут перпендикулярно току в главной. 

Это можно осуществить, если подключить к цепи питания фазосмещающий элемент. Обычно, в целях смещения фазы на 90° используют конденсатор. Но можно использовать и пусковой резистор. Он последовательно подключается к вспомогательной обмотке. Так получают сдвиг между токами двух обмоток на 30°. Это хватит, чтобы запустить механизм. Между токами обмоток, чего будет вполне достаточно для старта механизма.

Помимо этого, сдвиг фаз можно осуществить, если использовать пусковую фазу, сопротивление относительно рабочей у которой выше, а индуктивность ниже. Такая обмотка состоит из меньшего количества витков, а провода в ней более тонкие.

Однофазный двигатель с рабочим конденсатором

Но только с конденсатором однофазный электропривод переменного тока будет обладать лучшими пусковыми характеристиками.  

С конденсатором в роли фазосмещающего элемента, электромоторы с одной рабочей фазой могут иметь следующие конструктивные особенности:

  1. Когда работа вспомогательной обмотки происходит с помощью конденсатора и только в момент пуска. Такая цепь хорошо запускается, но выдает мощность ниже номинальной. Пусковая обмотка в таких электродвигателях обладает повышенным активным сопротивлением. 
  2. Вторая версия подключения конденсатора самая популярная. Устройство в ней постоянно подключено к электрическому источнику (в первой схеме только в момент пуска). Такой способ подключения конденсатора обладает не совсем хорошими показателями во время запуска, зато рабочие характеристики у него отменные.
  3. В третьем случае, с подключением двух конденсаторов, также предусмотрено кратковременное включение пусковой обмотки, но осуществляется оно не с помощью конденсатора, а через сопротивление. В итоге получается, так сказать, среднее «арифметическое» между двумя приведенными выше ситуациями. Здесь также требуется кнопка ПНВС, включающая конденсатор только на то время, пока мотор набирает скорость. Только включенными потом будут обе обмотки (пусковая через конденсатор).

 Из всей этой информации можно сделать вывод о том, что первая схема будет актуальна в том случае, когда пусковые характеристики важнее рабочих (это могут быть устройства с тяжелым пуском, например, бетономешалки). А вот рабочий конденсатор пригодится там, где важна рабочая характеристика электродвигателя (вентилятор).

Подбирайте конденсаторы грамотно

Конденсаторы

Для правильного подбора конденсатора нужно знать, какой емкостью он должен обладать. Для этого существует очень сложная формула, но в бытовых условиях будет достаточно и соблюдения нескольких рекомендаций ниже:

  • если устройство будет выполнять функцию рабочего конденсатора, его нужно выбирать из расчета 0,7-0,8 мкФ на 1 кВт мощности привода;
  • если функция будет пусковой, то емкость конденсатора должна быть в 2-3 раза больше.

Рабочее напряжение всех конденсаторов обязательно должно быть на 150% больше, чем рабочее напряжение сети. То есть для сети на 200 В, нужно брать устройство с напряжением минимум 330 В. Для пусковых конденсаторов существуют специальные маркировки со словами Start (Starting). Запуск двигателя с таким прибором будет проходить гораздо лучше, но покупать их необязательно.

Самый простой способ понять отличия между двигателями можно по специальному шильдику – табличек, на который есть все данные о машине. Но если электродвигатель уже подвергался ремонту, доверять этой информации уже нельзя, ведь кто знает, что может вас ждать под корпусом. Так что всегда лучше узнавать нужную информацию опытным путем.

Устройство коллекторных движков

Главное отличие асинхронных и коллекторных двигателей заключается в их устройстве. У коллекторного двигателя в конструкции всегда будут щетки, которые располагаются возле коллектора. Медный барабан, который разделен на секции – тоже один из главных признаков двигателя коллекторного типа.

Их выпускают только однофазными и часто ставят в бытовые приборы. Это связано с возможностью получения большего количества оборотов как на старте, так и после завершения пуска. Они очень удобные, ведь менять их направление легко. Для этого требуется лишь смена полярности. Поменять скорость вращения тоже не сложно: нужно изменить амплитуду напряжения, которое питает прибор. 

Коллекторный двигатель

Главный недостаток коллекторного движка – высокий шум при работе на высокой скорости. Недостатки коллекторных двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.

Еще один минус использования коллекторного электродвигателя – постоянное трение, которое происходит из-за щеток, требует более регулярного техобслуживания. Его отсутствие может привести к полной остановке работы мотора.

