Блок питания из сварочного инвертора: А можно ли использовать сварочный инвертор, как блок питания? — Разговоры

Содержание

Блок питания сварочного инвертора схема

Вашему вниманию представлена схема сварочного инвертора, который вы можете собрать своими руками. Максимальный потребляемый ток – 32 ампера, 220 вольт. Ток сварки – около 250 ампер, что позволяет без проблем варить электродом 5-кой, длина дуги 1 см, переходящим больше 1 см в низкотемпературную плазму. КПД источника на уровне магазинных, а может и лучше (имеется в виду инверторные).

На рисунке 1 приведена схема блока питания для сварочного.


Рис.1 Принципиальная схема блока питания

Трансформатор намотан на феррите Ш7х7 или 8х8
Первичка имеет 100 витков провода ПЭВ 0.3мм
Вторичка 2 имеет 15 витков провода ПЭВ 1мм
Вторичка 3 имеет 15 витков ПЭВ 0.2мм
Вторичка 4 и 5 по 20 витков провода ПЭВ 0.35мм
Все обмотки необходимо мотать во всю ширину каркаса, это дает ощутимо более стабильное напряжение.


Рис.2 Принципиальная схема сварочного инвертора

На рисунке 2 – схема сварочника.

Частота – 41 кГц, но можно попробовать и 55 кГц. Трансформатор на 55кгц тогда 9 витков на 3 витка, для увеличения ПВ трансформатора.

Трансформатор на 41кгц – два комплекта Ш20х28 2000нм, зазор 0.05мм, газета прокладка, 12вит х 4вит, 10кв мм х 30 кв мм, медной лентой (жесть) в бумаге. Обмотки трансформатора сделаны из медной жести толщиной 0.25 мм шириной 40мм обернутые для изоляции в бумагу от кассового аппарата. Вторичка делается из трех слоев жести (бутерброд) разделенных между собой фторопластовой лентой, для изоляции между собой, для лучшей проводимости высоко- частотных токов, контактные концы вторички на выходе трансформатора спаяны вместе.

Дроссель L2 намотан на сердечнике Ш20х28, феррит 2000нм, 5 витков, 25 кв.мм, зазор 0.15 – 0.5мм (два слоя бумаги от принтера). Токовый трансформатор – датчик тока два кольца К30х18х7 первичка продетый провод через кольцо, вторичка 85 витков провод толщиной 0.5мм.

Сборка сварочного

Намотка трансформатора

Намотку трансформатора нужно делать с помощью медной жести толщиной 0. 3мм и шириной 40мм, ее нужно обернуть термобумагой от кассового аппарата толщиной 0.05мм, эта бумага прочная и не так рвется как обычная при намотке трансформатора.

Вы скажите, а почему не намотать обычным толстым проводом, а нельзя потому что этот трансформатор работает на высокочастотных токах и эти токи вытесняются на поверхность проводника и середину толстого провода не задействует, что приводит к нагреву, называется это явление Скин эффект!

И с ним надо бороться, просто надо делать проводник с большой поверхностью, вот тонкая медная жесть этим и обладает она имеет большую поверхность по которой идет ток, а вторичная обмотка должна состоять из бутерброда трех медных лент разделенных фторопластовой пленкой, она тоньше и обернуты все эти слои в термобумагу. Эта бумага обладает свойством темнеть при нагреве, нам это не надо и плохо, от этого не будет пускай так и останется главное, что не рвется.

Можно намотать обмотки проводом ПЭВ сечением 0.5…0.7мм состоящих из нескольких десятков жил, но это хуже, так как провода круглые и состыкуются между собой с воздушными зазорами, которые замедляют теплообмен и имеют меньшую общую площадь сечения проводов вместе взятых в сравнении с жестью на 30%, которая может влезть окна ферритового сердечника.

У трансформатора греется не феррит, а обмотка поэтому нужно следовать этим рекомендациям.

Трансформатор и вся конструкция должны обдуваться внутри корпуса вентилятором на 220 вольт 0.13 ампера или больше.

Конструкция

Для охлаждения всех мощных компонентов хорошо использовать радиаторы с вентиляторами от старых компьютеров Pentium 4 и Athlon 64. Мне эти радиаторы достались из компьютерного магазина делающего модернизацию, всего по 3…4$ за штуку.

Силовой косой мост нужно делать на двух таких радиаторах, верхняя часть моста на одном, нижняя часть на другом. Прикрутить на эти радиаторы диоды моста HFA30 и HFA25 через слюдяную прокладку. IRG4PC50W нужно прикручивать без слюды через теплопроводящую пасту КТП8.

Выводы диодов и транзисторов нужно прикрутить на встречу друг другу на обоих радиаторах, а между выводами и двумя радиаторами вставить плату, соединяющею цепи питания 300вольт с деталями моста.

На схеме не указано нужно на эту плату в питание 300V припаять 12…14 штук конденсаторов по 0.15мк 630 вольт. Это нужно, чтобы выбросы трансформатора уходили в цепь питания, ликвидируя резонансные выбросы тока силовых ключей от трансформатора.

Остальная часть моста соединяется между собой навесным монтажом проводниками не большой длины.

Ещё на схеме показаны снабберы, в них есть конденсаторы С15 С16 они должны быть марки К78-2 или СВВ-81. Всякий мусор туда ставить нельзя, так как снабберы выполняют важную роль:

первая – они глушат резонансные выбросы трансформатора
вторая – они значительно уменьшают потери IGBT при выключении так как IGBT открываются быстро, а вот закрываются гораздо медленнее и во время закрытия емкость С15 и С16 заряжается через диод VD32 VD31 дольше чем время закрытия IGBT, то есть этот снаббер перехватывает всю мощь на себя не давая выделяться теплу на ключе IGBT в три раза чем было бы без него.
Когда IGBT быстро открываются, то через резисторы R24 R25 снабберы плавно разряжаются и основная мощь выделяется на этих резисторах.

Настройка

Подать питание на ШИМ 15вольт и хотя бы на один вентилятор для разряда емкости С6 контролирующую время срабатывания реле.

Реле К1 нужно для замыкания резистора R11, после того, когда зарядятся конденсаторы С9…12 через резистор R11 который уменьшает всплеск тока при включении сварочного в сеть 220вольт.

Без резистора R11 на прямую, при включении получился бы большой БАХ во время зарядки емкости 3000мк 400V, для этого эта мера и нужна.

Проверить срабатывание реле замыкающие резистор R11 через 2…10 секунд после подачи питания на плату ШИМ.

Проверить плату ШИМ на присутствие прямоугольных импульсов идущих к оптронам HCPL3120 после срабатывания обоих реле К1 и К2.

Ширина импульсов должна быть шириной относительно нулевой паузе 44% нулевая 66%

Проверить драйвера на оптронах и усилителях ведущих прямоугольный сигнал амплитудой 15вольт убедится в том, что напряжение на IGBT затворах не превышает 16вольт.

Подать питание 15 Вольт на мост для проверки его работы на правильность изготовления моста.

Ток потребления при этом не должен превышать 100мА на холостом ходу.

Убедится в правильной фразировке обмоток силового трансформатора и трансформатора тока с помощью двух лучевого осциллографа .

Один луч осциллографа на первичке, второй на вторичке, чтобы фазы импульсов были одинаковые, разница только в напряжении обмоток.

Подать на мост питание от силовых конденсаторов С9…С12 через лампочку 220вольт 150..200ватт предварительно установив частоту ШИМ 55кГц подключить осциллограф на коллектор эмиттер нижнего IGBT транзистора посмотреть на форму сигнала, чтобы не было всплесков напряжения выше 330 вольт как обычно.

Начать понижать тактовую частоту ШИМ до появления на нижнем ключе IGBT маленького загиба говорящем о перенасыщении трансформатора, записать эту частоту на которой произошел загиб поделить ее на 2 и результат прибавить к частоте перенасыщения, например перенасыщение 30кГц делим на 2 = 15 и 30+15=45, 45 это и есть рабочая частота трансформатора и ШИМа.

Ток потребления моста должен быть около 150ма и лампочка должна еле светиться, если она светится очень ярко, это говорит о пробое обмоток трансформатора или не правильно собранном мосте.

Подключить к выходу сварочного провода длиной не мене 2 метров для создания добавочной индуктивности выхода.

Подать питание на мост уже через чайник 2200ватт, а на лампочку установить силу тока на ШИМ минимум R3 ближе к резистору R5, замкнуть выход сварочного проконтролировать напряжение на нижнем ключе моста, чтобы было не более 360вольт по осциллографу, при этом не должно быть ни какого шума от трансформатора. Если он есть – убедиться в правильной фазировке трансформатора -датчика тока пропустить провод в обратную сторону через кольцо.

Если шум остался, то нужно расположить плату ШИМ и драйвера на оптронах подальше от источников помех в основном силовой трансформатор и дроссель L2 и силовые проводники.

Еще при сборке моста драйвера нужно устанавливать рядом с радиаторами моста над IGBT транзисторами и не ближе к резисторам R24 R25 на 3 сантиметра. Соединения выхода драйвера и затвора IGBT должны быть короткие. Проводники идущие от ШИМ к оптронам не должны проходить рядом с источниками помех и должны быть как можно короче.

Все сигнальные провода от токового трансформатора и идущие к оптронам от ШИМ должны быть скрученные, чтобы понизить уровень помех и должны быть как можно короче.

Дальше начинаем повышать ток сварочного с помощью резистора R3 ближе к резистору R4 выход сварочного замкнут на ключе нижнего IGBT, ширина импульса чуть увеличивается, что свидетельствует о работе ШИМ. Ток больше – ширина больше, ток меньше – ширина меньше.

Ни какого шума быть не должно иначе выйдут из строя IGBT.

Добавлять ток и слушать, смотреть осциллограф на превышение напряжения нижнего ключа, чтобы не выше 500вольт, максимум 550 вольт в выбросе, но обычно 340 вольт.

Дойти до тока, где ширина резко становиться максимальной говорящим, что чайник не может дать максимальный ток.

Все, теперь на прямую без чайника идем от минимума до максимума, смотреть осциллограф и слушать, чтобы было тихо. Дойти до максимального тока, ширина должна увеличиться, выбросы в норме, не более 340вольт обычно.

Начинать варить, в начале 10 секунд. Проверяем радиаторы, потом 20 секунд, тоже холодные и 1 минуту трансформатор теплый, спалить 2 длинных электрода 4мм трансформатор горечеватый

Радиаторы диодов 150ebu02 заметно нагрелись после трех электродов, варить уже тяжело, человек устает, хотя варится классно, трансформатор горяченький, да и так уже не кто не варит. Вентилятор, через 2 минуты трансформатор доводит до теплого состояния и можно варить снова до опупения.

Ниже вы можете скачать печатные платы в формате LAY и др. файлы

Евгений Родиков (evgen100777 [собака] rambler.ru). По всем возникшим вопросам при сборке сварочника пишите на E-Mail.

В настоящее время наиболее популярным, функциональным и производительным оборудованием для сварки является сварочный аппарат инвертор.

Для сварки зачастую используют инвертор. Он компактный и удобный в пользовании.

В качестве силовых переключателей в таком оборудовании применяются полевые транзисторы высокой мощности. Это позволило существенно уменьшить размеры и массу агрегата. На рынке доступен большой выбор подобного оборудования. Все доступные модели имеют практически одинаковый принцип действия. Единственным недостатком, который может избавить от желания купить такой агрегат, является его достаточно высокая стоимость. Однако вы можете приложить немного усилий и собрать инвертор своими руками.

Особенности самодельного сварочного аппарата инвертора

Устройство сварочного инвертора.

Рассматриваемый сварочный аппарат инвертор состоит из следующих основных элементов:

  • блока питания;
  • драйвера силовых ключей;
  • силовой части.

Самодельный сварочный аппарат инвертор будет иметь следующие характеристики:

  • максимальное значение потребляемого тока — 32 А;
  • ток сварки — не более 250 А;
  • сетевое напряжение — 220 В.

Такой сварочный аппарат инвертор сможет без особых проблем варить с использованием электрода диаметром 3-5 мм и длиной дуги до 10 мм. Коэффициент полезного действия самодельного агрегата ничуть не уступает готовым магазинным приборам для сварки.

Подготовка к сборке сварочного аппарата

Схема блока питания сварочного аппарата инвертора.

Для сборки агрегата вам понадобится следующее:

  • электротехническая сталь;
  • хлопчатобумажная ткань;
  • медные провода;
  • стеклоткань;
  • текстолит.

Для стабилизации напряжения обмотки должны быть выполнены по всей ширине каркаса. Всего в конструкции рассматриваемого сварочного аппарата инвертора будет 4 обмотки:

  • первичная — состоит из 100 витков, ПЭВ 0,3 мм;
  • три вторичные обмотки — одна на 15 витков (ПЭВ 1 мм), другая — тоже из 15 витков (ПЭВ 0,2 мм), третья — из 20 витков (ПЭВ 0,3 мм).

Плата с блоком питания монтируется отдельно. Между ней и силовой частью будет расположен лист металла. Его необходимо электрически прикрепить к корпусу сварочного аппарата инвертора.

Для управления затворками будут использоваться проводники. Их следует припаять на минимальном расстоянии от транзисторов. Они должны попарно скручиваться друг с другом. Сечение особого значения не имеет. Длина же проводников должна быть не более 15 см.

Принципиальная схема инвертора.

Перед сборкой сварочного аппарата инвертора нужно внимательно изучить и разобраться в его принципиальной схеме.

Блок питания рассматриваемого агрегата представляет собой традиционный флайбэк. Первичную обмотку блока нужно будет накрыть экранирующей обмоткой. Она делается из такого же провода. Наложенные витки должны полностью перекрыть первичные и иметь с ними одинаковое направление. Между обмотками устраивается изоляция. Ее можно сделать из лакоткани или малярного скотча.

При настройке блока питания сварочного аппарата вам нужно подобрать такое сопротивление, чтобы напряжение, подаваемое на питание реле, составляло 20-25 В. Подберите надежные и мощные радиаторные элементы для входных выпрямителей. Для этой цели отлично подходят модели, которые использовались в старых компьютерах. Их можно недорого купить на радиорынке.

Схема управления включает всего 1 термический датчик. Он будет размещен внутри корпуса радиатора. На том же радиорынке следует купить ШИМ-контроллер для блока управления. Через его канал регулирования будет осуществляться стабилизация тока в дуге. При помощи конденсатора будет определяться напряжение ШИМ. От самого же напряжения зависит сила тока сварки.

Пошаговая инструкция по сборке сварочного аппарата инвертора

Для обмотки дросселя используйте обмоточный провод.

Прежде всего подготовьте все детали, указанные на принципиальной схеме. Для сборки такого сварочного инвертора можно использовать доступные материалы, которые продаются в любом магазине радиотехники и электроники. Перед тем как использовать детали, удостоверьтесь в их работоспособности.

Подберите готовый дроссель или сделайте его на стальном магнитопроводе. Для изготовления обмотки дросселя используйте провод ПЭВ-2. Нужно сделать 175 витков.

Самые доступные конденсаторы, которые можно использовать для сборки такого сварочного аппарата инвертора, — это конденсаторы К78.

Они широко использовались в старых телеприемниках, поэтому найти их не составит труда. Рабочее напряжение конденсаторов должно быть не меньше 1000 В. Если не удается найти конденсатор с нужным напряжением, используйте несколько элементов, чтобы их общая емкость соответствовала требуемому номиналу.

Для сборки инвертора понадобятся несколько транзисторов.

Купите несколько транзисторов КУ221А небольшой мощности. Не стоит использовать вместо них один мощный транзистор, т.к. из-за этого снизится рабочая частота, а во время проведения сварочных работ будет появляться неприятный громкий звук. Да и неправильно подобранная мощность может привести к тому, что уже очень скоро придется выполнять ремонт оборудования.

При сборке сварочного инвертора выдерживайте требуемые зазоры между обмотками и магнитопроводами. В обмотки заложите пластины из текстолита. Благодаря этому повысится электробезопасность сварочного аппарата и будет обеспечиваться его достаточное охлаждение.

Далее вам нужно прикрепить трансформатор к основанию самодельного сварочного инвертора. Используйте для этого 2-3 скобы. Скобы можно сделать из медной проволоки диаметром от 3 мм. Платы изготавливаются из фольгированного текстолита. Для этого подойдет материал толщиной порядка 0,5-1 мм. В каждой плате следует подготовить 4 узких прорези, благодаря которым будет снижаться нагрузка на выводы диодов.

После того, как Вы вывели ручку тумблера и светодиоды на лицевую сторону, Вы практически получите готовый справочный аппарат.

Все собранные узлы агрегата установите на основание. Его можно сделать из пластины гетинакса. Будет достаточно пластины толщиной 0,5 см. В ее центре нужно сделать круглое окно под вентилятор. Последний обязательно защитите решеткой. Между магнитопроводами должен оставаться воздушный зазор.

Выведите на лицевую сторону основания светодиоды и ручку тумблера, а также зажимы для кабелей и ручку переменного резистора. В результате вы получите практически готовый сварочный аппарат. Эту конструкцию необходимо поместить в кожух из текстолита или винипласта. Стенки кожуха должны иметь толщину от 4 мм. Установите на держатель для электрода кнопку. Ее и подключаемый к ней кабель необходимо надежно изолировать.

Подключение самодельного сварочного аппарата

Схема подключения инвертора к аккумулятору.

Готовый сварочный инвертор нужно подключить в сеть или к аккумулятору. Для подключения к аккумулятору используйте зажимы. Обязательно соблюдайте полярность. Черный зажим идет на»-«, а красный — на «+». В случае если между аккумулятором и бортовой сетью агрегата присутствует соединение, его можно не отсоединять. В момент подключения выходов сварочного инвертора с аккумулятором должна появиться искра.

Подключите устройства к розетке. Розетка должна иметь предохранитель или функцию автоматического выключения. В случае необходимости допускается использование удлинителя до 50 м.

Включите кнопку агрегата. Если все нормально, то загорится зеленый светодиод. Он будет гореть зеленым до тех пор, пока напряжение на аккумуляторе не будет выходить за приемлемые границы.

При подключении и использовании самодельного инвертора нужно учитывать еще один очень важный момент. В том случае, если при работе сварочного инвертора на нагрузку напряжение аккумулятора снизится до 10,5 Вт и будет продолжать падать в течение более чем 1 минуты, аппарат автоматически отключится. Это предотвратит полную разрядку аккумулятора и избавит от необходимости его ремонта. Менее продолжительные падения напряжения не навредят ни сварочному аппарату, ни аккумулятору, ни сети.

Обслуживание и ремонт сварочного аппарата: основные моменты

Периодически нужно проверять работоспособность каждого основного элемента сварочного аппарата. Это позволит выполнять его ремонт как можно реже. Если агрегат стал работать неправильно или вовсе прекратил функционировать, нужно незамедлительно найти причину поломки и выполнить соответствующий ремонт.

Для этого вам могут понадобиться следующие инструменты:

Функциональные возможности сварочного инвертора.

Прежде чем выполнять ремонт сварочного инвертора, нужно разобраться в его устройстве. Одним из главнейших элементов инвертора является выпрямитель. Именно он преобразует переменный ток в постоянное напряжение. За счет сетевого фильтра обеспечивается сглаживание питания. Транзисторная схема формирует однофазное высокочастотное напряжение. При помощи блока управления можно регулировать работу ключей посредством сигналов обратной связи по напряжению и току и менять режимы работы инвертора. Сварочный трансформатор снижает напряжение, затем оно выпрямляется при помощи блока вентилей и поступает на электрод.

Прежде чем приступать к ремонту, вам нужно будет снять крышку корпуса аппарата и продуть его обыкновенным пылесосом. Труднодоступные места можно очистить при помощи мягкой сухой кисти.

Функциональная схема источника питания инверторного сварочного аппарата.

Ремонт аппарата начинается с проверки входной цепи. Вам нужно проверить, поступает ли в инвертор напряжение. В случае если входное напряжение присутствует, изучите блок защиты. При необходимости произведите ремонт или замену предохранительного элемента.