Устройство асинхронных движков

В асинхронном двигателе, как и везде, есть статор и ротор. Такой мотор может быть трех или однофазным. Ниже мы рассмотрим однофазную машину, так речь в этой статье именно о ней.

Асинхронные двигатели характерны низким уровнем шума, поэтому их ставят в те приборы, тихая работа которых очень важна. Примером может быть холодильник, кондиционер, сплит-система.

Однофазные двигатели можно поделить на еще два подвида: бифилярные (те, в которых есть пусковая обмотка) и конденсаторные. Их основная разница (мы это уже обсуждали) состоит в продолжительности работы вспомогательных обмоток. В первом случае обмотка выключается сразу после разгона двигателя. Происходит это с помощью специального центробежного выключателя. Важно выключать пусковую обмотку из-за того, что она снижает КПД машины после пуска и даже может привести к его поломке.

Конденсаторные двигатели характерны тем, что пусковая обмотка в них работает даже после начала работы мотора. Обе они расположены перпендикулярно друг другу. Это и позволяет менять направление вращения ротора. Сам конденсатор, как правило, крепят к корпусу привода, что делает его легким для опознавания.

Точнее определить бифилярный или конденсаторный привод можно измерив сопротивление обмоток. Если показатель во вспомогательной обмотке меньше, чем в рабочей хотя бы в два раза – это, скорее всего, говорит о бифилярности машины, а также о том, что эта обмотка является пусковой. Из этого вывода понятно, что должно быть наличие центробежного выключателя или пускового реле. 

Во втором типе однофазных приводов две обмотки всегда в работе, а значит, включаются они с помощью кнопки, тумблера или автомата.

Если мотор был запущен успешно, но вал начал вращаться не в ту сторону, в которую надо, направление его вращения можно изменить. Для этого нужно изменить обмотки пусковой обмотки. Сделать это можно с помощью двухпозиционного переключателя. На его центральный контакт нужно подключить конденсаторный вывод, а на два остальных выводы от фазы и «нуля».  

Смена направления движения привода

По факту, пусковая обмотка в двигателе нужна для того, чтобы заставить ротор двигаться, ведь он может начать вращение только с посторонней помощью. Иначе его не запустить. 

Обе обмотки, рабочая и пусковая, располагаются на статоре, как уже было сказано, перпендикулярно друг другу. Но вот рабочая фаза места занимает в два раза больше, чем пусковая. Ротор в таком двигателе имеет наиболее простую конструкцию. Как правило, это «беличья клетка».

А что было бы при отсутствии вспомогательной обмотки на статоре однофазного двигателя 220В? Что если не подавать туда ток? В таком случае, во время подключения привода к сети в главной обмотке будет возникать магнитное поле и оно будет пульсировать. Ротор при этом начинает пронизывать изменяющийся магнитный поток. Вот только если ротор не был в движении с самого начала, а подача переменного тока будет идти только в главную обмотку, то деталь и не заработает. Все потому что вращательный момент по часовой стрелке и против будет нулевым, то есть причин для начала вращения не будет. Даже несмотря на то, что в роторе будет индуцироваться ЭДС.

А вот есть ротор и вал немного подтолкнуть, он будет продолжать вращаться в заданном стартовым толчком направлении.  На это будет две причины:

  • возникновение ЭДС и соответствующих токов в роторе, которые отталкиваются от магнитного поля согласно закону Ампера;
  • величина результирующего момента по направлению толчка будет больше, чем против его направления.

Как итог – ротор продолжит вращаться. 

Чтобы получить реверс однофазного двигателя 220В с емкостью, нужно лишь позаботиться о подаче пускового толчка в противоположном от изначального направления. Этого можно достигнуть, изменить относительный порядок, в котором чередуются фазы в рабочих и пусковых обмотках.

Чтобы обеспечить подобные условия, потребуется переключение одной из двух обмоток. Другими словами, «полярность» включения выводов обмотки в сеть и конденсатор нужно изменить. Реализация достаточно проста, ведь на однофазных движках всегда есть клеммники, куда выводятся все концы обмоток. Главная обмотка характерна маленьким сопротивлением относительно пусковой, так что обнаружить их с мультиметром в режиме омметра очень легко. 

Лучше всего вывести концы вспомогательной обмотки на переключатель с двумя полюсами без фиксации.

Реверсивное подключение однофазного асинхронного двигателя своими руками

Выбирая схему, по которой будете подключать однофазный асинхронный двигатель, определитесь, понадобиться ли вам осуществлять реверс. Если полноценная работа вашего устройства предполагает переключение направления вращения, логично будет исполнять реверсирование с кнопочным постом. Для вращения в одну сторону достаточно будет и простой схемы, где возможность переключения отсутствует. 

Вы подключили двигатель по схеме, которая не предусматривает реверса, а она вам вдруг понадобился. Что делать в такой ситуации?

Допустим, подсоединенный асинхронный однофазный двигатель с конденсатором уже вращается по часовой стрелке (изображение ниже).

Тут нужно уточнить несколько важных деталей:

  1. Точка А стоит в начале вспомогательной обмотки. Точка В в ее конце. В начальной клемме А – коричневый провод, в конечной – зеленый.
  2. Точка С отмечает начало главной обмотки, точка D – ее конец. Начальный контакт соединен с проводом красного цвета, конечный – с синим.
  3. В какую сторону вращается ротор, указывают стрелки.

Задача перед нами стоит следующая: произвести смену движения ротора в однофазном двигателе не вскрывая при этом его корпус. Ротор должен начать вращение против часовой стрелки.

Решение задачи возможно тремя способами.

Решение первое: переподключить главную обмотку

Для изменения направления движения ротора достаточно изменить положение начала и конца главной обмотки (схематически это изображено на рисунке ниже). Вы можете подумать, что придется все же вскрыть корпус, что достать и перевернуть намотку. Совершенно не так. Работы с концами, выходящими наружу двигателя вполне хватит: 

  1. Обратите внимание на сам корпус: из него видно четыре провода. Два – это концы главной и вспомогательной обмоток, два – их же начало. Ваша задача на этом этапе найти начало и конец только главной обмотки.
  2. С этой парой соединяются еще две линии: это фаза и нуль. Отключите двигатель и перекиньте фазу с начала обмотки на ее конец, а нуль наоборот.

Результат – точки С и D занимают место друг друга. После этого подвижная часть привода начнет движение в противоположную сторону.

Вариант 2: переподключить вспомогательную обмотку

Еще один способ реверса однофазного двигателя 200 В – сменить начало конец теперь уже вспомогательной (пусковой) обмотки аналогично первому варианту:  

  1. Выясните, какие провода из всего вывода (4 провода) принадлежат пусковой намотке.
  2. Сначала конец В вспомогательной был соединен с началом С главной. А начало А было подключено к конденсатору. Если подключить конденсатор к В, соединить начало С и начало А, можно провести реверс. 

Все эти действия приведут к схеме, которая изображена на рисунке выше. Теперь Точки А и В заняли место друг друга, а ротор начал вращаться в другую сторону.

Смена направления вращения ротора двигателя с одной рабочей фазой выполняется гораздо легче, чем трехфазного. Тем не менее в жизни бывают ситуации, когда необходимо осуществить реверс трехфазного двигателя, подключенного в однофазную сеть. Что же делать в такой ситуации? Вначале скажем, что такая возможность есть.

И все же при наличии дома трехфазного двигателя на 380 В, не спешите включать его в розетку. Чтобы использование трехфазного двигателя в однофазной сети было безопасным, схема и подключение электропривода нуждаются в значительном совершенствовании. 

Подключение трехфазного двигателя в сеть с напряжением 220 В требует переключения обмоток и подключения в цепь конденсатора.

Моторный редуктор РД-09

Яркий пример реверсивного двигателя – однофазный двигатель асинхронного типа РД 09. Электропривод РД 9 впервые был выпущен в Советском Союзе и до сих применяется, когда производят дозаторы подачи жидких или сыпучих веществ/материалов, игровые автоматы, следящие системы в автоматизированных приборах.

Главные особенности 09:

  • реверсивный электродвигатель переменного тока;
  • многоступенчатый цилиндрический зубчатый редуктор;
  • размещение двигателя и редуктора в одном корпусе;
  • продолжительный режим работы.

Как пусковой конденсатор помогает обеспечить качество запуска двигателя 101

Содержание

Пусковой конденсатор с потенциальным реле

Как пусковой конденсатор помогает запустить двигатель — Двигатели с раздельными конденсаторами постоянного действия или двигатели PSC используют рабочие конденсаторы для повышения эффективности двигателя во время работы. Пусковой конденсатор обеспечивает ускорение двигателя при запуске. Рабочий конденсатор помогает двигателю работать более эффективно. Многие типы оборудования HVAC используют двигатели PSC в качестве воздуходувок и насосов.

Таким образом, в HVAC у вас будут двигатели в большинстве приложений, включая жилые и коммерческие, которые используют конденсаторы для двигателя, независимо от приложения или цели. Эти двигатели на шаг впереди двигателей с экранированными полюсами, которые были первоначальным типом двигателей, используемых во многих приложениях. К двигателю с экранированными полюсами может быть подведена мощность, и он не будет двигаться или поворачиваться назад от предполагаемого направления.