Проверьте работу системы контроля и температурного датчика. Сверьте полученные измерения с номинальными. Если датчик работает неправильно, нужно будет его заменить, т.к. выполнить ремонт этого элемента не получится.

Изучите рабочие органы сварочного аппарата. Если заметны потемнения или признаки плохой пайки, проверьте соответствующие цепи агрегата при помощи тестера. Плохие контакты приводят к перегреву аппарата, его поломке и достаточно трудоемкому и дорогостоящему ремонту. Все замеченные неисправности нужно сразу же устранить. Разболтавшиеся разъемы затяните, а некачественные соединения пропаяйте.

Если имеет место нестабильное горение дуги, разбрызгивание металла или прилипание электрода, нужно настроить ток и подобрать другие электроды. Проверьте длину и сечения кабеля. Сравните их с номинальными. При наличии отклонений кабель нужно заменить.

Если во время работы сварочного аппарата загорается индикатор перезагрузки, это верный признак превышения продолжительности работы. Из-за этого инвертор попросту перегреется и отключится автоматически. Однако лучше самостоятельно отключить агрегат и дать ему остыть. После того как температура снизится до допустимого значения, работу можно продолжить с обязательным соблюдением температурного и временного режима.

Благодаря своей мобильности сварочные инверторные аппараты получили широкое применение в быту и на производстве. Они обладают огромными преимуществами по сравнению со сварочными трансформаторными агрегатами для сварочных работ. Принцип действия, устройство и их типовые неисправности должен знать каждый. Не у всех есть возможность приобрести сварочный инвертор, поэтому радиолюбители выкладывают схемы сварочного инвертора своими руками в интернет.

Общие сведения

Трансформаторные сварочные аппараты стоят сравнительно недорого и легко ремонтируются из-за их простого устройства. Однако они обладают значительным весом и чувствительны к напряжению питания (U). При низком U производить работы невозможно, так как происходят значительные перепады U, в результате которого могут выйти из строя бытовые приборы. В частном секторе часто бывают проблемы с линиями электропередач, так как в бывших странах СНГ большинство ЛЭП требуют замены кабеля.

Электрический кабель состоит из скруток, которые часто окисляются. В результате этого окисления возникает рост сопротивления (R) этой скрутки. При значительной нагрузке они нагреваются, а это может привести к перегрузке ЛЭП и трансформаторной подстанции. Если подключать сварочный аппарат старого образца к счетчику электроэнергии, то при низком U будет срабатывать защита («выбивать» автоматы). Некоторые пытаются подключить сварочник к счетчику электроэнергии, нарушая закон.

Подобное нарушение карается штрафом: потребление электроэнергии происходит незаконно и в больших количествах. Для того чтобы сделать работу более комфортной — не зависеть от U, не поднимать тяжести, не перегружать ЛЭП и не нарушать закон — нужно использовать сварочный аппарат инверторного типа.

Устройство и принцип действия

Сварочный инвертор устроен так, что подойдет и для домашнего применения, и для работы на предприятии. Он способен при небольших габаритах обеспечить стабильное горение сварочной дуги и даже использовать ток сварки, значительно превышающий показатель обыкновенного сварочного аппарата. Он использует ток высокой частоты для генерации сварочной дуги и представляет собой обыкновенный импульсный блок питания (такой же, как и компьютерный, только с большей силой тока), что и делает схему сварочного аппарата несложной.

Основные принципы его работы следующие: выпрямление входного напряжения; преобразование выпрямленного U в высокочастотный переменный ток при помощи транзисторных ключей и дальнейшее выпрямление переменного U в постоянный ток высокой частоты (рисунок 1).

Рисунок 1 — Схематическое устройство сварочника инверторного типа.

При использовании ключевых транзисторов высокой мощности происходит преобразование постоянного тока, который выпрямляется при помощи диодного моста в высокочастотный ток (30..90 кГц), что позволяет снизить габариты трансформатора. Выпрямитель на диодах пропускает ток только в одном направлении. Происходит «отсечение» отрицательных гармоник синусоиды.

Но на выходе выпрямителя получается постоянное U с пульсирующей составляющей. Для преобразования его в допустимый постоянный ток с целью корректной работы ключевых транзисторов, работающих только от постоянного тока, используется конденсаторный фильтр. Конденсаторный фильтр представляет собой один или несколько конденсаторов большой емкости, которая позволяет заметно сгладить пульсации.

Диодный мост и фильтр составляют блок питания для инверторной схемы. Вход инверторной схемы выполнен на ключевых транзисторах, преобразовывающих постоянное U в переменное высокой частоты (40..90 кГц). Это преобразование нужно для питания импульсного трансформатора, на выходе которого получается высокочастотный ток низкого U. От выходов трансформатора запитывается высокочастотный выпрямитель, а на выходе генерируется высокочастотный постоянный ток.

Устройство не очень сложное, и любой сварочник-инвертор поддается ремонту. Кроме того, существует множество схем, по которым можно сделать самодельный инвертор для сварочных работ.

Самодельный сварочный аппарат

Собрать инвертор для сварки просто, так как существует множество схем. Возможно сделать сварку из блока питания компьютера, сбить для него ящик, но получится сварочник низкой мощности. Подробно о создании простого инвертора из компьютерного БП для сварки можно ознакомиться в интернете. Огромной популярностью пользуется инвертор для сварки на ШИМ — контроллере типа UC3845. Микросхема прошивается при помощи программатора, который можно приобрести только в специализированном магазине.

Для прошивки нужно знать основы языка «С ++», кроме того, возможно скачать или заказать уже готовый программный код. Перед сборкой нужно определиться с основными параметрами сварочника: максимально допустимый ток питания составляет не более 35 А. При токе сварки равной, 280 А, U питающей сети составляет 220 В. Если проанализировать параметры, можно сделать вывод о том, что эта модель по характеристикам превышает некоторые заводские модели. Для сборки инвертора следует руководствоваться блок-схемой на рисунке 1.

Схема БП является несложной, и собрать ее достаточно просто (схема 1). Перед сборкой нужно определиться с трансформатором и найти подходящий корпус для инвертора. Для изготовления БП- инвертора нужен трансформатор. .

Этот трансформатор собирается на основе ферритового сердечника Ш7х7 или Ш8х8 с первичной обмоткой провода диаметром (d) 0,25..0,35 мм, количество витков 100. Несколько вторичных обмоток трансформатора должны иметь следующие параметры:

  1. 15 витков с d = 1..1,5 мм.
  2. 15 витков с d = 0,2..0,35 мм.
  3. 20 витков с d = 0,35..0,5 мм.
  4. 20 витков с d = 0,35..0,5 мм.

Перед намоткой нужно ознакомиться с основными правилами намотки трансформаторов.

Схема 1 — Схема блока питания инвертора

Навесным монтажом детали желательно не соединять, а сделать для этих целей печатную плату. Существует много способов изготовления печатной платы, но следует остановиться на простом варианте — лазерно-утюжной технологии (ЛУТ). Основные этапы изготовления печатной платы:

  1. Приобрести в специализированном магазине односторонний гетинакс с медной фольгой и хлористое железо.
  2. Изготовить макет печатной платы, используя программное обеспечение Sprint Layout.
  3. Распечатать на глянцевой бумаге, используя только лазерный принтер на самом высоком качестве. Обыкновенный струйный принтер для этих целей не подойдет.
  4. Прислонить распечатанный рисунок к медной фольге.
  5. При помощи нагретого утюга произвести перенос рисунка на фольгу, который должен получиться отчетливым.
  6. После этого выключить утюг и опустить плату в хлористое железо для вытравливания. Главное — не передержать и постоянно контролировать процесс, длительность которого зависит от концентрации хлористого железа.
  7. По окончании вытравливания нужно достать плату и промыть под проточной водой.

После изготовления трансформатора и печатной платы нужно приступить к монтажу радиокомпонентов по схеме блока питания сварочного инвертора. Для сборки БП понадобятся радиодетали:

  • 2 регулятора LM78L15.
  • TOP224Y.
  • Интегральная микросхема TL431.
  • BYV26C.
  • 2 диода HER307.
  • 1N4148.
  • MBR20100CT.
  • P6KE200A.
  • KBPC3510.
  • Оптопара типа PC817.
  • С1, С2: 10мк 450 В, 100мк 100 В, 470мк 400 В, 50мк 25 В.
  • C4, C6, C8: 0,1мк.
  • C5: 1н 1000 В.
  • С7: 1000мк 25 В.
  • Два конденсатора 510 п.
  • C13, C14 — 10 мк.
  • VDS1 — 600 В 2А.
  • Терморезистор типа NTC1 10.
  • R1: 47k, R2: 510, R3: 200, R4: 10k.
  • Резисторы гасящие: 6,2 и 30 на 5Вт.

После сборки БП нельзя подключать и проверять, так как он рассчитан именно для инверторной схемы.

Изготовление инвертора

Перед началом изготовления высокочастотного трансформатора для инвертора нужно изготовить гетинаксовую плату, руководствуясь схемой 2. Трансформатор выполнен на магнитопроводе типа «Ш20х28 2000 НМ» с рабочей частотой 41 кГц. Для его намотки (I обмотки) необходимо использовать медную жесть толщиной 0,3..0,45 мм и шириной 35..45 мм (ширина зависит от каркаса). Нужно сделать:

  1. 12 витков (площадь поперечного сечения (S) около 10..12 кв. мм.).
  2. 4 витка для вторичной обмотки (S = 30 кв. мм.).

Высокочастотный трансформатор нельзя мотать обыкновенным проводом из-за возникновения скин-эффекта. Скин-эффект — способность высокочастотных токов вытесняться на поверхность проводника, тем самым нагревая его. Вторичные обмотки следует разделить пленкой из фторопласта. Кроме того, трансформатор должен нормально охлаждаться.

Дроссель выполнен на магнитопроводе типа «Ш20×28» из феррита 2000 НМ с S не менее 25 кв. мм.

Трансформатор тока выполняется на двух кольцах типа «К30×18×7» и мотается медным проводом. Обмотка l продевается через кольцевую часть, а II обмотка состоит из 85 витков (d = 0,5 мм).

Схема 2 — Схема инверторного сварочного аппарата своими руками (инвертор).

После успешного изготовления высокочастотного трансформатора нужно осуществить монтаж радиоэлементов на печатной плате. Перед пайкой обработать оловом медные дорожки, детали не перегревать. Перечень элементов инвертора:

  • ШИМ — контроллер: UC3845.
  • MOSFET-транзистор VT1: IRF120.
  • VD1: 1N4148.
  • VD2, VD3: 1N5819.
  • VD4: 1N4739A на 9 В.
  • VD5-VD7: 1N4007.
  • Два диодных моста VD8: KBPC3510.
  • C1: 22 н.
  • C2, C4, C8: 0,1 мкФ.
  • C3: 4,7 н и C5: 2,2 н, C15, С16, С17, C18: 6,8 н (только использовать К78−2 или СВВ- 81).
  • C6: 22 мк, С7: 200 мк, С9-С12: 3000 мк 400 В, C13, C21: 10 мк, C20, C22: 47мк на 25 В.
  • R1, R2: 33k, R4: 510, R5: 1,3 k, R7: 150, R8: 1 на 1 Вт, R9: 2 M, R10: 1,5 k, R11: 25 на 40 Вт, R12, R13, R50, R54: 1 к, R14, R15: 1,5 k, R17, R51: 10, R24, R25: 30 на 20Вт, R26: 2,2 к, R27, R28: 5 на 5Вт, R36, R46-R48, R52, R42-R44 — 5, R45, R53 — 1,5.
  • R3: 2,2 k и 10 к.
  • К1 на 12 В и 40А , К2 — РЭС-49 (1).
  • Q6-Q11: IRG4PC50W.
  • Шесть MOSFET-транзисторов IRF5305.
  • D2 и D3: 1N5819.
  • VD17 и VD18: VS-HFA30PA60CPBF; VD19-VD22: VS-HFA30PA60CPBF.
  • Двенадцать стабилитронов: 1N4744A.
  • Две оптопары: HCPL-3120.
  • Катушка индуктивности: 35 мк.

Перед проверкой схемы на работоспособность нужно еще раз визуально проверить все соединения.

Основные рекомендации

Перед сборкой нужно внимательно ознакомиться со схемой инверторной сварки и приобрести все необходимое для изготовления: купить радиодетали в специализированных радиомагазинах, найти подходящие каркасы трансформаторов, медную жесть и провод, продумать дизайн корпуса. Планирование работы значительно упрощает процесс сборки и экономит время. При пайке радиокомпонентов следует применять паяльную станцию (индукционная с феном), для исключения возможного перегрева и выхода из строя радиоэлементов. Соблюдать нужно и правила техники безопасности при работе с электричеством.

Дальнейшая настройка

Все силовые элементы схемы должны иметь качественное охлаждение. Транзисторные ключи необходимо «сажать» на термопасту и радиатор. Желательно применять радиаторы от микропроцессоров мощного типа (Athlon). Наличие вентилятора для охлаждения в корпусе обязательно. Схему БП можно доработать, поставив конденсаторный блок перед трансформатором. Нужно использовать К78−2 или СВВ-81, так как другие варианты недопустимы.

После подготовительных работ нужно приступить к настройке сварочного инвертора. Для этого нужно:

  1. Подключить 15 В к ШИМ, подав питание на ШИМ и на систему охлаждения. Реле К1 выполняет роль ключа для замыкания R11 — при времени срабатывании первого около 10 секунд. Кроме того, выполняется зарядка С9-C12, которые разряжаются через R11. Наличие R11 обязательно, так как оно обезопасит конденсаторы от взрыва из-за всплеска тока при подаче сетевого питания.
  2. При помощи осциллографа выполнить проверку платы на наличие прямоугольных импульсов, идущих к HCPL3120 после срабатывания К1 и К2. Кроме того, реле К1 должно быть подключено после зарядки конденсаторов. Во время работы инвертора без нагрузки (холостой ход) сила тока должна быть менее 100 мА.
  3. Правильность установки фаз высокочастотного трансформатора проверяется 2-лучевым осциллографом. Для этого нужно выставить частоту ШИМ 50..55 Гц и измерить значение U, которое должно быть менее 330 В. Потребление моста должно быть 120..150 мА. При работе сварочного инвертора трансформаторы не должны сильно шуметь, а если такое происходит, нужно разобраться в этом. Шум часто происходит из-за плохо зажатых пластин магнитопровода. Смотреть на осциллограф и плавно крутить ручку переменного резистора.
  4. Параметры U не должны превышать 540 В (345 В является оптимальным значением U). После измерений нужно отсоединить осциллограф и начать варить металл. Время сварки нужно начинать с 10 секунд и постепенно увеличивать его до 5 минут. Если все сделано верно, то шума не должно быть.

Существуют и более совершенные модели сварочников инверторного типа, в силовую схему которых входят тиристоры. Широкое распространение также получил инвертор «Тимвала», который можно найти на форумах радиолюбителей. Он имеет более сложную схему. Подробнее с ним можно ознакомиться в интернете.

Таким образом, зная устройство и принцип работы сварочного аппарата инверторного типа, собрать его своими руками не представляется непосильной задачей. Самодельный вариант практически не уступает заводскому и даже превосходит его некоторые характеристики.

как сделать и настроить своими руками

В настоящее время не только профессионалы, но сварщики-любители, работают с инверторной сваркой используя современную аппаратуру. Инвертор используют очень часто, он есть практически у каждого.

Варить хочется, но денег на покупку оборудование нет? Сборка собственными руками инвертора поможет с решением этой проблемы.

Как собрать сварочный аппарат с материалов которые есть под руками, мы уже расписывали на этом сайте. Сегодня речь пойдет о сборке сварочного инвертора с блока питания от компьютера. Необходимые схемы предоставлены в статье.

Содержание статьиПоказать

Самодельный аппарат. Зачем он?

Есть ли необходимость сборки своими руками сварочного инвертора из компьютерного блока питания, если любой строительный магазин может предложить цену до 50 долларов, избавить вас от мучений? – этот вопрос ставил сам себе каждый умелец.

Это справедливо. В то же время все не так очевидно, как могло показаться.

Цена в 50 долларов – приключение при покупке инверторных аппаратов. Они не подходят даже для временного применения, не говоря уже о постоянном использовании. Какое решение проблемы, спросите вы.

Стоимость качественных аппаратов начинается от 100 долларов. Тогда об экономии не ведется речь. Для большинства граждан нашей страны эта сумма равна половине зарплаты, если не большей ее части.

По этому некоторые обсуждают сборку самодельных сварочных инверторов из компьютерного блока питания. Себестоимость которых естественно ниже, чем заводских аналогов. Каждый лично может выбрать, какие функции ему нужны и из чего будет собирать.

Если вам не нужен горячий старт или форсаж дуги, нет смысла платить больше.

Качество составляющих – это второй фактор для обращения внимания. Заводы в большинстве своем, собирают варианты далеко не из качественных запчастей, которые в свою очередь при сервисном ремонте стоят дороже.

На чем можно сэкономить, с каких частей собирать оборудование вы выбираете сами.

Также важно мнение сварщиков об аппарате. Не всем нравятся современные технологии. Некоторые считают их слишком «навороченными» и сложными. Переплата за бренд, дополнительные функции их не интересует.

Нужно только функциональное оборудование для использования в быту. Тогда, целесообразно сварочный инвертор из компьютерного блока питания сделать самому. Можно собрать не только дешевый и простой инвертор, но такой, что заводские аппараты позавидуют вашему.

Все что нужно только вам, никаких лишних запчастей.

Или все же купить в магазине?

Самодельный инвертор

Естественно, можно привести факты, почему собирать сварочный инвертор своими руками из чего попало не стоит. Необходимо не только запастись терпением и свободным временем.

Очень важно иметь знания электротехники, понимать, различать принципы действий электроприборов, разбираться в схемах. Всегда можно изучить данные вопросы, если вам не хватает знаний.

Достаточно выделить несколько недель для чтения специфической литературы. В интернете много видеороликов, которые помогут вам быстрее закончить с обучением, представят простые, наглядные примеры и помогут собрать действительно качественный сварочной инвертор из компьютерного блока питания.

Инвертор с блока питания

Своими руками можно собрать многое

Технические характеристики

Резонансный – именно такой сварочной инвертор из компьютерного блока питания у вас буде возможность собрать следую инструкциям данной статьи. Диапазон сварочных токов – 5-120 Ампер. Напряжение 90В. При использовании электродов диаметром 2 мм перерыва работы нет.

Однако во время работы с электродами диаметром 3 мм требуют не менее 2 минут отдыха после 10 минут беспрерывной работы. Эти цифры могут изменяться учитывая температуру, окружающеюсреду.

Вес не более двух килограмм, так что перенос будет без труда. Падающая характеристика. Регулировка силы тока происходит плавно. В состав входит 4 платы: блок управления, основная, плата питания и конденсаторов.

С личного опыта могу сказать, что для гаражных, дачных работ сварочной инвертор из компьютерного блока питания подходит отлично.

Детали, которые необходимы

Для сборки инвертора своими руками нужно много деталей

Начнем с теории. Сразу заметим, что компьютерный блок не лучшее что подойдет для сварочного аппарата. Блок питания кардинально отличается от инвертора. Блок можно настроить на работу инвертора.

Готовое оборудование будет собрать непросто, его работоспособность будет намного ниже. Потому из всего БП мы используем только корпус. Кое-что можно купить на радио рынках, а некоторые детали снять со старого персонального компьютера.

Итак, к деталям. Необходим силовой трансформатор, который будет состоять из трех сердечников Е42. Их можно извлечь из старых мониторов. Лучше устанавливать их в вертикальном положении.

Дроссель также необходим. Собрать его можно с помощью двух кернов, предварительно найдя их в том же старом мониторе. Оставшиеся сердечники – тип 2000НМ, ферритовые.

Диоды и транзисторы берем так же с монитора. Есть вероятность, что в процессе сборки появиться потребность паре транзисторов. Можете приобрести их, ведь цена будет незаметна для вашего кармана.

Еще купите диодный мост и пару электролитов. Дополнительно нужен шим-контроллер SG3524, реле источника бесперебойного питания и трансформатор питания управления.

Особенности сборки

Процесс пайки своими руками

Выходные провода стоит продеть сквозь ферритовые трубочки, это поможет сгладить синусоидальное выпрямленное напряжение. Взять эти трубки можно с кассового аппарата бренда Samsung.

Там они используются как фильтры. Сглаживание пройдет без проблем только, при индуктивности не более 5mkH.

Силовая часть будет очень редко испытывать перегрузки. А исключительно благодаря небольшому напряжению холостого хода, максимальная длина дуги не более 4 мм.

Чтобы дуга горела устойчиво и поджигалась без существенных проблем, вольт добавку можно пустить на обмотку.

В первичной обмотке ток максимальный только во время резонанса. Поэтому к вторичной обмотке нужно подключать трансформаторы тока. Плавный пуск оборудования и предусмотреть анти залипания, можно использовав полевой транзистор IRF510.

Вход микросхемы Shutdown разрывается при коротком замыкании используя термодатчики, тумблер включения или транзистор.

«Инвертор – это просто» — книга в которой подробно описан принцип работы. Там же можно изучить детальную настройку самодельных инверторов. Книга доступна в интернете. Советуем к ознакомлению.

Вместо заключения

Когда вы поняли, что компьютерный блок не лучшее что подойдет для сварочного аппарата. Блок питания кардинально отличается от инвертора. Блок можно настроить на работу инвертора.

Готовое оборудование будет собрать непросто, и его работоспособность будет намного ниже. Потому из всего БП мы используем только корпус. Кое-что можно купить на радио рынках, а некоторые детали снять со старого персонального компьютера.

Мы рассказали, ка сделать сварочный инвертор своими руками, который справится с электродами диаметром до 3мм, и предоставит вам ток до 120 Ампер.

Этот аппарат будет надежнее и в разы дешевле нежели заводской аналог. Для гаража и дачи отличный вариант. Удачи в исполнении работ!

Сварочный аппарат из блока питания компьютера своими руками

В результате покупки нового компьютера, без дела могут остаться старые блоки питания, которые можно использовать для создания домашней мастерской. Затратив определённые усилия, можно собрать сварочный аппарат из блоков питания компьютеров своими руками. Такое оборудование будет полезно при выполнении непрофессиональных задач по соединению металлов в домашних условиях.

Финансовые вложения не будут ощутимыми, а затраты времени на переделку источника питания вполне себя оправдают появлением в арсенале нового вида оборудования. Мы расскажем о том, как сделать эту работу своими руками.

Необходимые детали и оборудование

Сварочные инверторные аппараты являются сложными электронными устройствами, которые самостоятельно собрать без определённой квалификации и наличия необходимого оборудования не представляется возможным. Поэтому придётся дорогую аппаратуру взять в аренду на время отладки и сборки агрегата.

Начинать создавать сварочный аппарат из компьютерного блока питания следует с подбора подходящей и простой электрической схемы, чтобы подборку полупроводниковых и иных компонентов не пересчитывать заново. Инверторные агрегаты небольшой мощности потребляют от сети ток не более 15 А.

Сетевой кабель можно сохранить, а вентилятор нужно заменить на более мощный, который обеспечит хорошее охлаждение радиаторов силовых элементов. Кроме того, понадобится следующие инструменты и оборудование:

  1. фольгированный текстолит для плат или его заменители;
  2. провода необходимого сечения и длины;
  3. полупроводниковые элементы, сопротивления и конденсаторы нужного номинала, согласно выбранной схеме;
  4. трансформатор с подходящими характеристиками, который, возможно, придётся адаптировать к нужным параметрам;
  5. радиаторы для силовых элементов;
  6. паяльник с припоем и канифолью или флюсом;
  7. отвёртки, пассатижи, крепёж, дрель и изолирующий материал;
  8. мультиметр, осциллограф.

Крайне важно проводить монтаж в строгом соответствии с выбранной схемой с соблюдением полярности и проверкой отсутствия утечек.

Последовательность сборки инвертора

При подготовке к окончательной сборке инвертора необходимо позаботиться о наличии термодатчика, рассчитанного на срабатывание при нагреве от 70 до 75оС. Кроме того, нужно позаботиться о гнёздах для силового кабеля и держателе электродов с проводами сечением от 35 мм2, для эффективной подачи тока сварочной дуги.

Затем, подготовив все необходимые элементы, начинаем монтаж в следующей последовательности:

  • располагаем вентилятор и охлаждающие радиаторы так, чтобы обеспечить максимально эффективный воздушный поток, осуществляем надёжный крепёж;
  • надёжно крепим трансформатор и плату конденсаторов;
  • устанавливаем плату схемы управления и сопутствующие детали;
  • монтируем устройство антизалипания и горячего старта;
  • проверяем на замыкание контакты, через которые питаются компоненты схем;
  • осуществляем окончательную распайку и монтаж предохранителей и термоэлементов;
  • проводим заключительную настройку с помощью мультиметра и осциллографа, учитывая расчетные параметры;
  • выставляем необходимый ток сварки и проводим пробную работу.

Самостоятельный монтаж является весьма ответственной работой, поэтому очень важно соблюдать правила техники безопасности, как при монтаже, так и в процессе проверки собранного инвертора.

Заключение

Собрать инверторный аппарат своими руками из блока питания компьютера можно при использовании дополнительных компонентов, которые можно найти в продаже или использовать бывшие в употреблении детали. При этом нужно убедиться в их работоспособности и в соответствии с номинальным значениям. Опытным людям задача вполне по силам, а при возникновении затруднений лучше обратиться за советом к профессионалам.

Ремонт сварочного инвертора. Нет опорного напряжения

Привет друзья. Сегодня речь опять о сварочном инверторе, со слов товарища инвертор долго стоял и при подаче питания не подал признаков жизни, хотя до этого проблем никаких не было. Ставлю кофе и пора взяться за работу
Ну первым делом разбираю сварку и освобождаю плату для изучения. Хотя че там изучать, все как обычно: ИОН, ШИМ, драйвер и силовая часть:-) Так же обнаружилось, что сварка уже была в ремонте, это видно по двум стабилитронам припаянных снизу платы
Включаю вилку в сеть, реле почему то не щелкнуло, а после диодного моста 310В, что уже радует
А вот на источнике опорного напряжения ноль и значит копать нужно сюда.


Для удобства доступа выпаял один конденсатор по силовой, одного для проверок вполне хватит
ИОН собран на UC3843B и полез в сеть за схемой, хотя бы с приблизительной обвязкой

Запускается преобразователь через пусковой резистор 56кОм, в моем случае это резистор 150кОм. И на 7 ноге 3843 в момент подачи питания должно появиться хоть какое то напряжение, но его там нет.
Оказалось пусковой резистор в обрыве, но и его замена не принесла плодов, блок питания как молчал так и молчит. Ладно воевать так воевать и принялся проверять все детали на плате, почти все SMD. Даже саму микросхему заменил, не поленился выпаять транзистор, но и с ним все в порядке. На Осциллографе все равно тихо и глухо.
А потом задумался о том, что сварка уже  была в ремонте, два стабилитрона это доработка предыдущего мастера и стоит проверить установленные им стабилитрончики. Смешно стало когда я оказался прав и один из стабилитронов, который стоит по питанию микры, в коротком замыкании и изза этого нет импульса для старта.  После замены стабилитрончика на микре появились искомые 18В, релюшка удачно щелкнула и включился вентилятор

После проверки опорного должно появиться напряжение на выходе основного инвертора и оно появилось, значит ничего горевшего нет и можно собрать все в корпус.
В овал выделен тот самый резистор который пришлось заменить, это МЛТ-2 на 150кОм.
Короче подвожу итог того что произошло. Закоротил стабилитрон, возможно от перегрева, через пусковой резистор пошел большей ток, резистор не удержался и подло сгорел, не подав внешних признаков. На счет микросхемы не уверен, но на всякий случай оставил 100% проверенную.
Во время ремонта пользовался китайскими приборами: мультиметром UNIT UT136B вот ссылка на него, а так же пользовался вторым мультиметром ESR T-4 ссылка на описание этого прибора и его доработку

На этом в принципе все, если нравятся статьи рекомендую подписаться на обновления в Вконтакте или Одноклассниках, что бы не пропустить последние обновления. Так же можно подписаться на рассылку электронной почтой, просто введите свой почтовый ящик в боковом меню этой страницы
С ув. Эдуард

Похожие материалы: Загрузка…

Сварочный инвертор из компьютерного блока питания своими руками

Время чтения: 6 минут

Инверторная сварка с применением современного аппарата – обычное дело как для профессионалов, так и для сварщиков-любителей. Инвертор есть у каждого второго дачника, и активно им используется. Но что делать, если нет средств на покупку полноценного аппарата, а варить хочется? В таких ситуациях спасает самостоятельная сборка аппарата.

На нашем сайте мы уже рассказывали, как можно собрать сварочный аппарат своими руками из подручных материалов. Сегодня мы расскажем, как сделать сварочный аппарат из компьютерного БП (блок питания). В статье приведены все необходимые схемы.

Содержание статьи

Зачем собирать самодельный аппарат?

Многие умельцы могут задаться вопросом: «А стоит ли вообще собирать аппарат своими руками из блока питания компьютера, если в магазине можно без проблем купить дешевый инвертор ценой в 50 долларов и не мучиться?». Справедливо. Но не все так очевидно, как кажется на первый взгляд.

Покупной инверторный сварочный агрегат ценой в 50$ — это то еще приключение. Эти аппараты не подходят даже для нерегулярного применения, что уж говорить о постоянной сварке. Скажем, на протяжении всего дачного сезона (а это период с апреля по ноябрь!). Как решить эту проблему? Купить аппарат хотя бы за 100 долларов. Но в таком случае об экономии и речь не идет. Для многих соотечественников 100$ — это половина зарплаты, если не больше.

Читайте также: Что такое сварочный инвертор с функцией пуско-зарядного устройства?

Именно в подобной ситуации стоит задуматься о сборке самодельного аппарата. Его себестоимость существенно ниже, чем у заводских аппаратов. При этом вы сами выбираете, из чего он будет собран и какими функциями будет обладать. Нет смысла переплачивать за форсаж дуги или горячий старт, если они вам не нужны.

Второй фактор, на который нужно обратить особое внимание — это качество компонентов, из которых собран инвертор. Заводской бюджетный аппарат обычно собирают из не самых качественных запчастей, которые к тому же могут стоит недешево при сервисном ремонте. У самодельного инвертора нет этих проблем. Вы сами выбираете, из чего собирать аппарат и на чем можно сэкономить, а на чем не стоит.

Также учтите, что не всем сварщика в принципе нравятся современные сварочные аппараты. Они кажутся им слишком сложными и «навороченными». Им не нужны дополнительные функции и переплата за бренд. Они хотят получить просто функциональное устройство для дома. В таком случае целесообразнее сделать инвертор самому. Он будет именно таким, как вам нужно. Ничего лишнего. По такой системе можно собрать как простой и дешевый инвертор, так и аппарат покруче заводского.

Может все же купить аппарат в магазине?

Конечно, существует  целый ряд причин, почему не стоит собирать сварочный инвертор своими руками из подручных средств. Нужно не просто выделить свободное время и иметь терпение. Важно обладать знаниями в области электротехники, разбираться в схемах и понимать принцип действия электроприборов. Но мы считаем, что даже если у вас нет необходимых знаний, их всегда можно приобрести. Достаточно потратить неделю-другую на изучение специальной литературы. К тому же, сейчас в интернете полно обучающих видеороликов, где все наглядно и просто.

Самодельный инвертор из БП

Технические характеристики

Аппарат, который вы можете собрать по данной в статье инструкции, относится к разряду резонансных. Максимальный сварочный ток – 120 Ампер, минимальный – 5 Ампер. Напряжение – 90В. При сварке электродами диаметром 2 мм аппарат работает без необходимости в перерыве, а при работе со стержнями 3 мм требуются 2 минуты отдыха при 10-ти минутном сварочном цикле. Но учтите, что эти цифры могут меняться в зависимости от температуры и влажности окружающей среды.

Вес аппарата не превышает 2 килограмм, так что вы сможете без трудностей переносить его. Предусмотрена плавная регулировка силы тока и падающая характеристика. Состоит из 4 плат (основная, плата конденсаторов, плата питания и блок управления). По нашему опыту может сказать, что этот аппарат отлично подходит для несложных дачных и гаражных работ.

Схема самодельного инвертора

Необходимые детали

Для начала немного теории. Сразу скажем, что делать сварочный аппарат из компьютерного блока питания – это не лучшая идея. Инвертор и БП – это два кардинально отличающихся между собой устройства. БП, конечно, можно перестроить под работу в качестве инвертора, но это очень непросто и готовый аппарат не будет отличаться большой работоспособностью.

Поэтому мы рекомендуем использовать только сам корпус от блока питания. Некоторые детали можно отыскать на радиорынке, а остальное взять из старого ПК.

 

 

Перейдем к самим деталям. Нам нужен силовой трансформатор, который можно собрать из трех сердечников типа Е42. Рекомендуем установить их вертикально. Сердечники Е42 можно достать из старого монитора.

Также нам необходим дроссель. Его можно собрать из двух кернов, которые так же можно найти в старом компьютерном мониторе.  Остальные сердечники ферритовые, типа 2000 НМ. Силовые транзисторы и диоды можно взять из того же монитора. Возможно, в процессе вам придется докупить пару транзисторов, но стоят они очень недорого. Также купите два электролита и диодный мост.

Дополнительно вам понадобится трансформатор питания управления, шим-контроллер типа SG3524 и реле от ненужного источника бесперебойного питания, который есть в каждом компьютере.

Особенности сборки

На выходные провода необходимо продеть ферритовые трубочки, чтобы сгладить форму синусоидального выпрямленного напряжения. Такие трубочки можно найти в кассовом аппарате бренда Самсунг. Там они применяются в качестве фильтров. В данном случае волны без проблем сглаживаются, если индуктивность не превышает 5 mkH.

Силовая часть такого инвертора редко перегружается, а длина дуги не превышает 4 мм благодаря низкому напряжению холостого хода (без вольтдобавки). На обмотку можно пустить вольтдобавку, чтобы дуга поджигалась без проблем и горела устойчиво.

Трансформаторы тока необходимо включать только во вторичную обмотку, поскольку в первичке ток максимальный и протекает он лишь в момент резонанса. включены во вторичке так как в первичной обмотке максимальный ток.

Дополнительно на полевом транзисторе типа IRF510 можно сделать палный пуск аппарата и предусмотреть функцию антизалипания. Вход микросхемы «Shutdown» необходимо разорвать с помощью транзистора (при коротком замыкании), термодатчика или тумблера включения.

Принцип работы и детальная настройка этого самодельного инвертора очень подробно рассказываются в книге «Инвертор – это просто», которую несложно найти в интернете. Ознакомьтесь с ней самостоятельно.

Вместо заключения

Теперь вы знаете, что самодельный сварочный инвертор из компьютерного блока питания своими руками – это не самая хорошая идея. Мы рекомендуем использовать только корпус от блока питания, а остальные запчасти взять от деталей монитора или от другого инвертора. Блок питания и инвертор – это два кардинально разных устройства. И при большом желании вы, конечно, можете сделать инвертор именно из БП, но в этом нет особого смысла. Т.к., его работоспособность будет под большим вопросом.

В этой статье мы рассказали, как можно своими руками сделать полноценный сварочный инвертор, который выдаст до 120 Ампер сварочного тока и справится даже с электродами диаметром 3 мм. Такой аппарат будет в разы дешевле и надежнее заводского инвертора со схожими техническими характеристиками. Мы считаем, что это отличный вариант для дачи или гаража. За инструкцию благодарим Валерия А. Желаем удачи в работе!

схемы и инструкция по сборке

Типы сварочных аппаратов

Современный рынок наполнен достаточно большим разнообразием сварочных аппаратов, но далеко не все целесообразно собирать своими руками.

В зависимости от рабочих параметров устройств различают такие виды устройств:

  • на переменном токе – выдающие переменное напряжение от силового трансформатора напрямую к сварочным электродам;
  • на постоянном токе – выдающие постоянное напряжение на выходе сварочного трансформатора;
  • трехфазные – подключаемые к трехфазной сети;
  • инверторные аппараты – выдающие импульсный ток в рабочую область.

Первый вариант сварочного агрегата наиболее простой, для второго понадобиться доработать классическое трансформаторное устройство выпрямительным блоком и сглаживающим фильтром. Трехфазные сварочные аппараты используются в промышленности, поэтому рассматривать изготовление таких устройств для бытовых нужд мы не будем. Инверторный или импульсный трансформатор довольно сложное устройство, поэтому чтобы собрать самодельный инвертор вы должны уметь читать схемы и иметь базовые навыки сборки электронных плат. Так как базой для создания сварочного оборудования является понижающий трансформатор, рассмотрим порядок изготовления от наиболее простого, к более сложному.

На переменном токе

По такому принципу работают классические сварочные аппараты: напряжение с первичной обмотки 220 В понижается до 50 – 60 В на вторичной и подается на сварочный электрод с заготовкой.

Перед тем, как приступить к изготовлению, подберите все необходимые элементы:

  • Магнитопровод – более выгодными считаются наборные сердечники с толщиной листа 0,35 – 0,5мм, так как они обеспечивают наименьшие потери в железе сварочного аппарата. Лучше использовать готовый сердечник из трансформаторной стали, так как плотность прилегания пластин играет основополагающую роль в работе магнитопровода.
  • Провод для намотки катушек – сечение проводов выбирается в зависимости от величины, протекающих в них токов.
  • Изоляционные материалы – основное требование, как к листовым диэлектрикам, так и к родному покрытию проводов – устойчивость к высоким температурам. Иначе изоляция сварочного полуавтомата или трансформатора расплавится и возникнет короткое замыкание, что приведет к поломке аппарата.

Наиболее выгодным вариантом является сборка агрегата из заводского трансформатора, в котором вам подходит и магнитопровод, и первичная обмотка. Но, если подходящего устройства под рукой нет, придется изготовить его самостоятельно. С принципом изготовления, определения сечения и других параметров самодельного трансформатора вы можете ознакомиться в соответствующей статье: https://www.asutpp.ru/transformator-svoimi-rukami.html.

В данном примере мы рассмотрим вариант изготовления сварочного аппарата из блока питания микроволновки. Следует отметить, что трансформаторная сварка должна обладать достаточной мощностью, для наших целей подойдет сварочный аппарат хотя бы на 4 – 5кВт. А так как один трансформатор для микроволновки имеет только 1 – 1,2 кВт, для создания аппарата мы будем использовать два трансформатора.

Для этого вам понадобится выполнить такую последовательность действий:

  • Возьмите два трансформатора и проверьте целостность обмоток, питаемых от электрической сети 220В.
  • Распилите магнитопровод и снимите высоковольтную обмотку,

Рис. 1: распилите сердечник

Рис. 2: уберите высоковольтную обмотку

оставив только низковольтную, в таком случае намотку первичной катушки уже делать не нужно, так как вы используете заводскую.

  • Удалите из цепи катушки на каждом трансформаторе токовые шунты, это позволит увеличить мощность каждой обмотки.

Рис. 3: удалите токовые шунты
  • Для вторичной катушки возьмите медную шину сечением 10мм2 и намотайте ее на заранее изготовленный каркас из любых подручных материалов. Главное, чтобы форма каркаса повторяла габариты сердечника.

Рис. 4: намотайте вторичную обмотку на каркас
  • Сделайте диэлектрическую прокладку под первичную обмотку, подойдет любой негорючий материал. По длине ее должно хватать на обе половинки после соединения магнитопровода.

Рис. 5: сделайте диэлектрическую прокладку
  • Поместите силовую катушку в магнитопровод. Для фиксации обеих половинок сердечника можно использовать клей или стянуть их между собой любым диэлектрическим материалом.

Рис. 6: поместите катушку в магнитопровод
  • Подключите выводы первички к шнуру питания, а вторички к сварочным кабелям.