С появлением двигателей PSC эти проблемы исчезли. Двигатели PSC всегда будут запускаться в том направлении, для которого они спроектированы, за некоторыми исключениями. Даже в этих немногих исключениях двигатель PSC будет сопротивляться повороту в заданном направлении.

В то время как двигатель PSC использует рабочий конденсатор для повышения его эффективности во время работы, также используются некоторые двигатели HVAC, которым также требуется пусковой конденсатор для облегчения запуска. Пусковой конденсатор используется в приложениях, где двигателю требуется форсирование при запуске для преодоления давления или некоторой силы. Помните, что асинхронный двигатель переменного тока переходит от нуля оборотов в минуту до полной скорости (об/мин) за доли секунды.

Таким образом, если двигатель должен запускаться против какой-либо силы, такой как высокое давление, которое холодильный контур должен иметь для запуска компрессора, тогда потребуется некоторая помощь, чтобы дать двигателю компрессора небольшой импульс при запуске. вверх.

Вводим пусковой конденсатор, который будет находиться в цепи всего доли секунды. Тогда реле выведет его из цепи. Реле представляет собой потенциальное реле или, реже, текущее реле. Реле потенциала работает от обратной ЭДС, а реле тока работает от тока. Итак, после изучения основ, как работает конденсатор, чтобы помочь двигателю?

Ответ заключается в том, что конденсатор, будь то пусковой или рабочий конденсатор, изменяет фазовый угол при включении двигателя. Изменяя угол, вы даете двигателю немного больше толчка. Если вы толкаете ротор прямо вниз, вы расходуете энергию неправильным образом, чтобы получить максимальную отдачу от ротора. Однако, если вы толкаете под углом, вы меняете легкость приложения энергии. См. диаграмму ниже.

Как пусковой конденсатор помогает запустить двигатель — показано

На приведенном выше рисунке представьте, что у вас есть колесо и палка. Колесо и палку слева вы собираетесь нажать прямо вниз. Или надавите прямо на колесо. Как вы думаете, насколько легко будет повернуть это колесо, нажимая на него прямо вниз? Теперь посмотрите на иллюстрацию справа. Представьте, что вы ставите палку под углом, а затем толкаете колесо.

Следовательно, колесо будет катиться намного легче, а не толкаться прямо вниз. Так работает конденсатор двигателя в цепи двигателя. Таким образом, он изменяет фазовый угол ЭДС, усиливая его и делая двигатель более эффективным. Независимо от того, есть ли у него пусковой конденсатор или рабочий конденсатор, оба изменяют фазовый угол, чтобы помочь двигателю. Как показано выше. Надеюсь, я ответил на ваш вопрос о том, как пусковой конденсатор помогает запустить двигатель 9.0003

Почему в однофазном двигателе используется конденсатор?

Поскольку крутящий момент двигателя при запуске практически отсутствует. Он нуждается в повышении крутящего момента, особенно в компрессорах. Системы охлаждения находятся под давлением, и для преодоления давления при запуске в некоторых случаях используется пусковой конденсатор. Система охлаждения должна выдерживать давление до 100 фунтов на квадратный дюйм или более в зависимости от требований к статическому давлению для системы охлаждения. Если бы система не выравнивалась от низкой к высокой стороне, давление могло бы быть намного выше. Ответ таков: обеспечить больший крутящий момент для двигателя при запуске.

Как пусковой конденсатор помогает запустить двигатель | Резюме:
  • Электродвигатель с экранированными полюсами не использует рабочий или пусковой конденсатор.
  • Двигатели с экранированными полюсами неэффективны.
  • Двигатели PSC широко используются в ОВКВ.
  • Электродвигатели PSC можно заменить более эффективным двигателем ECM с регулируемой скоростью.
  • Рабочие конденсаторы повышают эффективность работы PSC.
  • Пусковые конденсаторы способствуют запуску двигателя.
  • Реле напряжения или тока отключает пусковой конденсатор от цепи после пуска.
  • Конденсаторы изменяют фазовый угол ЭДС.
  • Изменение фазового угла увеличивает мощность двигателя (см. рисунок выше).
  • Наконец, в трехфазном двигателе конденсаторы не используются.

Технический ресурс: техника охлаждения и кондиционирования воздуха

Пусковой конденсатор двигателя лодочного подъемника C-Face из нержавеющей стали

Поиск товаров