Рис. 7: подключите шнур питания и кабели

Установите на кабель держатель и электрод диаметром 4 – 5мм. Диаметр электродов подбирается в зависимости от силы электрического тока во вторичной обмотке сварочного аппарата, в нашем примере она составляет 140 – 200А. При других параметрах работы, характеристики электродов меняются соответственно.

Во вторичной обмотке получилось 54 витка, для возможности регулировки величины напряжения на выходе аппарата сделайте два отвода от 40 и 47 витка. Это позволит осуществлять регулировку тока во вторичке посредством уменьшения или увеличения  количества витков. Ту же функцию может выполнять резистор, но исключительно в меньшую сторону от номинала.

На постоянном токе

Такой аппарат отличается от предыдущего более стабильными характеристиками электрической дуги, так как она получается не напрямую с вторичной обмотки трансформатора, а от полупроводникового преобразователя со сглаживающим элементом.

Рис. 8: принципиальная схема выпрямления для сварочного трансформатора

Как видите, делать намотку трансформатора для этого не требуется, достаточно доработать схему существующего устройства. Благодаря чему он сможет выдавать более ровный шов, варить нержавейку и чугун. Для изготовления вам понадобится четыре мощных диода или тиристора, примерно на 200 А каждый, два конденсатора емкостью в 15000 мкФ и дроссель.

Схема подключения сглаживающего устройства приведена на рисунке ниже:

Рис. 9: схема подключения сглаживающего устройства

Процесс доработки электрической схемы состоит из таких этапов:

  • Установите полупроводниковые элементы на радиаторы охлаждения.

Рис. 10: установите диоды на радиаторы

В связи с перегревом трансформатора во время работы, диоды могут быстро выйти со строя, поэтому им нужен принудительный отвод тепла.

  • Соедините диоды в мост, как показано на рисунке выше, и подключите их к выводам трансформатора.

Рис. 11: соедините диоды в мост

Для подключения лучше использовать луженные зажимы, так как они не потеряют изначальную проводимость от больших токов и постоянной вибрации.

Рис. 12: используйте луженные зажимы

Толщина провода выбирается в соответствии с рабочим током вторичной обмотки.

  • Подключите силовые конденсаторы и дроссель во вторичную цепь диодного моста

Рис. 13: подключите силовые конденсаторы
  • Подсоедините к выводам сглаживающего устройства сварочные шлейфа, установите держатели для электродов – сварочный аппарат постоянного тока готов.

При сварке металлов таким аппаратом всегда следует контролировать нагрев не только трансформатора, но и выпрямителя. А при достижении критической температуры делать паузу для остывания элементов, иначе сварочный агрегат, сделанный своими руками, быстро выйдет со строя.

Характеристики самодельного инвертора и материалы для его сборки

Для эффективной работы устройства понадобиться использовать качественные материалы. Некоторые части возможно применить от старых блоков питания или найти на разборках радиодеталей.

Основные технические характеристики устройства:

  • Потребляемое напряжение составляет 220 Вольт.
  • На входе сила тока не менее 32 ампер.
  • Сила тока, производимая аппаратом – 250 А.

Схема сборки сварочного инвертора

Основная схема сварочного инвертора состоит из блока питания, дросселей, силового блока.

Для изготовления устройства понадобятся инструменты и детали:

  • Комплект отверток для демонтажа и дальнейшей сборки.
  • Паяльник, необходим для соединения электронных элементов.
  • Нож и полотно по металлу для изготовления правильной формы конструкции.
  • Кусок металла толщиной 5-8 мм для формирования корпуса.
  • Саморезы или болты с гайками для крепления.
  • Платы для электронных схем.
  • Медные изделия в виде проводов, служат для обмотки трансформатора.
  • Стеклоткань либо текстолит.

В домашнем обиходе пользуется популярностью самодельный сварочный инвертор однофазного типа, сделанный своими руками.

Сварочный инвертор однофазного типа

Такой инвертор питается от бытовой сети 220 В, бывают случаи, когда необходимо изготовить устройство, питание которого происходит от трехфазной сети 380 В. Такие аппараты отличаются повышенной эффективностью и мощностью, используются при массовых работах.

Что нужно для сборки инвертора

Основной задачей сварочного инвертора является преобразование силы тока, достаточной для использования в хозяйстве. Работа электродом производится на расстоянии 1 см для получения прочного шва. Изготовление самодельного сварочного инвертора происходит по плану, в соответствие со схемой.

Первично изготавливается блок питания, для его составляющих понадобиться:

  • Трансформатор, имеющий сердечник из ферритного материала.
  • Обмотка трансформатора с минимальным количеством витков – 100 шт., сечением 0,3 мм.
  • Вторичная обмотка изготавливается из трех частей, внутренняя состоит из 15 витков с сечением провода 1 мм, средняя с таким же количеством витков сечением 0,2 мм, наружный слой 20 завитий диаметром не менее 0,35 мм.

Самодельный инвертор необходимо изготавливать в соответствие с требуемыми характеристиками. Для стабильной, устойчивой к перепадам напряжения работы, обмотки используются на полной ширине каркаса. Алюминиевые провода не способны обеспечить достаточную пропускную способность дуги, имеют нестабильный теплоотвод. Качественный аппарат изготавливается с медной шиной.

Изготовление трансформатора и дросселя

Основной задачей трансформатора является преобразование напряжения высокочастотного тока при достаточной его силе. Сердечники могут быть использованы модели Ш20×208, в количестве двух штук. Зазор между деталями возможно обеспечить своими руками, используя обычную бумагу. Обмотка производится своими руками, медной полосой шириной 40 мм, толщина должна быть не менее 0,2 мм. Теплоизоляция достигается с использованием термоленты кассового устройства, она демонстрирует хорошую износостойкость и прочность.

Как сделать трансформатор для инвертора

Использование медного провода при обмотке сердечника недопустимо, т.к. он вытесняет силу тока на поверхность устройства. Для отвода излишнего тепла используется вентилятор или кулер от компьютерного блока питания, а также радиатор.

Инверторный блок отвечает за пропускную способность электрической дуги путем использования транзисторов и дросселей.

Для стабильного хода процесса сварки рекомендуется использовать несколько транзисторов в параллельной цепи, чем один более мощный элемент.

За счет этого происходит стабилизация тока на выходе, при процессе инверторной сварки своими руками, устройство издает меньше шума.

Самодельный дроссель

Конденсаторы, соединённые последовательно отвечают за несколько функций:

  • Резонансные выбросы минимизируются.
  • Потери ампер из-за конструктивных особенностей транзисторов, которые открываются намного быстрее, чем закрываются.

Самодельный трансформатор как основа для инвертора

Трансформаторы сильно нагреваются, за счет большого объема проходящего тока. Для контроля температуры используются радиаторы и вентиляторы. Каждый элемент монтируется на радиаторе из теплоотводящего материала, если имеется возможность установить один мощный кулер, то это сократит время сборки и упростит конструкцию.

Как выглядит схема инверторной сварки

Для того, чтобы понимать, что вообще собой представляет сварочный инверторный аппарат, необходимо рассмотреть схему, представленную ниже.

Электрическая схема инверторной сварки

Все эти компоненты необходимо объединить и тем самым получить сварочный аппарат, который будет незаменимым помощником при выполнении слесарных работ. Ниже представлена принципиальная схема инверторной сварки.

Схема блока питания инверторной сварки

Плата, на которой находится блок питания аппарата, монтируется отдельно от силовой части. Разделителем между силовой частью и блоком питания выступает металлический лист, подсоединенный к корпусу агрегата электрически.

Для управления затворками применяются проводники, припаивать которые нужно поблизости транзисторов. Эти проводники соединяются между собой парно, а сечение этих проводников не играет особой роли. Единственное, что важно учитывать — это длина проводников, которая не должна превышать 15 см.

Для человека, который не знаком с основами электроники, прочесть такого рода схему проблематично, не говоря уже о назначении каждого элемента. Поэтому если у вас нет навыков работы с электроникой, то лучше попросить знакомого мастера помочь разобраться. Вот, к примеру, ниже изображена схема силовой части инверторного сварочного аппарата.

Схема силовой части инверторной сварки

Простые схемы инверторной сварки

Первый шаг на пути к изготовлению сварочного инвертора – выбор проверенной рабочей схемы. Существует несколько вариантов, требующих детального изучения.

Самый простой сварочный аппарат:

Принципиальная электрическая схема сварочного инвертора:

Рисунок 4 — Принципиальная электрическая схема сварочного инвертора
Схема инверторного сварочного аппарата:

Рисунок 5 — Схема инверторного сварочного аппарата

Как собрать инверторную сварку: поэтапное описание

Для сборки инверторного сварочного аппарата необходимо выполнить следующие этапы работы:

1) Корпус. В качестве корпуса для сварки рекомендуется воспользоваться старым системником от компьютера. Он подходит лучше всего, так как в нем имеется необходимое количество отверстий для вентиляции. Можно использовать старую 10-литровую канистру, в которой можно вырезать отверстия и разместить кулера. Для увеличения прочности конструкции из корпуса системника необходимо разместить металлические уголки, которые закрепляются с помощью болтовых соединений.

2) Сборка блока питания. Важным элементом блока питания является именно трансформатор. В качестве основы трансформатора рекомендуется воспользоваться ферритом 7х7 или 8х8. Для первичной обмотки трансформатора необходимо осуществить намотку проволоки по всей ширине сердечника. Такая немаловажная особенность влечет за собой улучшение работы устройства при появлении перепадов напряжения. В качестве проволоки обязательно нужно использовать медные провода марки ПЭВ-2, а в случае отсутствия шины, провода соединяются в один пучок. Стеклоткань используется для изоляции первичной обмотки. Сверху после слоя стеклоткани необходимо намотать витки экранирующих проводов.

Трансформатор с первичной и вторичной обмотками для создания инверторной сварки

3) Силовая часть. В качестве силового блока выступает понижающий трансформатор. В качестве сердечника для понижающего трансформатора применяются два вида сердечников: Ш20х208 2000 нм. Между обоими элементами важно обеспечить зазор, что решается путем расположения газетной бумаги. Для вторичной обмотки трансформатора характерно наматывание витков в несколько слоев. На вторичную обмотку трансформатора необходимо укладывать три слоя проводов, а между ними устанавливаются прокладки из фторопласта. Между обмотками важно расположить усиленный изоляционный слой, который позволит избежать пробоя напряжения на вторичную обмотку. Необходимо установить конденсатор напряжением не менее 1000 Вольт.

Трансформаторы для вторичной обмотки от старых телевизоров

Чтобы обеспечить циркуляцию воздуха между обмотками, необходимо оставить воздушный зазор. На ферритовом сердечнике собирается трансформатор тока, который включается в цепь к плюсовой линии. Сердечник необходимо обмотать термобумагой, поэтому в качестве этой бумаги лучше всего использовать кассовую ленту. Выпрямительные диоды крепятся к алюминиевой пластине радиатора. Выходы этих диодов следует соединить неизолированными проводами, сечение которых составляет 4 мм.

3) Инверторный блок. Главным предназначением инверторной системы — это преобразование постоянного тока в переменный с высокой частотой. Для обеспечения повышения частоты и применяют специальные полевые транзисторы. Ведь именно транзисторы работают на открытие и закрытие с высокой частотой.

Рекомендуется использовать не один мощный транзистор, а лучше всего реализовывать схему на основании 2 менее мощных. Это нужно для того, чтобы иметь возможность стабилизации частоты тока. В схеме не обойтись и без конденсаторов, которые соединяются последовательно и дают возможность решить такие проблемы:

Инвертор на алюминиевой пластине

4) Система охлаждения. На стенке корпуса следует установить вентиляторы охлаждения, а для этого можно использовать компьютерные кулера. Необходимы они для того, чтобы обеспечить охлаждение рабочих элементов. Чем больше вентиляторов будет использовано, тем лучше. В частности, обязательно требуется установить два вентилятора для обдува вторичного трансформатора. Один кулер будкт обдувать радиатор, тем самым не допуская перегрева рабочих элементов — выпрямительных диодов. Диоды монтируются на радиаторе следующим образом, как показано на фото ниже.

Выпрямительный мост на радиаторе охлаждения

Рекомендуется воспользоваться таким вспомогательным элементом, как термодатчик.

Фото терморегулятора

Его рекомендуется устанавливать на самом нагревающемся элементе. Этот датчик будет срабатывать при достижении критической температуры нагрева рабочего элемента. При его срабатывании будет отключаться питание инверторного устройства.

Мощный вентилятор для охлаждения инверторного устройства

При работе инверторная сварка очень быстро нагревается, поэтому наличие двух мощных кулеров является обязательным условием. Эти кулеры или вентиляторы располагаются на корпусе устройства, чтобы они работали на вытяжку воздуха.

Поступать свежий воздух в систему будет благодаря отверстиям в корпусе устройства. В системном блоке эти отверстия уже имеются, а если вы используете любой другой материал, то не забудьте обеспечить приток свежего воздуха.

5) Пайка платы является ключевым фактором, так как именно на плате основывается вся схема. На плате диоды и транзисторы важно устанавливать на встречном направлении друг к другу. Плата монтируется непосредственно между радиаторами охлаждения, с помощью чего соединяется вся цепь электроприборов. Питающая цепь рассчитывается на напряжение 300 В. Дополнительное расположение конденсаторов емкостью 0,15 мкФ дает возможность сброса избыточной мощности обратно в цепь. На выходе трансформатора располагаются конденсаторы и снабберы, с помощью которых осуществляется гашение перенапряжений на выходе вторичной обмотки.

6) Настройка и отладка работы. После того, как инверторная сварка будет собрана, потребуется провести еще несколько процедур, в частности, настроить функционирование агрегата. Для этого следует подключить к ШИМ (широтно-импульсный модулятор) напряжение в 15 Вольт и запитать кулер. Дополнительно включается в цепь реле через резистор R11. Реле включается в цепь для того, чтобы избежать скачков напряжения в сети 220 В. Обязательно важно провести контроль за включением реле, после чего подать питание на ШИМ. В результате должна наблюдаться картина, при которой должны исчезнуть прямоугольные участки на диаграмме ШИМ.

Устройство самодельного инвертора с описанием элементов

Судить о правильности соединения схемы можно в том случае, если во время настройки реле выдает 150 мА. В случае, когда же наблюдается слабый сигнал, то это говорит о неправильности соединения платы. Возможно, имеется пробой одной из обмоток, поэтому для устранения помех потребуется укоротить все питающие электропровода.

Инверторная сварка в корпусе системного блока от компьютера

Где взять блок питания и как его подключить

Блок питания сварочного инвертора вполне можно сделать из бесперебойника. Потребуются только трансформатор и корпус ИБП с удаленной остальной начинкой. Входом будет обмотка с большим сопротивлением и «родное» гнездо на торце корпуса. После подачи напряжения 220 В нужно найти пару с разностью потенциалов 15 В. Эти провода станут выходом из БП. Здесь потребуется еще поставить диодный мост, к которому будут подключаться потребители. На выходе получится напряжение около 15 В, которое просядет под нагрузкой. Тогда вольтаж придется подбирать опытным путем.

Импульсный блок питания позволяет снизить габариты и вес трансформатора, сэкономить материалы. Мощные транзисторы постоянного напряжения, установленные в инверторной схеме, обеспечивают переключение с 50 до 80 кГц. С помощью группы мощных диодов (диодного моста) получается на выходе постоянное пульсирующее напряжение. Конденсаторный фильтр выдает после преобразований постоянное напряжение свыше 220 В. Модуль из фильтров и выпрямительного моста образует блок питания. БП питает инверторную схему. Транзисторы подключаются к понижающему трансформатору импульсного типа с рабочей частотой 50–90 кГц. Мощность трансформатора такая же, как у силового сварочного аппарата. На выходе из трансформатора ток высокой частоты запитывает выпрямитель, выдающий высокочастотный постоянный ток.

Сделать трансформатор можно на сердечниках типа Е42 из старого лампового монитора. Потребуется 5 таких приборов. Один пойдет для дросселя. Для остальных элементов нужны сердечники 2000 НМ. Напряжение холостого хода получится 36 В при длине дуги 4–5 мм. Выходные кабели рекомендуется заправить в ферритовые трубки или кольца.

Схема сварочного резонансного инвертора:

Рисунок 8 — Схема сварочного резонансного инвертора

Диодный мост

Диодный «косой мост» предназначен для трансформации в блоке питания переменного тока в постоянный. Правильный выбор резисторов позволит поддерживать напряжение 20–25 В между трансформатором и реле. При работе сборка будет сильно греться, поэтому ее монтируют на радиаторах от компьютера. Их потребуется 2 штуки для верхнего и нижнего элементов. Верхний ставится на прокладку из слюды, а нижний – на термопасту.

Выходные провода оставляют длиной 15 см. При установке мост отделяется прикрепленным к корпусу стальным листом.

Намотка трансформатора

Трансформатор – это силовая часть инвертора, отвечающая за понижение напряжения до рабочей величины и повышение силы тока до уровня плавления металла. Для его изготовления используют стандартные пластины подходящего размера или вырезают каркас из листов металла. В конструкции две обмотки: первичная и вторичная.

Рисунок 9 — Намотка трансформатора

Трансформатор наматывают полосой медной жести шириной 4 см и толщиной 0,3 мм, потому что важны ширина и небольшое сечение. Тогда физические свойства материала задействуются оптимально. Повышенного нагрева провод может не выдержать. Сердцевина толстого провода при высокочастотных токах остается незадействованной, что вызывает перегрев трансформатора. Проработает такой трансформатор максимум 5 минут. Здесь нужен только проводник большого сечения и минимальной толщины. Его поверхность хорошо передает ток и не нагревается.

Термопрослойку заменит бумага для кассового аппарата. Подойдет и ксероксная, но она менее прочная и может рваться при намотке. В идеале изолятором должна служить лакоткань, которая прокладывается минимум в один слой. Хорошая изоляция – залог высокого напряжения. По длине полоски должно хватать на перекрытие периметра и заход 2–3 см. Для повышения электробезопасности между обмотками прокладывают пластинки из текстолита.

Вторичная обмотка трансформатора выполняется 3 медными полосками, разделенными между собой фторопластовой пластинкой. Сверху еще раз идет слой термоленты.

Лента кассового аппарата в качестве изоляции имеет один недостаток – темнеет при нагреве. Но не рвется и сохраняет свои свойства.

Допускается заменить медную жесть проводом ПЭВ. Его преимущество в том, что он многожильный. Такое решение хуже использования медной полосы, потому что пучок проводов имеет воздушные прослойки и они слабо контактируют друг с другом. Суммарная площадь сечения получается ниже и теплообмен замедляется. В конструкции инвертора с ПЭВ делается 4 обмотки. Первичная состоит из 100 витков провода ПЭВ диаметром не более 0,7 мм. Три вторичные имеют соответственно 15+15+20 витков.

Корпус

Пошаговая сборка инвертора своими руками предусматривает подбор надежного корпуса для такого изделия. Для этой цели вполне подойдет старый системный блок от компьютера (чем древнее, тем лучше потому, что в нем толще металл).  Можно самому изготовить коробку из листового металла, а внизу использовать гетинакс в пол сантиметра или больше.

Различные виды самодельных сварочных инверторов имеют общую черту – это управление работой аппарата. На передней панели устанавливают выключатель, ручку регулировки сварочного тока, контакты для проводки, контрольные лампы.

Таким образом, чтобы обзавестись таким нужным в домашней мастерской аппаратом, не обязательно покупать готовый инвертор. Можно изучить необходимую теорию, приобрести детали и самому собрать сварку, которая будет надежно работать.

Система охлаждения

Из-за нагрева силовые узлы инвертора могут отказать. Во избежание этого помимо радиаторов с установленными подверженными нагреванию блоками, для недопущения перегрева также требуются вентиляторы.

Если есть высокомощный вентилятор, можно ограничиться только им, направляя воздух непосредственно к трансформатору. Если используются кулеры от старого ПК, то их понадобится порядка 6 штук. Как сделать охлаждение самого трансформатора: устанавливается сразу три вентилятора.

На самый греющийся радиатор устанавливается термодатчик, отключающий питание при приближении к заданной температуре.

Для нормального функционирования охлаждения в корпусе нужно расположить воздухозаборщики с постоянно свободными решетками.

Силовая часть

В инверторе немалая роль принадлежит блоку питания, представляющему собой трансформатор с ферритовой обмоткой. Его назначение – сбавление напряжения, трансформирование переменного тока в постоянный. Для сборки требуется 2 сердечника типа Ш20х208 2000 нм.

Обмотки инвертора термоизолируются. Для сведения к минимуму неблагоприятного влияния нестабильности напряжения, обвивка производится на всем протяжении сердечника.

Рекомендуется использовать листы омедненной жести 0,3 мм и шириной 40 мм, завернутые в термоустойчивую бумагу 0,05 мм.


Необходимость применения термобумаги диктуется тем, что при сваривании ток проходит поверхностно по проводу, сердечник практически не участвует в процессе, из-за чего образуются излишки тепла. Потому для обмотки проводники стандартного сечения не подходят, для исключения теплообразования используются материалы с большей площадью.

Если медной жести нет, можно взять многожильный провод ПЭВ сечением 0,5-0,7 мм. Имеющиеся между жилами зазоры позволяют снизить нагрев. Важна и вентиляция сварочника, так как перегревается не сам стержень, а обмотка.

После создания первого слоя по направлению намотки следует накрутить стеклоткань с экранирующим проводом того же сечения, что и основной. Стеклоткань при этом полностью закрывается проводом. Подобным образом создаются последующие обмотки и разделяются посредством термобумаги.

Для обеспечения стабильности напряжения порядка 20-25 В, следует правильно отобрать резисторы. Для мостового инвертора рекомендуется применить диодную схему «косой мост».

При работе инвертора не избежать нагрева диодов, потому их нужно расположить на радиаторе, к примеру, от персонального компьютера.

Всего нужно 2 радиатора – для крепления верхней и нижней частей моста. При установке первого необходимо применение слюдяной прокладки, для другого – термопасты.

Выход моста назначается по направлению выходов транзисторов. Для соединения используются провода длиной до 15 см. От блока мост отделяется листом металла, прикрепляющимся к корпусу агрегата для инверторной сварки.

Управление

Электронные платы инвертора следует размещать с использованием фольгированного текстолитового материала 0,5-1 мм.

Инверторная сварка своими руками осуществляется под автоматическим управлением через ШИМ-контроллера, стабилизирующего основные функциональные параметры. Для удобства органы управления рекомендуется располагать на лицевой части совместно с входом для подключения.

Основные рекомендации

Перед сборкой нужно внимательно ознакомиться со схемой инверторной сварки и приобрести все необходимое для изготовления: купить радиодетали в специализированных радиомагазинах, найти подходящие каркасы трансформаторов, медную жесть и провод, продумать дизайн корпуса. Планирование работы значительно упрощает процесс сборки и экономит время. При пайке радиокомпонентов следует применять паяльную станцию (индукционная с феном), для исключения возможного перегрева и выхода из строя радиоэлементов. Соблюдать нужно и правила техники безопасности при работе с электричеством.

Дальнейшая настройка

Все силовые элементы схемы должны иметь качественное охлаждение. Транзисторные ключи необходимо «сажать» на термопасту и радиатор. Желательно применять радиаторы от микропроцессоров мощного типа (Athlon). Наличие вентилятора для охлаждения в корпусе обязательно. Схему БП можно доработать, поставив конденсаторный блок перед трансформатором. Нужно использовать К78−2 или СВВ-81, так как другие варианты недопустимы.

После подготовительных работ нужно приступить к настройке сварочного инвертора. Для этого нужно:

Подключить 15 В к ШИМ, подав питание на ШИМ и на систему охлаждения. Реле К1 выполняет роль ключа для замыкания R11 — при времени срабатывании первого около 10 секунд. Кроме того, выполняется зарядка С9-C12, которые разряжаются через R11. Наличие R11 обязательно, так как оно обезопасит конденсаторы от взрыва из-за всплеска тока при подаче сетевого питания.
  1. При помощи осциллографа выполнить проверку платы на наличие прямоугольных импульсов, идущих к HCPL3120 после срабатывания К1 и К2. Кроме того, реле К1 должно быть подключено после зарядки конденсаторов. Во время работы инвертора без нагрузки (холостой ход) сила тока должна быть менее 100 мА.
  2. Правильность установки фаз высокочастотного трансформатора проверяется 2-лучевым осциллографом. Для этого нужно выставить частоту ШИМ 50..55 Гц и измерить значение U, которое должно быть менее 330 В. Потребление моста должно быть 120..150 мА. При работе сварочного инвертора трансформаторы не должны сильно шуметь, а если такое происходит, нужно разобраться в этом. Шум часто происходит из-за плохо зажатых пластин магнитопровода. Смотреть на осциллограф и плавно крутить ручку переменного резистора.
  3. Параметры U не должны превышать 540 В (345 В является оптимальным значением U). После измерений нужно отсоединить осциллограф и начать варить металл. Время сварки нужно начинать с 10 секунд и постепенно увеличивать его до 5 минут. Если все сделано верно, то шума не должно быть.

Существуют и более совершенные модели сварочников инверторного типа, в силовую схему которых входят тиристоры. Широкое распространение также получил инвертор «Тимвала», который можно найти на форумах радиолюбителей. Он имеет более сложную схему. Подробнее с ним можно ознакомиться в интернете.

Таким образом, зная устройство и принцип работы сварочного аппарата инверторного типа, собрать его своими руками не представляется непосильной задачей. Самодельный вариант практически не уступает заводскому и даже превосходит его некоторые характеристики.

Источники

  • https://www.asutpp.ru/kak-sobrat-svarochnyy-apparat-svoimi-rukami.html
  • https://stankiexpert.ru/spravochnik/svarka/svarochnyi-invertor-svoimi-rukami.html
  • http://instrument-blog.ru/svarka/invertornyj-svarochnyj-apparat-svoimi-rukami.html
  • https://WikiMetall.ru/oborudovanie/svarochnyiy-invertor-svoimi-rukami.html
  • https://tytmaster.ru/svarochnyj-invertor-svoimi-rukami/
  • https://svarka.guru/oborudovanie/vidy-apparatov/invertor-svoimi-rukami.html
  • https://pochini.guru/sovety-mastera/sborka-invertornogo-svarochnogo-apparata

[свернуть]

Сварочный инвертор своими руками. От теории к практике. ЧАСТЬ 2

СВАРОЧНЫЙ АППАРАТ СВОИМИ РУКАМИ

НАЧАЛО СТАТЬИ

СБОРКА МОЩНОГО БЛОКА ПИТАНИЯ ПО СХЕМОТЕХНИКЕ СВАРОЧНОГО АППАРАТА

        Откровенно говоря сразу убивать не дешевые силовые транзисторы не захотелось, поэтому было принято решение собрать некий примежуточный вариант, в котором используется тот же принцип работы, но более дешевая элементная база. Ну а чтобы сохранить вероятность дальнейшего использования данного вариант было решено собрать блок питания, но ввести в него некоторые функции, которые позволят его использовать как пуско-зарядное устройство для автомоблиля.
    Принципиальная схема данного пуско-зарядного устройства приведена ниже:


УВЕЛИЧИТЬ

    В качестве донора моточных деталей и блока питания будет использоваться блок питания от тюнера Триколор. Основных видов данного блока питания два — с вертикальным и горизонтальным расположением трансформатора. В обоих случаях используется микросхема FSDM0365RN, маркируется как DM0365.

    У меня с горизонатльным трансформатором больше, поэтому буду использовать их. Прежде всего блок питания будет выступать в роли блока питания для схемы управления, поскольку данный БП оснащен всем необходимым для надежной долгосрочной работы. Единственно, что нужно сделать это проверить исправность электролитов, а еще лучше поменять их на новые. Ну и разумеется перемотать трансформатор. Я решил намотать две обмотки — одна для питания UC3845, вторая — для питания вентилятора принудительного охлаждения.
    Более подробно об этом блок питания можно посмотреть здесь:

    Архив с печатной платой и схемой можно взять ЗДЕСЬ.
    Кроме самого БП использую еще два таких же трансформатора. Первый пойдет на изготовление трансформатора управления, второй — трансформатор тока. Кстати сказать, по ходу подготовки сердечников к намотке решил проверить один вопрос, который частенько видел в интернете и которым сам задавался не единожды — ЧТО ПРОИСХОДИТ С ФЕРРИТОМ ВО ВРЕМЯ НАГРЕВА???

Ответ на этот вопрос в видео ниже:

   

ТРАНСФОРМАТОР ТОКА

    Трансформатор тока обычно содержит 1 виток первичной обмотки и N-ое количество витков вторичной обмотки. Расчитать трансформатор тока можно по следующей формуле:
            Imax = N x U / R
    где:
    Imax — максимальный ток
    N — количество витков вторичной обмотки
    U — требуемое выходное напряжение
    R — нагрузочный резистор
    Для удобства переведем формулу в другой вид, а именно для расчета витков, поскольку нагрузочный резистор придется выбирать либо из того, что есть, либо из стандартного ряда.
    N = Imax x R / U
    Итак, предположим, что нам нужно ограничить ток на уровне 50 А, в наличии имеется резистор на 1 Ом и 2,2 Ома. Напряжение компаратора защелки (вывод 3) у нас равно 1 В.
    N = 50 x 1 / 1 = 50 витков для резистора 1 Ом
    N = 50 x 2,2 / 1 = 110 витков для резистора 2,2 Ома.
    Ну а поскольку у нас пока не сварочный аппарат и силовые транзисторы от таких токов просто разлетятся в клочья ограничим ток на уровне 5 А, а резистор возьмем на 15 Ом. При необходимости мы всегда можем эти цифры исправить. Итого получаем:
    N = 5 x 15 / 1 = 75 витков для резистора 15 Ом.
    Тут пожалуй следует оговорится — трансформатор тока должен быть перегружен, в этом случае исключается его насыщение. Однако в былые времена на базе трансформаторов тока я делал и управление принудительным охлаждение и само принудительное охлаждение — вентиляторы как раз и выступали в роли нагрузочного резистора. Правда одного витка на первичку было малова то — моталось 2-3 витка и сердечник хоть и терпимо, но все таки грелся.

УПРАВЛЯЮЩИЙ ТРАНСФОРМАТОР

    По поводу управляющего трансформатора тоже есть некоторые не состыковки с оригинальной схемой — он значительно больше. Я намеренно взял такой «огромный» трансформатор. Ну во первых у меня их много, во вторых найти их не составит труда даже Вам, в третьих — запас по габаритной мощности должен позволить избавится от драйверных транзисторов — на затворы и MOSFET и IGBT можно подавать отрицательное напряжение для ускорения закрытия. Вот этой особенностью я и хочу воспользоваться.
    В оригинальном блоке питания на DM0365 для стабилизации 15 вольт выходного напряжения требуется 18 витков, трансформатор работает на частоте 67 кГц, выходное напряжение сохранятеся вплоть до 150 вольт входного, следовательно трансформатор намотан с ОГОРОМНЫМ запасом. Можно конечно воспользоваться программой Динисенко, но решил намотать «на галазок» 4 обмотки по 30 вольт.
    Намотка первичной осуществлялась сразу двойным проводом 0,35 мм виток к витку, затем было вызвонены начало-конец обмоток и они соединялись последовательно. Затем слой изоляции и намотка вторичных обмоток, так же с межслойной изоляцией. Размеется, что все обмотки мотались в одну сторону. Единственно, что не было сделано — момечено где начало на вторичках, но это проблемой не будет. Дело в том, что на плате управления выхода с управляющего трансформатора одинаковы и нагружены только на резистор. Выяснить какой вывод должен идти на затвор силового транзистора можно при помощи осциллографа.

СБОРКА БЛОКА ПИТАНИЯ ДЛЯ БЛОКА ПИТАНИЯ.

    Монтаж элементов на плату лучше осуществлять в 2 этапа. На первом этапе устанавливаются все элементы, относящиеся к блоку питания контроллера. Блок питания проверяется до того, как у него появится «потребитель».

    Сразу следует отметить, что однотактыне преобразователи напряжения ОЧЕНЬ не любят оставаться без нагрузки и выходное напряжение может быть не очень то стабильным. И колебания эти могут достигать 0,2..0,4 вольта.

    Это вызвано тем, что выходное напряжение успевает поднятся до такой величины, что влияние ОС буквально останавливает микросхему и на трансформатор перестает подаваться напряжение. На фото ниже показаны осциллограммы на выходе трансформатора блока питания с очень маленькой нагрузкой:

    Тут следует поделится опытом — при намотке трансформатора я попутал начало-конец вспомогательной обмотки вторичного питания. На схеме эта обмотка не обозначена, но на плате она есть и предназначена она для питания вентилятора принудительного охлаждения. Я ее на всякий случай решил внести в схему, если вдруг внутри корпуса будет жарковато. Как следствие такой не внимательности пока я соображал почему блок питания стартует и тутже уходит в защиту от перегрузки у меня стрельнул конденсатор на 25 вольт. Именно тогда меня и посетила мысль о том, что я что то перемудрил с обмотками. «Крокодил» ослиллографа установил на минусовой вывод, а шупом стал на вывод трансформатора до диода. Действительно обмотка с неправильной фазировкой и на конденсатор подавалось порядка 50-ти вольт. Было бы глупо ему не стрельнуть. Для наглядности ниже приведены фото осциллограмм при правильной фазировке и не правильной. Измерения относительно минусового вывода:

    Ну с блоком питания разобрались, теперь можно паять и сам контроллер и его обвязку. В качестве контролируемого напряжения использовалось собственное напряжение питания контроллера. Вход контролирующий ток был посажен на «землю».
    На первых парах после включения возникло не понимание происходящего — вместо плавного изменения длительности контроллер попросту отключал управляющие импульсы. Не вольно возникал вопрос — а какой же это тогда ШИМ???

    Прочитав несколько статей по этой микросхеме и более подробно изучив даташник стало понятно, что изначально этот контроллер затачивался как стабилизатор тока и именно поэтому у него особый упор сделан на ISENSE (вывод 3) который и контролирует ток через токоизмерительный резистор.
    Конечно его можно заставить и контролировать напряжение, как это сделано тут:

 

    Но в любом случае стабилизация выходного напряжения будет осуществляться не линейно, а пакетами импульсов. Именно поэтому на выходе блоков питания с использованием этой микросхемы обязательно должен стоять дроссель и довольно большой емкости электролит.

    Порыскав по интернету нашел еще одну схему включения UC3844 (она такая же, как и UC3845) в обратноходовом блоке питания, выпускаемом серийно.
    Не буду врать — данная схема меня озадачила — регулировка выходного напряжения в ней осуществлялась методом подачи «земли» на ВЫХОД усилителя ошибки. Разумеется, что подобными действиями можно отжечь этот самый выход, но блок питания выпускается серийно, следовательно разработчики учли вероятность перегрузки выхода усилителя ошибки и не исключено, что в структурной схеме не показан имеющийся резистор на выходе усилителя ошибки, ведь если он там есть, тогда этот операционник не будет попросту задействован. Ну вот собственно и сама схема этого «загадочного» блока питания:

 

    Удержаться от опыта имея уже запаянную плату конечно же довольно трудно. Поэтому к выводу 1 был подпаян переменный резистор на 1 кОм и в результате на выходе микросхемы получились вот такие осциллограммы:

    В принципе, если использовать вариант стабилизации, предложенный на схеме выше, то конечно же он работать будет, причем выходное напряжение будет гораздо стабильней, чем при стабилизации пакетами импульсов, но лично меня все равно смущает то, что на выход услителя в наглую подается «земля». Я оставлял это добро во включенном состоянии на 30 минут — ни чего не нагрелось, не слетело, т.е. как бы это можно использовать. Но осадок не понимания остался.

ПРОВЕРКА УПРАВЛЯЮЩЕГО ТРАНСФОРМАТОРА

    Теперь вернемся не много назад и разберемся с осцилограммами на управляющем трансформаторе. Назад потому, что описанная проверка стабилизации ШИМом была уже после того, как была проверена работоспособность управляющего трансформатора.
    Тут с гордостью могу заметить, что делая ставку на излишнюю габаритную мощность я не ошибся — трансформатор держит нагрузку замечательно, а закрепленный на управляющий транзистор радиатор едва греется.

    При работающем контроллере на затвор управляющего транзистора приходит напряжение следующей формы:

    На управляющем трансформаторе, на первичной обмотке амплитуда напряжения достигает 30 вольт, поскольку после закрытия транзистора накопленная в сердечнике энергия меняет полярность напряжение и приложенные пятнадцать вольт во время открытия транзистора теперь добавляются к имеющимся пятнадцати вольтам напряжения питания, поскольку полярность напряжения самоиндукции обратно приложенному напряжению. Здесь стоит обратить внимание на то, что в конце этого вольтодобавочного скачка имеется ниспадающий участок, который как раз и говорит о том, что энергии в сердечнике больше нет — он полностью размагнитился. Если трансформатор нагрузить, то высота этой ниспадающей кривой уменьшится, а по времени она начнется раньше, ведь нагруженный трансформатор гораздо раньше избавится от накопленной энергии:

    Тоже самое можно наблюдать и на вторичной обмотке, только напряжение теперь будет иметь переменное значение. В этом месте необходимо отметить, что на затвор силового транзистора как раз должно приходить напряжение прямоугольной формы, находящеяся в положительном полупериоде, т.е. тот вывод трансформатора к которому подключен щуп осциллографа. Вывод трансформатора к которому подключен «крокодил» должен идти на исток силового транзистора. В этом случае фазировка управляющего трансформатора правильная.

    Тому, что дочитал до этих слов, но все равно мало что понял предлагаю видеовариант данной статьи:

    Итак, подводим итоги проделанной работы:
    UC3845 — контроллер, предназначенный для стабилизации тока широтно-импулсьной модуляцией, стабилизацию напряжения он может осуществлять только в преривисто-импульсном режиме, либо имитацией ШИМ. Данную имитацию можно организовать подавая «землю» на первый вывод микросхемы.
    При перемотке трансформатора однотактного блока питания следует особое внимание уделять фазировке — даже приличный опыт в электронике не является гарантией ошибки.
    Управляющий трансформатор на основе сердечника от Триколоровского БП работает замечательно и держит довольно приличную нагрузку. В паузах полностью успевает размагнитится, что говорит о возможности его использования как для можных блоков питания, так и для сварочных аппаратов.
   
    Приступаем к подготовке моточных деталей к монтажу и проверяем на работоспососбность уже весь блок питания, но это уже в следующей серии, описание которой будет в

ПРОДОЛЖЕНИИ

   

 


Адрес администрации сайта: [email protected]
   

 

Что такое инверторный сварочный аппарат? Об инверторной технике и сварке

Как работает инверторная технология (в сварочных аппаратах)?

Проще говоря, инвертор — это электронная система регулирования напряжения. В случае инверторного сварочного аппарата он преобразует источник переменного тока в более низкое выходное напряжение — например, с источника 240 В переменного тока на выход 20 В постоянного тока.

Устройства на базе инвертора

используют ряд электронных компонентов для преобразования мощности — в отличие от обычных устройств на основе трансформатора, которые в основном зависят от одного большого трансформатора для регулирования напряжения.

Инвертор работает путем увеличения частоты первичного источника питания с 50 Гц до 20 000 — 100 000 Гц. Это достигается за счет использования электронных переключателей, которые очень быстро включают и выключают питание (до 1 миллионной секунды). За счет такого управления источником питания до того, как он попадет в трансформатор, можно очень значительно уменьшить размер трансформатора.

Каковы преимущества использования инверторных сварочных аппаратов?

Инверторные продукты имеют много преимуществ по сравнению с обычными трансформаторными устройствами:

  • Вес и размер : Это наиболее значительное и впечатляющее преимущество инверторного сварочного аппарата по сравнению с обычными машинами. Например, инвертор весом менее 5 кг, меньше чемодана и его можно удобно перекинуть через плечо, может иметь выходную мощность, сравнимую с мощностью 50-килограммовой машины на базе трансформатора.
  • Эффективность : Качественные инверторные машины, такие как серия инверторных сварочных аппаратов Weldforce, будут иметь рейтинг эффективности около 80-90%, в то время как обычные сварочные аппараты имеют значительно более низкий КПД, около 50%. Это связано с тем, что более крупные трансформаторы в обычных машинах имеют большее сопротивление и, следовательно, теряют значительное количество мощности (или энергии) из-за рассеивания тепла.
  • Использование мощности генератора : Быть очень эффективным означает, что использование энергии генератора намного более целесообразно для инверторных сварочных аппаратов, которые могут работать на небольших портативных генераторных установках — что часто невозможно с традиционными трансформаторными машинами.Следует отметить, что существуют риски, связанные с использованием мощности генератора — для получения дополнительной информации прочитайте нашу статью об использовании генератора с инверторными сварочными аппаратами.
  • Рабочий цикл : Обычно гораздо более высокие рабочие циклы достигаются с инверторными машинами, опять же из-за разницы в размерах трансформатора. Хотя более мелкие компоненты в инверторной машине быстро нагреваются, их можно охладить намного проще и быстрее. Однако в обычных сварочных аппаратах с «трансформатором» компоненты намного крупнее и, следовательно, имеют тенденцию накапливать тепло, и им требуется больше времени для охлаждения.
  • Выход постоянного тока : Многие обычные аппараты для сварки стержневыми электродами с «трансформатором» имеют только выход переменного тока, что означает, что они ограничены в типах электродов, которыми они могут сваривать. Однако в инверторных машинах ток намного легче преобразовать в постоянный ток, что означает, что они могут сваривать широкий спектр различных сварочных электродов. Это также означает, что некоторые инверторы MMA (стержневые) также подходят для сварки TIG на постоянном токе, что невозможно с обычными аппаратами переменного тока.
  • Производительность : Производительность качественных инверторных сварочных аппаратов существенно выше, чем у обычных сварочных аппаратов.Это особенно заметно при сварке стержневыми электродами (стержневой сваркой), когда операторы обнаруживают, что сварка намного проще и им не нужно «бороться» с дугой. В основном это связано с тем, что инверторные машины имеют более высокое напряжение холостого хода и включают такие функции, как горячий запуск, защита от прилипания и Arc-Force. Ярким примером этого является сварка тонких материалов: с использованием обычного сварочного аппарата для стержневой сварки это, как известно, сложно, если не невозможно, но с инверторными машинами, такими как серия Weldforce, которые имеют бесконечную регулировку силы тока и очень стабильную дугу, мощность можно очень сильно уменьшить. низкий так, чтобы он сварился, скажем 1.6-миллиметровый листовой металл или секция трубы с относительной легкостью и контролем.
  • Функции : Электроника инверторных машин значительно упрощает возможность включения дополнительных функций (таких как режим TIG) и повышения управляемости существующих функций.

Что такое инверторная технология IGBT?

Аббревиатура IGBT означает «биполярные транзисторы с изолированным затвором». Это высокоскоростные переключающие устройства, используемые во всех сварочных аппаратах Weldclass Inverter, которые облегчают регулировку напряжения.

В некоторых инверторных машинах используется более старая технология / транзисторы MOSFET. Технология IGBT предлагает значительные преимущества по сравнению с MOSFET — возможно, наиболее важным преимуществом является то, что IGBT менее уязвимы к колебаниям мощности сети и генератора, что делает их намного более надежными и менее подверженными повреждению или отказу.



БТИЗ

Еще статьи по инверторным сварочным аппаратам;

Что такое рабочий цикл и как он рассчитывается?

Использование генераторов для питания инверторных сварочных аппаратов

Все артикулы сварочных аппаратов

Несмотря на то, что были приняты все меры, Weldclass не несет ответственности за любые неточности, ошибки или упущения в этой информации или ссылках и приложениях.Любые комментарии, предложения и рекомендации носят только общий характер и не могут применяться к определенным приложениям. Пользователь и / или оператор несут исключительную ответственность за выбор соответствующего продукта для их предполагаемого назначения и за обеспечение того, чтобы выбранный продукт мог правильно и безопасно работать в предполагаемом приложении. E. & O.E.

Каковы основные конструкции источников питания для оборудования для дуговой сварки?

Часто задаваемые вопросы

Основными функциями источника питания являются выработка тепла, достаточного для расплавления соединения, а также для создания стабильной дуги и переноса металла.Поскольку сварочные процессы требуют высокого тока (50-300 А) при относительно низком напряжении (10-50 В), напряжение сети высокого напряжения (230 или 400 В) должно быть уменьшено с помощью трансформатора. Чтобы получить постоянный ток, выход трансформатора должен быть дополнительно выпрямлен (рис. 1).

Существует пять типов источников питания: трансформатор переменного тока; Выпрямитель постоянного тока; Преобразователь переменного / постоянного тока, выпрямитель, генератор постоянного тока и инвертор.

Тип управления, например Первичный реактор с отводом с насыщением, тиристор и инвертор является важным фактором при выборе источника питания.Простой станок для нарезания резьбы первичной резьбой может быть идеальным и надежным выбором для многих сварочных работ MIG (GMA), но у него есть свои ограничения. Если шагов недостаточно, настройка оптимальных условий может оказаться невозможной, и колебания подачи повлияют на выход. Тиристорное управление позволяет бесступенчато регулировать выход, не зависит от колебаний напряжения питания и может управляться дистанционно. Тиристорные источники питания могут использоваться для большинства сварочных процессов, т.е. могут иметь либо плоскую (MIG [GMA]), либо падающую (MMA [SMA] и TIG [GTA]) выходную характеристику.

Инверторные источники питания

обладают всеми преимуществами тиристорного управления, но с дополнительной производительностью, экономией веса и эффективностью. Транзисторы используются для преобразования сетевого переменного тока (50 Гц) в переменный ток высокой частоты (> 500 Гц) перед преобразованием в напряжение, подходящее для сварки, а затем выпрямление в постоянный ток. Таким образом, инвертор, по сути, представляет собой силовой блок, которым можно управлять, часто с помощью программного обеспечения, для получения статических и динамических характеристик, необходимых для выбранного процесса сварки. Следовательно, большинство инверторов предлагают возможность работы с несколькими процессами.Кроме того, отклик современных инверторов открывает возможности высокочастотного импульса, необходимого для импульсной сварки MIG (GMA), и динамической обратной связи для управления переносом металла, как в случае MIG с переносом погружением.

Инвертор

против сварочного аппарата трансформатора: что лучше для ваших нужд?

0

Последнее обновление:

Электросварочные аппараты эксплуатируются более 100 лет. Как и любая технология, сварочные аппараты в настоящее время значительно усовершенствованы, чем в предыдущие десятилетия.

Однако есть что сказать и о надёжности старого образца. Когда речь идет о трансформаторных или инверторных сварочных аппаратах, у многих профессионалов в области сварки есть выбор.

Однако ваши предпочтения должны зависеть от того, какой из них лучше подходит для выполняемой работы. Чтобы помочь вам, мы собрали всю важную информацию о сварщиках, чтобы вы могли лучше понять, как они работают, и, наконец, выберите ту, которая вам больше всего подходит. Вот подробное описание инверторных и трансформаторных сварочных аппаратов.Читать дальше!


Обзор инверторного сварочного аппарата

Кредит: Рижка Назар, Shutterstock

Как это работает?

Инверторный сварочный аппарат преобразует переменный ток в выходное напряжение с более низким допустимым напряжением. Например, от источника питания 240 В переменного тока до выходного напряжения 20 В постоянного тока. В инверторных устройствах для преобразования мощности используется пара электронных компонентов.

Напротив, традиционные трансформаторные приборы в основном полагаются на один большой трансформатор для регулирования напряжения.Инвертор работает за счет увеличения частоты первичного источника питания с 50 Гц до 20 000 — 100 000 Гц.

Это делается с помощью электронных кнопок, которые быстро включают и выключают питание (до одной миллионной секунды). Используя этот способ управления источником питания до того, как он попадет в трансформатор, можно значительно уменьшить размер трансформатора.

Примечательные особенности

Повышенная эффективность

С помощью инверторного сварочного аппарата вы можете отрегулировать профиль сварного шва в соответствии с требуемой толщиной.Инверторные сварочные аппараты улучшают внешний вид сварного шва и в то же время поддерживают качество сварки.

Механизм инверторного сварочного аппарата очень эффективен и остается холодным даже при продолжительной работе. Обычно они используют минимальное количество фильтрующего металла. Они эффективно снижают тепловложение и обеспечивают превосходную производительность.

Эффективность и энергосбережение

Инверторные сварочные аппараты не только энергоэффективны, но и обеспечивают безнапорное и бесплатное подключение.Эти инверторные сварочные аппараты являются прекрасной заменой обычным сварочным аппаратам, когда дело доходит до выработки тепла и потребления энергии.

Инверторный сварочный аппарат имеет выходную мощность до 93% по сравнению с обычными сварочными аппаратами. Уровень производства обычных сварщиков составляет 60%. Инвертор значительно уменьшает трансформатор, габариты реактора и вес сварщика.

Сопоставимые потери мощности (в основном, потребление энергии в проводнике и потери в магнитном сердечнике) также значительно уменьшены.

Холодильная установка

Эти превосходно сделанные инверторные сварочные аппараты имеют внутренний охлаждающий вентилятор. Он снижает рабочее тепло и предотвращает выработку дополнительного тепла. С помощью охлаждающих вентиляторов машины не только перестают перегреваться, но и приводят к увеличению срока службы устройств.

Кредит: Сергей Храмов, Shutterstock

Выходное напряжение и текущая стабильность

Многие традиционные сварочные аппараты используют переменный ток (АС), и, следовательно, эти аппараты не обеспечивают непрерывный ток и выходную мощность.

В таком случае дуги этих машин нуждаются в нескольких повторных зажиганиях, примерно от 100 до 120 раз в секунду. В отличие от обычных сварочных аппаратов, инверторный сварочный аппарат быстро выделяет тепло.

Эти машины могут поддерживать постоянный ток. Он предотвращает нестабильность напряжения и температуры, поскольку эти машины имеют защиту от помех. По сути, сварочные аппараты обладают защитой от помех и имеют более низкую вероятность изменений температуры и колебаний напряжения.

Поскольку направление тока и напряжение часто меняются, традиционные инверторные сварочные аппараты используют переменный ток. Дуга может быть погашена и зажжена до 120 раз в секунду. Дуга непостоянна и горит постоянно. Это приводит к продолжительному нагреву. А его прочность снижает сварной шов.

Методы IGBT

Эти инверторные сварочные аппараты могут быстро собирать электроэнергию, используя любое устройство тока затвора. Это возможно благодаря технологии биполярных транзисторов с изолированным затвором.Переключатель инверторного сварочного аппарата также работает быстро и потребляет меньше энергии для выполнения заключительной операции.

Компактная и легкая модель

Благодаря минимальной конструкции инверторный сварочный аппарат можно использовать практически везде. По сравнению с другими традиционными сварочными аппаратами эти сварочные аппараты компактны. Вы можете разместить их в любом компактном пространстве благодаря компактной конструкции устройства.

Конструкция достаточно компактна, так что вы можете полностью хранить ее в ограниченном пространстве.Вес и размер трансформатора будут значительно уменьшены, поскольку частота инверторного сварочного аппарата намного выше рабочей частоты.

Аналогичным образом, значительное увеличение размера, веса реактора и рабочей частоты будет значительно сведено к минимуму.

Плюсы

  • Низкое энергопотребление.
  • Обеспечивает превосходный контроль электрической дуги.
  • Поставляется с охлаждающим вентилятором для защиты деталей от нагрева.
  • Это портативный.

Минусы

  • Они менее долговечны по сравнению с обычными трансформаторными сварочными аппаратами.
  • Дорогой ремонт.

Обзор сварщика трансформаторов

Кредит: Владимир Ненезич, Shutterstock

Как это работает?

Сварочные аппараты с трансформатором — более традиционный вариант сварки. Эти высокопроизводительные устройства являются «рабочей лошадкой» в отрасли и требуют питания от сети.В основном они используются для промышленной сварки прутков. Они бывают размерами от 250 А до 600 А при 415 В.

Сварщик трансформатора позволяет сварщику выбирать выходной ток, перемещая обмотку ближе или дальше от вторичной обмотки. Он также может перемещать магнитный шунт внутри и из сердечника трансформатора, используя последовательный реактор насыщения с изменяемым подходом последовательно с выходным вторичным током, или просто позволяя сварщику выбирать выходное напряжение, нажимая на вторичную обмотку трансформатор.

Эти приборы трансформаторного типа обычно являются наиболее экономичными.

Отличительные особенности

Особенностью трансформаторного сварочного аппарата является то, что на электрод подается переменный ток. Это означает, что преобразование активировано. Из-за этого увеличивается разбрызгивание металла, что, в свою очередь, сказывается на качестве шва.

КПД трансформатора составляет около 80%, так как большая часть энергии используется для нагрева «железа» прибора. Устройства разделены на домашние, производящие ток до 200 ампер, профессиональные и полупрофессиональные, до 300 ампер, а еще один — более 300 ампер.

Когда дело доходит до использования прибора в домашних условиях, используется однофазный электрический ток 220 вольт. Однако в большинстве экспертных устройств часто используется трехфазный ток 380 В.

Надежность

Большинство людей спорят о надежности сварщика. В течение почти столетия трансформаторные сварочные аппараты подвергались комплексным исследованиям и разработкам для создания надежных и прочных аппаратов, в то время как инверторным сварочным аппаратам уделялось такое же внимание только 30 лет.

Сварочные аппараты с трансформатором более надежны по сравнению с лучшими инверторными сварочными аппаратами. Однако за последние годы разрыв значительно сократился. Те дни в 1990-х годах, когда отказы инверторов вызывали кошмары, ушли в прошлое.

Кредит: kofana12, Shutterstock

.

Возможные ограничения

Общая тенденция состоит в том, что трансформаторные сварочные аппараты более просты, но надежны, в то время как инверторные сварочные аппараты могут объединять множество разнообразных процедур с меньшей надежностью.

Другое соображение — это то, как устройство будет ограничивать вас в среднесрочной и долгосрочной перспективе. Если за этими устройствами правильно ухаживать, они могут прослужить значительное количество времени. Если у вас есть трансформаторный сварочный аппарат, он будет крупнее и менее многофункциональным по сравнению с инверторным сварочным аппаратом.

Хотели бы вы приобрести дополнительное оборудование, чтобы иметь такую ​​же производительность, что и инверторный сварочный аппарат? Или вам требуется надежность сварочного аппарата на базе трансформатора, но вам также нужно что-то, что вы можете носить с собой в качестве резервного, которое обеспечивается инверторным сварочным аппаратом?

Время простоя

Некоторые области применения могут привести к преждевременному разрушению инверторных сварочных аппаратов, например, излишки переносимых по воздуху загрязнителей и высокая влажность.Производители пытались создать продукты, более устойчивые к сбоям из-за экологических проблем.

Однако они всегда более склонны к неудачам. Если ваша машина выйдет из строя, вы не сможете использовать ее, пока она не будет отремонтирована. Но как это повлияет на вашу повседневную деятельность? Если вы просто любитель, это не помешает осуществлению важных проектов и не повлияет на ваш доход.

Хотя ваша машина имеет решающее значение для бесперебойной работы вашего бизнеса, вы должны учитывать влияние простоев, которые могут у вас возникнуть.Если окружающая среда, в которой вы находитесь, способствует преждевременному выходу из строя и находится вне вашего контроля, стоит иметь более надежное устройство, которое проще по сравнению с универсальным устройством, которое не работает.

В таком случае лучше всего подойдет трансформаторный сварочный аппарат, поскольку он прочен, надежен и редко выходит из строя.

Область применения

Сварочные аппараты для трансформаторов — это неприхотливое оборудование, которое используется практически во всех сферах человеческой деятельности, где необходимы сварочные соединения для железных металлов.

Приборы используются для следующих целей:

  • Ремонт и прокладка трубопроводов.
  • Сварка сантехнических трубопроводов.
  • Устройство металлических конструкций на стройплощадке.
  • Соединение листовых материалов, два в стык и внахлест.

Плюсы

  • Начальная стоимость невысока.
  • Идеален для ремонта фермы.
  • Сварщик не требует обслуживания.
  • Эксплуатационные расходы также относительно низкие.
  • Высокая надежность.

Минусы

  • Зажигать дугу сложно.
  • Чувствителен к снижению напряжения в сети.
Инвертор

против сварочного аппарата трансформатора: что подходит именно вам?

Хотя инверторные сварочные аппараты имеют преимущества перед трансформаторными сварочными аппаратами, не все из этих преимуществ могут быть вам полезны. Окончательный выбор в конечном итоге сводится к предпочтениям пользователя.

Мы предоставили вам все необходимое, чтобы помочь вам учесть ваши требования и выяснить, что вам подходит. Кроме того, мы составили список различий между инверторными и трансформаторными сварочными аппаратами с учетом таких факторов, как долговечность, вес, стоимость и т. Д.

Начнем прямо сейчас!

Постоянство

По сути, трансформаторы имеют более высокие рабочие циклы. Следовательно, теоретически они могут решать более сложные задачи, чем инверторные сварочные аппараты.На данный момент инверторы новые в магазинах и, следовательно, их долговечность сомнительна.

Прямо сейчас мы знаем о долговечности трансформаторных сварочных аппаратов, поскольку они используются достаточно долго, чтобы анализировать и повышать их долговечность. Тем не менее, инверторная технология невероятно увлекательна, поскольку вы можете вложить много энергии в небольшой легкий корпус.

Стоимость

Между сварщиками инверторов и трансформаторов ведутся давние дебаты о ценах.Многие сварочные аппараты для трансформаторов экономичны, когда речь идет о начальных затратах.

Но в конечном итоге инверторный сварочный аппарат сэкономит вам много денег. Все это сводится к затратам с течением времени. Начнем с того, что инверторные сварочные аппараты потребляют меньше энергии. Хотя точная стоимость, как правило, завышена, многие профессионалы сходятся во мнении, что вы можете сэкономить около 10% на счетах за электроэнергию.

Сварочные аппараты с инвертором

также потребляют меньше расходных материалов и сварочного газа благодаря повышенной стабильности дуги.Со временем не будет безумием сказать, что сварочные аппараты окупятся сами за себя.

Масса

По сравнению с трансформаторными сварочными аппаратами, инверторные сварочные аппараты легче. Они даже вдвое меньше нескольких трансформаторных машин. Если вы выполняете неподвижные работы на большой площади, большой и здоровенный сварочный аппарат для трансформатора не будет проблемой.

Однако, если вы собираетесь перемещать сварщика или помещение ограничено, лучше всего подойдет инверторный сварочный аппарат.

Стабильность и эффективность

За последние 50 лет сварочные аппараты для трансформаторов прошли долгий путь. Используя сварочный аппарат премиум-класса, вы можете достичь привлекательного уровня эффективности, сохраняя при этом относительно стабильную дугу.

Впрочем, по сравнению с инверторными сварочными аппаратами это ничто. Большинство инверторных сварочных аппаратов вдвое эффективнее трансформаторных сварочных аппаратов. Например, по сравнению с трансформаторным сварочным аппаратом, инверторный сварочный аппарат использует половину ампер для получения аналогичного количества вольт.

Из-за этого большинство инверторных сварочных аппаратов могут работать от обычной домашней розетки, и, следовательно, вам не нужно покупать генератор или большую розетку на 220 В.

Долгое время инверторные сварочные аппараты использовали DC (постоянный ток). Хотя у них была более стабильная дуга, чем у обычных сварочных аппаратов с трансформатором постоянного тока, для сварщиков на переменном токе был доступен только один вариант.

В настоящее время инверторные сварочные аппараты могут использовать как постоянный, так и переменный ток. А поскольку инверторные сварочные аппараты более эффективны, они могут генерировать более стабильную дугу.По этой причине инверторные сварочные аппараты являются лучшим выбором с точки зрения эффективности и стабильности.

Качество сварных швов

Раз уж мы обсуждаем сварочные аппараты, давайте перейдем к сути сварки и остановимся на дуге и сварных швах. Если вы из тех сварщиков, которые работают с гладкой сталью весь день, каждый день, вам не нужно искать машину для сварки трансформаторов.

Однако мы живем в мире, который требует совершенства сварки в любом положении и на каждом материале.Сварщики с инвертором начинают сиять в этом требовательном мире. Поскольку инверторные сварочные аппараты можно запрограммировать на выполнение чего угодно, теперь мы видим, что улучшенная импульсная сварка MIG работает аналогично высококвалифицированной сварке TIG.

Программное обеспечение и усовершенствованная электроника открывают мир, который коренным образом изменил возможности сварочного аппарата. Иногда даже средний сварщик выглядит неплохо.

Когда дело доходит до качества сварки и инноваций, инверторный сварочный аппарат — лучший выбор. Тем не менее, для стали все еще можно упростить.

Рабочий цикл

Как правило, инверторные сварочные аппараты могут достигать гораздо более высоких рабочих циклов из-за размера трансформатора. Хотя более мелкие детали инверторного сварочного аппарата быстро нагреваются, их можно охладить намного быстрее и проще.

Однако в традиционных сварочных аппаратах с трансформатором детали намного больше и, следовательно, имеют тенденцию сохранять тепло и долго остывать.

Использование мощности генератора

Эффективность означает, что использование мощности генератора более возможно с помощью инверторных сварочных аппаратов, которые могут работать на портативных генераторах меньшего размера.Это невозможно с обычными сварочными аппаратами для трансформаторов.

Однако следует учитывать, что использование энергии от генератора чревато опасностями.

Функциональность

По сравнению с традиционными трансформаторными сварочными аппаратами, характеристики высококачественных инверторных сварочных аппаратов значительно выше. Это особенно заметно при ручной сварке (MMA), при которой операторы считают, что сварка проще, и им не нужно «бороться» с дугой.

В основном это происходит из-за способности инверторных сварочных аппаратов иметь более высокое напряжение холостого хода и интегрировать такие функции, как Anti-Stick, Arc Force и Hot Start.Основным примером этого является сварка тонких материалов: с использованием традиционного аппарата для ручной сварки это печально известно сложно, если не непрактично.

Однако с помощью инверторных сварочных аппаратов, которые имеют неограниченную регулировку силы тока и стабильную дугу, мощность может быть значительно снижена, так что, например, лист металла толщиной 1,6 мм или секции труб можно сваривать значительно проще и контролируемым образом.

Кредит: Супавит Сретбхакди, Shutterstock

Что такое технология IGBT?

Буквы IGBT обозначают «Биполярные транзисторы с изолированным затвором».Это высокоскоростные переключающие устройства, используемые во всех сварочных аппаратах без сварки, которые упрощают регулировку напряжения.

В некоторых инверторных сварочных аппаратах используется более старая технология MOSFET или транзисторы. Технология IGBT обеспечивает значительные преимущества по сравнению с MOSFET. Возможно, решающим преимуществом является то, что IGBT менее подвержены колебаниям мощности генератора и питающей сети, что делает их более надежными и менее уязвимыми для отказов или повреждений.

Когда использовать инверторный сварочный аппарат Когда использовать сварочный аппарат трансформатора
Внутри в регулируемой среде В пыльной и грязной среде
Его можно использовать на многих типах основного металла Вы можете использовать его с одним и тем же металлом изо дня в день


Заключение

За последние 15 лет инверторные сварочные аппараты претерпели стремительные преобразования.Они постоянно улучшают как функциональность, так и стоимость. Однако это не означает, что мы должны зарывать трансформаторные сварочные аппараты, поскольку они также играют решающую роль в отрасли.

В конечном итоге все сводится к индивидуальному взвешенному решению, зависящему от множества факторов.


Кредит предоставленного изображения: (L) Mehaniq, Shutterstock | (R) Алан Сау, Shutterstock

Инверторные источники сварочного тока

помогают решать проблемы технического обслуживания и сокращают время простоя

(по данным Plant Engineering, июнь 2005 г.)

Краткое содержание:

  • Сложности с перемещением тяжелых сварщиков на место работы, например, простои из-за ожидания вилочного погрузчика, грузовика или крана, чтобы переместить сварщика.
  • Невозможность поднести сварщика большего размера к месту работы во время работы в ограниченном пространстве.
  • Проблемы с поиском основного источника питания, который можно использовать (например, только розетка 115 В, а у вас машина 230 В).
  • Трудности с первичным питанием, такие как колебания напряжения, необходимость добавления дополнительных сварщиков, но превышающая мощность цепи, или столкновение с дополнительными начисленными расходами от коммунальной компании за низкий коэффициент мощности (этот пункт относится к внутреннему персоналу, управляющему парк сварочного оборудования).
  • Ограниченные возможности многопроцессорной сварки, например использование одного сварочного аппарата для сварки Stick / TIG, а другого для сварки MIG / порошковой проволокой.
  • Проблемы с поиском опытного сварочного персонала или проблемы, связанные с неправильной настройкой оборудования.

Инверторные сварочные аппараты и аппараты плазменной резки могут решить все эти проблемы, поскольку их передовая технология значительно снижает вес и размер аппарата, обеспечивает возможности управления первичной мощностью, недоступные при использовании традиционных сварочных технологий, и обеспечивает непревзойденные характеристики дуги.Кроме того, современная инверторная технология упрощает эксплуатацию машин. Их улучшенное зажигание дуги и характеристики дуги могут превратить обычного сварщика в хорошего сварщика, что приведет к повышению качества сварки и уменьшению количества брака.

Обычная сварочная технология, хотя и не является предметом рассмотрения в данной статье, остается хорошим выбором для многих операций по техническому обслуживанию и ремонту. Эти сварщики могут выдерживать серьезные злоупотребления, работать в тяжелых условиях и продолжать исправно работать в течение десятилетий. Кроме того, их ограниченная мобильность становится преимуществом в некоторых ситуациях.Когда сварщика нужно оставить на рабочем месте на ночь, пользователи могут быть уверены, что это 4 000 фунтов. Многооператорский блок все еще будет там утром. На рис. 1 (ниже) представлены некоторые краткие инструкции по выбору сварочного аппарата для обслуживания.

Обычный сварочный аппарат

Инвертор

Масса

· 350 + фунтов.для индивидуальной единицы

· 2,000 — 4,000 фунтов. для многодуговых аппаратов

· 10 — 120 фунтов. для индивидуальной единицы

· 180 — 760 фунтов. для многодуговых аппаратов

Диапазон входного напряжения

208/230/460 и т. Д. Требуется ручное перенаправление

115 — 230 или 230 — 575.Повторное соединение вручную не требуется

Одно- или трехфазное

Фиксированная способность

Принимает оба

Допуск колебаний напряжения

± 10% от первичной

Более толерантный¾ См. Информацию об Auto-Line

Коэффициент мощности

Плохо — Хорошо, в зависимости от модели

Отлично (до.95; 1.0 идеально). PFC присущие конструкции

Энергоэффективность

Плохо — Хорошо, в зависимости от возраста объекта

Отлично

Потребление первичного тока

Традиционно выше

Традиционно ниже

Качество многократной технологической дуги

Удовлетворительно — Хорошо

Отлично

Расширенные функции управления дугой

Хорошо

Хорошо — Отлично

Прочность

Отлично, обычно более 10 лет

Хорошо, обычно до 10 лет

Надежность

Отлично

Удовлетворительно — Отлично (зависит от производителя)

Закупочная цена (стоимость усилителя)

Обычно ниже

Обычно выше

Как работают сварщики

Все сварочные аппараты преобразуют первичную мощность высокого напряжения с низкой силой тока в мощность низкого напряжения с высокой силой тока, используемую для сварки.Сварщик делает это с помощью трансформатора, который представляет собой железный сердечник, намотанный на сотни витков медной проволоки. Переменные, определяющие физический размер трансформатора, включают количество витков провода, площадь поперечного сечения сердечника, подаваемое напряжение и частоту первичной мощности.

Ключевая переменная — адрес одного инвертора — это частота. Уравнение, определяющее конструкцию сварочного аппарата, гласит, что увеличение частоты первичной мощности позволяет уменьшить размер и массу трансформатора.

Секрет инверторной технологии состоит в том, что она увеличивает частоту первичной мощности, поступающей на трансформатор, с 60 Гц до 20 000 — 100 000 Гц. Это достигается за счет включения / выключения мощных твердотельных переключателей, называемых IGBT, которые включаются или выключаются всего за одну миллионную долю секунды. Действие включения / выключения имитирует формирование и схлопывание магнитного поля, которое имеет такое же влияние, как и мощность переменного тока, но с гораздо более высокой частотой (см. Фиг.2, блок-схему инвертора, для более подробной информации).

Управляя мощностью на первичной обмотке (или на стороне линии) трансформатора и повышая частоту, производители сварочного оборудования теперь производят инверторы Stick / TIG весом от 10 до 50 фунтов, универсальные сварочные аппараты MIG, которые весят менее 50 фунтов. . и многопроцессорные инверторы (Stick / TIG / MIG / порошковая сварка / строжка), которые весят около 80 фунтов. и производят 425-амперный выход. См. Рис. 3 для сравнения размеров трансформатора между обычным сварочным аппаратом и инвертором.

Быстрая окупаемость инвестиций за счет исключения потери времени

В среднем 85% затрат на сварку приходится на рабочую силу (см.рис.4, график стоимости сварки). Измерение стоимости ремонта включает время, затраченное на то, чтобы сварщик и работа работали вместе, время на настройку сварочного оборудования, время подготовки материала, время горения дуги, время очистки при сварке (разбрызгивание при шлифовании и шлак или, что еще хуже, дорогостоящие переделка), время, затраченное на перемещение сварщика между работами, и время, затраченное на возвращение сварщика в стойку для инструментов, рабочий ящик или место для хранения.

Один подрядчик, выполняющий плановое техническое обслуживание электростанции, рассчитал сэкономленное время для обоснования перехода на инверторную технологию.Ранее в контакторе использовалась система с несколькими операторами с восемью дугами и массой 4000 фунтов. Перейдя на «стоечную» систему, которая удерживает и питает шесть дуг от одного основного соединения и весит всего 712 фунтов, подрядчик сократил рабочее время на 87 процентов. Кроме того, когда сварщик находится рядом с местом работы, операторы могут легко регулировать параметры сварки или изменять процессы.

Сегодня стойка с четырьмя дугами для сварки TIG / Stick может весить всего 180 фунтов (включая стойку) — всего 50 дюймов.высокие, подходят для лифта и оснащены колесами для максимальной мобильности. Системы стеллажей также позволяют снимать отдельных сварщиков со стеллажа. Индивидуальные инверторы немного больше чемодана или ручной клади (размер зависит от выходной мощности), поэтому один или два человека могут легко переместить небольшой инвертор и перенести его в ограниченное пространство.

Гибкость первичной мощности

Экономия времени за счет использования легких инверторов в работе бесполезна, если вы не можете найти место для подключения.Инвертор обеспечивает гибкость местоположения за счет двух типов технологии управления первичным питанием: технологии автоматического подключения и технологии Auto-Line ™, которая доступна на некоторых инверторах Miller Electric Mfg. Co.

.

Благодаря технологии автоматического подключения инвертор определяет тип подаваемого первичного питания, а затем автоматически (но механически) подключается к правильному питанию: 230 или 460 В, одно- или трехфазное, 50 или 60 Гц.

Схема Auto-Line исключает механическое соединение и вместо этого использует электрическое соединение.Схема увеличивает первичную мощность до более высокого напряжения, и эта мощность затем становится источником напряжения для инвертора. Следующие типы инверторов доступны с Auto-Line (сила тока указана при максимальной выходной мощности):

  • Универсальный сварочный аппарат MIG на 180 А, работающий от 115 до 230 В, только однофазный, 50 или 60 Гц
  • Агрегаты Stick / DC TIG на 150 А, которые принимают напряжение от 115 до 230 В, только однофазные, 50 или 60 Гц
  • Устройства Stick / DC TIG на 200 А и TIG / Stick на переменном / постоянном токе, которые принимают от 120 до 460 В, одно- или трехфазные, 50 или 60 Гц
  • Сварочные аппараты CC / CV на 425 А, которые принимают от 208 В до 575 В, одно- или трехфазные, 50 или 60 Гц
  • Сварочные аппараты «Multi-MIG», которые принимают от 208 В до 575 В, одно- или трехфазные, 50 или 60 Гц (эти аппараты специально предназначены для крупносерийной промышленной сварки, а не для обслуживания и ремонта)
  • Плазменные резаки на 55 и 80 А, которые принимают от 208 В до 575 В, одно- или трехфазные, 50 или 60 Гц

Обратите внимание на акцент на сквозной.Первичное напряжение питания может изменяться, но пока оно остается в пределах рабочего диапазона машины, мощность дуги остается стабильной (см. Рис. 5, схема Auto-Line). Операторы никогда не увидят мерцания, и машина будет работать непрерывно в условиях, которые вызывают отключение других машин для самозащиты или срабатывания автоматического выключателя. Это преимущество действительно окупается на объектах с грязным питанием или при отключении электроэнергии от генератора. Обратите внимание, что для создания экономичной станции двухдуговой сварки на месте некоторые компании объединяют сварочный генератор с приводом от двигателя и используют его мощность для работы инвертора.

Наличие инверторов с Auto-Line означает, что человек, производящий сварочный ремонт, может перемещаться не только в любое место внутри завода, но и в любую точку мира, не беспокоясь о наличии доступной мощности.

Больше мощности на фунт, меньше потребляемого тока

Люди, впервые сталкивающиеся с инвертором, обычно не могут поверить, что такой маленький аппарат обеспечивает такую ​​большую сварочную мощность. Например, небольшие инверторы Stick / TIG весят менее 14 фунтов., но может иметь достаточную мощность для сварки с помощью 1/8 дюйма. Наклеить электрод. Даже инвертор для строжки угольной дугой с углем 3/8-дюйма при токе 600 ампер весит всего около 120 фунтов.

Инверторы

также обеспечивают выдающуюся энергоэффективность, которая может снизить счета за коммунальные услуги, и они эффективно используют подаваемую первичную мощность, которая известна в отрасли как хороший коэффициент мощности. Хороший коэффициент мощности снижает потребляемую мощность, что может позволить добавить больше сварщиков к существующей основной мощности. Например, один производитель глушителей недавно столкнулся с дилеммой необходимости увеличения производства для удовлетворения спроса, но при этом считал, что не может добавить к своему парку более 40 дуг, не внося изменений во входящие услуги — изменения, которые могли стоить до 50 000 долларов.

Вместо того, чтобы добавить больше традиционных сварочных аппаратов TIG переменного / постоянного тока на 250 А, которые потребляют от 52 до 96 А первичной мощности при номинальной выходной мощности на первичной 230 В, компания приобрела инверторы TIG переменного / постоянного тока на 200 А, которые потребляют менее 16 амперы при номинальной мощности. Компания добавила восемь инверторов, увеличила производительность и удовлетворила спрос без каких-либо изменений во входящем обслуживании.
Подрядчики-механики, работающие на перерабатывающих предприятиях (нефтехимия, бумага, пищевая промышленность) и электростанциях, также получают выгоду от низкого потребления первичной энергии и управления первичной мощностью.Эти рабочие площадки часто испытывают нехватку электроэнергии и могут иметь нестабильную мощность генератора. Низкое энергопотребление инвертора означает, что один генератор может питать больше дуг, и, как уже отмечалось, такие функции, как Auto-Line, позволяют инвертору преодолевать провалы и всплески напряжения.

Превосходный сварочный аппарат

Переключая первичную мощность с частотой в тысячи Гц и используя усовершенствованное микропроцессорное управление, инвертор может создавать оптимальные характеристики дуги в любом заданном режиме сварки. Таким образом, операторы могут сваривать наилучшим образом, не борясь с дугой, или могут выбрать процесс сварки, наиболее подходящий для работы.

Краткий обзор преимуществ инвертора при техническом обслуживании / ремонте включает следующее:

  • Несколько выходов для технологической сварки. Доступны модели для TIG-сварки Stick / DC (для стали и нержавеющей стали), TIG / Stick на постоянном токе (эти сварочные аппараты имеют больше функций для управления дугой TIG, таких как импульсная сварка и запуск высокочастотной дуги), AC / DC TIG / Stick (AC выход необходим для сварки алюминия) или выход CC / CV. Выход CC, или выход постоянного тока, используется для сварки Stick, TIG на постоянном токе и строжки, а выход CV используется для сварки MIG и порошковой сваркой.Когда работа требует как процессов CC, так и CV, инвертор CC / CV означает, что нужно купить или перевезти на место работы на одну машину меньше.
  • Отличное зажигание дуги. Во время зажигания дуги часто возникают дефекты сварки, потому что дуга не может быстро образоваться. Инверторы обычно обеспечивают более положительное зажигание дуги, что может помочь обеспечить качественный сварной шов с первого раза и исключить необходимость доработки в дальнейшем. Один ремонт сварки может стоить сотни или тысячи долларов, поэтому устранение нескольких дефектов сварки может окупить новый инвертор.
  • Устройство управления копанием для сварки штангой. Контроль копания предотвращает прилипание электрода, когда дуга становится слишком короткой. Это полезно для прохода с открытым корнем или при плотной подгонке и помогает в зажигании дуги.
  • Широкий диапазон регулирования индуктивности для сварки MIG. Это позволяет оператору создавать «более мягкую» дугу (с большей индуктивностью) или «жесткую» дугу. Увеличьте индуктивность для лучшего смачивания (особенно для нержавеющей стали) или уменьшения разбрызгивания, что может сэкономить часы на шлифовку после сварки.
  • Улучшенный импульсный выход MIG или импульсный TIG (возможность настройки формы импульса). В зависимости от области применения, пульсирование может снизить тепловложение для уменьшения деформации или прожога, улучшить эстетику борта, уменьшить разбрызгивание, обеспечить контроль образования лужи вне положения и увеличить скорость движения.
  • Регулировка выходной частоты и расширенный контроль баланса для сварки TIG на переменном токе. Эти функции позволяют адаптировать профиль сварного шва в соответствии с областью применения, чтобы улучшить качество сварки, свести к минимуму шлифовку после сварки и существенно увеличить скорость перемещения.
  • Удобное управление. Такие функции, как вызов последней процедуры, запоминают предпочтения при изменении полярности, такие как метод запуска и панель или дистанционное управление. Чтобы учесть предпочтения оператора и уберечь его от проблем из-за неправильной регулировки, некоторые инверторы имеют четырехпозиционные регуляторы, просто помеченные как «жесткая» или «мягкая» дуга с помощью стержневых электродов E6010 и E7018. Панели управления также имеют цветовую маркировку в зависимости от процесса, например, зеленый для TIG, оранжевый для Stick и синий для сварки проволокой.Производители также стараются обеспечить единообразие своего оборудования, поэтому конструкция панели управления инвертора может напоминать панель управления, используемую на сварочном генераторе с приводом от двигателя, который оператор использовал на предыдущей работе.

Помимо удобных для пользователя средств управления, производители также обращают внимание на потребность в удобных для пользователя процессах. В мире сварки в целом признается, что сварка проволокой (MIG или порошковая сварка) — это самый простой процесс для освоения, причем Stick — более жесткий, а TIG — самый сложный (что не означает, что сварка Stick — это просто!).

Практически любой человек с хорошей зрительно-моторной координацией и правильным отношением к работе может научиться сварке проволокой в ​​обычных условиях за несколько часов практики. Однако сварка проволокой для ремонта на месте может быть затруднена. Даже небольшой сварочный аппарат MIG, работающий от напряжения 115 В, весит 60 фунтов, а баллон с защитным газом часто весит больше, чем сварщик.

Миллер решил эту проблему, создав первый в мире полностью автономный универсальный сварочный аппарат MIG, Millermatic® Passport ™.Этот 45-фунтовый. инвертор (см. рис. 7) имеет 12 унций. внутренний баллон с защитным газом CO2 (на самом деле баллон с красящим шариком), обеспечивающий достаточно газа для 25 минут сварки. Ни один другой сварщик проволокой не выполнит работу быстрее или проще для быстрого ремонта сваркой или легкого изготовления в полевых условиях.

Если ваша работа требует доставки сварщика на место работы, требует нескольких процессов сварки или вы сталкиваетесь с проблемами, связанными с управлением первичным питанием, обратите внимание на инверторную технологию.Реалистичная цель экономии 10 или 20 часов для одной большой работы означает, что новый инвертор многократно окупит себя в течение двух или трех лет, обычно выделяемых на капитальные вложения. И

инвертор помогает запустить объект в аварийной ситуации, он на вес золота.

Фиг.7

Источники питания на базе инвертора

Мир меняется. Это не удивительно для тех, кто хоть отдаленно осознает свое окружение. Тем не менее, есть соблазн взглянуть на давно устоявшиеся технологии, такие как сварка, и поверить в то, что в последнее время технологические разработки практически не развиваются.Однако человек, придерживавшийся этой точки зрения, ошибался. Фактически, конструкция и возможности источников питания для сварки изменились и продолжают быстро меняться. Одна из технологий, способствующих этому изменению, — разработка и популяризация источников питания на основе инверторной технологии. Эта технология особенно хорошо подходит для сварки алюминиевых сплавов, особенно тонких алюминиевых сплавов.

Что нового?
В прошлом источники питания для сварки основывались на трансформаторах.Блок питания потреблял 60 Гц, 230, 460 или 575 вольт. Металлический трансформатор изменил его с относительно высокого входного напряжения на ток 60 Гц при более низком напряжении. Этот низковольтный ток затем выпрямлялся каким-то выпрямительным мостом для получения сварочного выхода постоянного тока (DC). Управление этим выходом обычно осуществлялось какими-нибудь относительно медленными магнитными усилителями.

Сварочные аппараты TIG на базе трансформатора обычно тяжелые и большие. Трансформаторы относительно неэффективны, работая на частоте 50 или 60 Гц.В трансформаторе выделяется много тепла, и трансформатор должен быть относительно большим и тяжелым. Значительная часть затрат на электроэнергию идет на нагрев трансформатора и окружающего воздуха. Большинство таких источников питания для сварки весят около 400 фунтов и имеют форму 32-дюймового куба. Кроме того, если используется 60 Гц, управляющие сигналы ограничиваются выдачей не более 120 в секунду, поэтому невозможно подавать импульс сварочного тока быстрее, чем это.


В источниках питания с инверторным управлением используется такая же входящая мощность 60 Гц.Однако вместо того, чтобы напрямую подаваться на трансформатор, он сначала выпрямляется до 60 Гц постоянного тока. Затем он подается в инверторную секцию источника питания, где он включается и выключается твердотельными переключателями на частотах до 20000 Гц. Этот импульсный постоянный ток высокого напряжения и высокой частоты затем подается на главный силовой трансформатор, где он преобразуется в постоянный ток низкого напряжения 20000 Гц, пригодный для сварки. Наконец, он проходит через схему фильтрации и выпрямления. Управление выходом осуществляется полупроводниковыми элементами управления, которые модулируют скорость переключения переключающих транзисторов.

Какие преимущества предлагает эта новая конструкция с инверторным управлением? Во-первых, главный силовой трансформатор, который работает на 20 000 Гц, намного более эффективен, чем трансформаторы 60 Гц, а это значит, что он может быть намного меньше. Помните, что машины на основе трансформаторов обычно весят более 400 фунтов и имеют размер 32 дюйма. На прилагаемой фотографии показана линейка инверторных источников питания Lincoln для дуговой сварки вольфрамовым электродом (GTAW). Машина в центре, V205, весит 33 фунта, имеет ширину 9 дюймов, глубину 19 дюймов и высоту 15 дюймов.Две другие машины представляют собой инверторы только постоянного тока, они еще легче и меньше. Таким образом, машины на базе инвертора имеют огромное преимущество в весе и портативности.


Еще одно преимущество инверторных блоков питания — стоимость электроэнергии. Инверторное оборудование намного эффективнее трансформаторного. Например, потребляемый ток при 205 ампер для Lincoln V205 составляет 29 ампер при однофазном питании 230 вольт. Ток, потребляемый старым трансформаторным сварочным аппаратом, обычно составляет от 50 до 60 ампер при однофазной сети 230 В при сварке на аналогичных токах.Хотя экономия затрат при переходе на инверторы часто преувеличивается, при нормальных обстоятельствах можно с уверенностью сказать, что годовая экономия электроэнергии составляет примерно 10% от закупочной цены источника питания.

Другое существенное преимущество инверторных источников питания состоит в том, что за счет столь тонкого «измельчения» входящего переменного тока мы получаем очень стабильный постоянный ток без типичных пульсаций 60 Гц. Это приводит к более плавной и стабильной сварочной дуге на постоянном токе.

До сих пор мы обсуждали только инверторы постоянного тока.В течение нескольких лет это было все, что было доступно. Инверторов, которые питали выход переменного тока, просто не существовало. Тогда кому-то пришла в голову идея упаковать два инвертора в один корпус. Путем их работы с разной полярностью и попеременного включения и выключения на выходе генерировался псевдо-переменный ток. Некоторые инверторы все еще генерируют переменный ток таким образом. Сегодня существуют и более изощренные методы генерации переменного тока, но для целей этой статьи проще представить генерацию переменного тока двумя инверторами с противоположной полярностью.

Способность генерировать переменный ток — вот что действительно делает инвертор блестящим для сварки алюминия с использованием GTAW. Тот факт, что напряжение дуги никогда не достигает нуля, означает, что дуга переменного тока намного более стабильна, чем раньше. Большинству инверторных источников питания GTAW не требуется, чтобы высокая частота была постоянно включена для стабильности. Фактически, Lincoln V205 не имеет возможности использовать постоянную высокую частоту. Он автоматически гаснет, как только зажигается дуга. Устранение непрерывных высоких частот резко снижает количество радиочастотных помех, генерируемых источником питания.

Во-вторых, тот факт, что мы можем посылать управляющие сигналы на частоте 20 килогерц, означает, что мы можем изменять частоту выходного сигнала при сварке переменным током. Старые машины имели выход переменного тока только 60 Гц. V205 может выдавать переменный ток с частотой 20 и 150 Гц. Более высокие частоты могут быть полезны при сварке тонких материалов. По мере увеличения частоты конус дуги и сварной шов сужаются, что приводит к более глубокому проплавлению.

Много лет назад было понято, что при GTAW проплавление шва происходит за счет отрицательной части цикла переменного тока электрода.Во время той части цикла, когда электрод положительный, проплавление уменьшается, и в вольфрамовый электрод уходит больше тепла. Однако во время положительной части цикла электрода дуга фактически удаляет оксиды с поверхности алюминия, облегчая сварку. По этой причине, хотя большинство других материалов сваривают GTA на постоянном токе, алюминий обычно сваривают на переменном токе. Очень первые источники питания GTAW обеспечивали простой выходной сигнал синусоидальной волны, в котором генерировалось равное количество положительного и отрицательного электрода.Однако это было неэффективно. Нам не нужно было столько положительного электрода, чтобы получить адекватную очистку. Более поздние источники питания позволили нам изменять соотношение отрицательного и положительного электрода. Было обнаружено, что приблизительно 65% отрицательного электрода и 35% положительного электрода обеспечивают адекватную очистку дуги и хорошее проплавление. Однако большая часть энергии дуги все еще шла на нагрев вольфрамового электрода, поэтому требовались вольфрамовые электроды большого диаметра.

Источники питания инвертора обеспечивают адекватную очистку дуги с 15% положительного электрода.Уменьшение количества положительного электрода делает процесс более эффективным, увеличивает проплавление сварного шва и снижает количество тепла, поступающего в вольфрамовый электрод, что означает, что можно использовать заостренные электроды меньшего диаметра. Это дополнительно концентрирует и сужает сварной шов.

Наконец, новые инверторные источники питания программируются программно. Это значительно упрощает изменение характеристик источника питания. На прилагаемой фотографии показан еще один блок питания Lincoln — Invertec® V350 Pro.Этот источник питания в первую очередь разработан как инверторный аппарат для газовой дуговой сварки (GMAW). Он содержит большое количество различных программ для установившегося режима, импульсного GMAW и нетрадиционных алгоритмов управления для GMAW. Большое количество импульсных программ GMAW, в которых параметры импульса оптимизированы для конкретных присадочных материалов и размеров проволоки. Однако благодаря программному обеспечению он также готов к использованию в качестве источника питания для дуговой сварки в защитном металлическом корпусе или дуговой сварки вольфрамовым электродом в среде защитного газа.Его также можно перепрограммировать в полевых условиях за короткое время. Вместе со всем этим, блок питания весит 79 фунтов и может выдавать до 425 ампер.

Будущее уже здесь.

Инвертор как источник сварочного тока.

Страница / Ссылка:

URL страницы: HTML-ссылка: Как выбрать источник сварочного тока Сварщикам

DIY следует подумать о приобретении SMAW-машины с функцией горячего старта, которая дает большую силу тока при запуске и помогает предотвратить прилипание электрода при зажигании дуги.

Сварку часто считают устрашающим занятием. Но выбор правильного источника сварочного тока может быть не менее сложным и сложным. Если вы новичок в сварке или хотите модернизировать свой аппарат, бывает сложно понять, что искать.

Для тех, кто плохо знаком со сваркой, имеет небольшой опыт или занимается этим неполный рабочий день, важно понимать, как вы собираетесь использовать источник питания. Какова средняя толщина свариваемого материала? Будете ли вы работать в помещении, на улице или и то, и другое? Вам понадобится источник питания, предназначенный для одного процесса сварки, или вам нужен многопроцессорный аппарат? Реалистичный взгляд на то, что вы собираетесь делать с машиной, поможет вам найти тот, который соответствует вашим потребностям, и избежать перерасхода средств на возможности, которые вам не нужны.

Большинство сварщиков можно разделить на три категории: домашние мастера (DIY), фермеры / владельцы ранчо и генеральный подрядчик. Следующие ниже рекомендации помогут вам принять решение и проанализировать сварочную технологию и области применения.

Источники питания для сварщика «сделай сам»


Сварщики, относящиеся к категории «сделай сам», обычно выполняют небольшие ремонтные работы в своем гараже, например, газонокосилки, изделия из металла, ходунки, небольшие тракторы и ремонт автомобилей.Сварка в гараже обычно означает, что мобильность машины не играет большой роли.

Большинство домашних мастеров используют в основном дуговую сварку в среде защитного металла, также известную как сварка штучной сваркой, или дуговая сварка порошковой проволокой (FCAW), поэтому они не расходуют защитный газ. Однако, если вы любите приключения и хотите улучшить свои навыки или изучить другие процессы, подумайте о многопроцессорной машине, которая может выполнять FCAW, газовую дуговую сварку (GMAW), ручную сварку и газовую дуговую сварку вольфрамовым электродом (GTAW).

Обычные сварщики, работающие своими руками, не сваривают материал толщиной более дюйма, что означает, что достаточно не менее 100 ампер сварочной мощности и 20 ампер для мощности плазменной резки. Обычно это можно найти с машинами на 110–120 В. Если вам требуется больше энергии для иногда более толстого материала, подумайте о машине, которая может работать как от 110 до 120 В, так и от 208 до 240 В. Тщательно выбирайте машину, которая максимально использует вашу входную мощность.

Пятнадцать лет назад все источники питания «сделай сам» были трансформаторными машинами, потому что они были недорогими.Рынок изменился и движется к машинам на основе инверторов, потому что они намного более энергоэффективны и обычно имеют немного более высокую мощность и рабочий цикл. Выбор инверторного станка FCAW даст вам больше возможностей; более плавная дуга; и позволяют бесступенчато регулировать напряжение и подачу проволоки, что упрощает обучение и настройку.

Ручная сварка — отличный способ сварки таких материалов, как сталь, нержавеющая сталь, чугун и наплавки. Дополнительным преимуществом является то, что он не требует защитного газа, что может снизить ваши первоначальные вложения.Ищите SMAW-машину с функцией горячего старта, которая при запуске производит большую силу тока и поможет предотвратить прилипание электрода при зажигании дуги.

Рассмотрите возможность приобретения как диаметром 3⁄32, так и диаметром 1⁄8 дюйма. электроды для машины на 120 В, которые позволят сваривать листовой металл толщиной до дюйма. Иногда можно встретить 5⁄64 дюйма. электрод, который идеально подходит для сварки тонколистового металла. Электрод большого диаметра, например 5/32 дюйма, не рекомендуется для устройств на 120 В, поскольку он будет обеспечивать плохое проплавление и у вас, вероятно, не будет достаточной выходной силы тока для зажигания дуги.

Помните, что некоторые стержни, такие как E6013 и E7014, работают при малой силе тока и с ними легко бить и учиться. Электроды некоторых марок разработаны так, чтобы лучше работать на низковольтных сварочных аппаратах, поэтому попробуйте несколько разных марок, чтобы узнать, что лучше всего работает на вашем аппарате.

Распространенное заблуждение при выборе провода для GMAW состоит в том, что провода большего диаметра, например 0,035 дюйма, лучше, но это не относится к машинам на 120 В. Большинство аппаратов подачи проволоки начального уровня рекомендуют использовать 0.030-дюйм. провод, который является лучшим выбором. Проволока малого диаметра будет иметь более стабильную дугу, более широкую зону наилучшего восприятия, лучшую плотность тока и лучшее проплавление, а также возможность сварки материалов различной толщины, в том числе листового металла толщиной до дюйма.

Если вам нужно сварка вдали от гаража, подумайте о выборе генератора. Большинство устройств на 120 В могут работать от высококачественного генератора непрерывного действия мощностью 4000 Вт, если он производит чистую мощность (менее 5% общего гармонического искажения).Прежде чем пытаться использовать сварочный аппарат, убедитесь, что производитель источника питания сообщает, что это подходящий для генератора сварочный аппарат.

Источники энергии для сварщика на ферме / ранчо


Требования к сварщикам на фермах и ранчо аналогичны требованиям домашних мастеров, но они сваривают чаще и на более крупном оборудовании и материалах большей толщины. Кроме того, важна портативность, поскольку ремонтную сварку часто проводят в полевых условиях.

Примерно 15–20 лет назад большинству фермеров и владельцев ранчо требовался специальный сварочный аппарат, обеспечивающий надежность и простоту использования на открытом воздухе.Однако выбор между палкой и GMAW больше не проблема, потому что производители машин теперь производят несколько хороших многопроцессорных машин по цене менее 1500 долларов. Эти машины могут выполнять FCAW, Stick, GMAW и GTAW, что дает вам большую универсальность и лучшую общую ценность. На новых машинах гораздо проще переключаться между процессами, чем на некоторых старых источниках питания. Если вы попадаете в категорию фермеров / владельцев ранчо, попробуйте найти машину, которая позволяет легко переключаться между ручкой и GMAW (процесс TIG не так распространен для этой отрасли).

Толщина материала, наиболее часто используемого в этой категории, составляет от листового металла до ½ дюйма. Это означает, что для достижения хороших результатов вам потребуется выходная мощность сварки 200 А и выходная мощность плазменной резки 40 А. Машины с несколькими или двумя напряжениями могут значительно улучшить вашу гибкость при сварке в различных местах и ​​входят в список рекомендуемых функций.

Машины-трансформеры чаще используются фермерами и владельцами ранчо из-за факторов надежности, ремонтопригодности и знакомства.Хотя вы с большей вероятностью найдете трансформаторную машину на ферме, инверторные машины начинают занимать их место.

Инверторные машины весят намного меньше — на 65-75% меньше, если быть точным — чем трансформаторы, и их легче ремонтировать. Типичная трансформаторная машина на 250 А может весить до 220 фунтов, но инверторная машина с аналогичной мощностью может весить 50 фунтов.

Время гарантийного ремонта в среднем составляет от 25 до 35 минут для инверторной машины и от 45 до 60 минут для трансформаторной машины, при условии, что вся печатная плата инвертора нуждается в замене.

Наконец, у большинства фермеров и владельцев ранчо есть кислородно-ацетиленовая установка для нагрева и резки металлов или фиксации сломанных чугунных деталей. Если у вас нет кислородно-ацетиленовой установки, подумайте о добавлении устройства плазменной резки. Плазменные резаки безопасны и требуют только чистого и сухого сжатого воздуха для качественной резки. Эти машины обычно стоят около 1000 долларов и позволяют резать материал толщиной до ½ дюйма.

Источники энергии для генерального подрядчика


Есть разница между подрядчиком по сварке, который занимается сваркой весь день, каждый день, и генеральным подрядчиком, который занимается сваркой время от времени.Категория генерального подрядчика предназначена для тех, кто может выполнять сварочные работы для целей обслуживания зданий, систем отопления, вентиляции и кондиционирования, изготовления кухонь из нержавеющей стали, металлических ограждений или лестниц, или других металлических ландшафтных конструкций. Универсальность и портативность — самые важные факторы для сварщиков, попадающих в эту категорию.

Большинство генеральных подрядчиков работают с тонкими металлами, толщина которых редко превышает ½ дюйма, что означает, что лучше всего подходит сварочный аппарат с силой тока до 200 ампер для сварки и 40 ампер для плазменной резки.Ищите машину с двойным напряжением, чтобы можно было сваривать в разных местах, и ищите инверторный аппарат, который будет легким и универсальным.

Если вы свариваете в основном сталь или нержавеющую сталь, подумайте о многопроцессорном станке с выходом постоянного тока (DC), который позволяет использовать GMAW или палку. Многопроцессорная машина добавляет гибкости и позволяет переключаться между FCAW, GMAW, Stick и GTAW. Для сварки нержавеющей стали GMAW часто рекомендуется использовать тримиксный газ, но это может быть немного дороже.Процесс сварки нержавеющей стали палкой может быть дешевле. Обычные электроды из нержавеющей стали — E308L, E309L и E316L. При работе с нержавеющей сталью, например, в пищевой промышленности, где переходы между кромками сварных швов должны быть идеальными, попробуйте GTAW с использованием специальной машины для стержневой / GTAW с импульсным управлением.

Если вам нужно сваривать алюминий, убедитесь, что ваш многопроцессорный аппарат поддерживает катушку с пистолетом. Для прецизионной алюминиевой GTAW на тонких конструкционных рамах (например, мотоциклов и некоторых лодок), вероятно, потребуется специальный GTAW-автомат с выходом переменного тока (AC).Для алюминия GTAW вам понадобится возможность регулировать баланс, частоту и пульс. Возможно, вы слышали термин «контроль формы волны». Это удобная функция для очень специфических приложений, но она также добавляет сложности и затрат. Генеральному подрядчику необходима двухвольтная машина, работающая от 110 до 120 В или от 208 до 240 В.

Большинству подрядчиков требуется регулярная резка металла. Эффективность важна, поэтому рассмотрите возможность плазменной резки с возможностью чистой резки до ½ дюйма.толстый. Если вы запутались и работаете на дюйма, вы обычно можете отрезать 3⁄4 дюйма с помощью плазменного резака, рассчитанного на ½ дюйма.

Расходные материалы для плазменной резки могут быть дорогими, так что имейте это в виду, когда оценка различных машин. Проблема №1 с плазменными машинами — это грязный или маслянистый воздух, поэтому обязательно фильтруйте и сушите воздух и никогда не используйте компрессор с масляной ванной. Лучший вариант — найти сухой, сверхтихий компрессор со встроенным осушителем и фильтром. Обращайтесь с плазменным резаком осторожно, так как внутри есть движущиеся части, которые могут легко заклеиться или повредиться.Замена поврежденной или нефункционирующей головки плазменного резака — обычное дело, и большинство производителей не дают гарантии на резак или головку.

Перед покупкой


Одним из наиболее важных элементов, которые следует учитывать при покупке новой машины, являются гарантия и сертификация. Скорее всего, вам понадобится хорошая гарантия и техническая поддержка в течение всего срока службы вашей машины.

Добавить комментарий

Ваш адрес email не будет опубликован.