Бесплатное электричество из земли: Как получить бесплатное электричество (мы нашли четыре способа)

Содержание

3 способа получить электричество из земли для дома своими руками – теория, практика, схема

Зачем добывать электричество из земли

Для того, чтобы получить электричество, нужно найти разность потенциалов и проводник. Соединив всё в единый поток, можно обеспечить себе постоянный источник электроэнергии. Однако в действительности приручить разность потенциалов не так-то просто.

Природа проводит через жидкую среду электроэнергию огромной силы. Это разряды молнии, которые, как известно, возникают в воздухе, насыщенном влагой. Однако это всего лишь единичные разряды, а не постоянный поток электроэнергии.

Человек взял на себя функцию природной мощи и организовал перемещение электроэнергии по проводам. Однако это всего лишь перевод одного вида энергии в другой. Извлечение электричества непосредственно из среды остаётся преимущественно на уровне научных поисков, опытов из разряда занимательной физики и создания небольших установок малой мощности.

Проще всего извлекать электричество из твёрдой и влажной среды.

Единство трёх сред

Самой популярной средой в этом случае является почва. Дело в том, что земля – это единство трёх сред: твёрдой, жидкой и газообразной. Меду мелкими частичками минералов расположены капли воды и пузырьки воздуха. Более того, элементарная единица почвы – мицелла или глинисто-гумусовый комплекс представляет собой сложную систему, обладающую разницей потенциалов.

На внешней оболочке такой системы формируется отрицательный заряд, на внутренней – положительный. К отрицательно заряженной оболочке мицеллы притягиваются положительно заряженные ионы, находящиеся в среде. Так что в почве постоянно происходят электрические и электрохимические процессы.  В более гомогенной воздушной и водной среде таких условий для концентрации электричества нет.

Как получить электроэнергию из земли

Поскольку в почве есть и электричество, и электролиты, то её можно рассматривать не только как среду для живых организмов и источник урожая, но и как мини электростанцию. Кроме того, наши электрифицированные жилища концентрируют в среде вокруг себя и то электричество, которое «стекает» чрез заземление. Этим нельзя не воспользоваться.

Чаще всего домовладельцы применяют следующие способы извлечения электроэнергии из грунта, расположенного вокруг дома.

Традиционные источники

Наиболее актуальным для владельцев загородных домов и дачных участков будет вопрос об источнике электричества (читайте также статью » GSM видеонаблюдение для дачи: присматриваем за участком в дистанционном режиме»).

И если ограничиваться лишь традиционными технологиями, то схем энергоснабжения можно выделить всего две:

Подключение к ЛЭП

  • Централизованное – участок «запитываем» от проходящей на относительно небольшом расстоянии линии электропередач.
  • Автономное – в качестве источника выступает генератор.

Рассмотрим оба варианта более подробно.

  • Если говорить об использовании централизованного энергоснабжения, то основным плюсом является достаточно высокая предоставляемая мощность. Так, в этом случае можно даже организовать обогрев дачи электричеством, не разорившись на топливе для генератора.

Присоединение к проводам на столбе

  • С другой стороны, сам процесс подключения к ЛЭП связан с весьма утомительными бюрократическими процедурами. Даже в том случае, если провода проложены сравнительно недалеко, на этапе согласования могут возникнуть проблемы.

Обратите внимание! Самовольное подключение к ЛЭП является правонарушением, и при обнаружении подобного факта вам придется заплатить немалый штраф. Также стоит помнить, что выполнять такие работы должны исключительно профессионалы с соответствующим уровнем допуска.

  • Аренда дизель — генератора для дачи или покупка такого устройства могут обеспечить вас энергией вне зависимости от расположения участка. Да, эта технология является более затратной с финансовой точки зрения, но так вы можете быть уверены, что свет в доме и на участке не пропадет даже во время непогоды (обрывы проводов, особенно в удаленных районах — не редкость).

Даже компактное устройство может обеспечить освещение целого дома

  • Еще один вариант автономного энергоснабжения – монтаж газового генератора. Конечно, цена прибора будет выше, чем у дизельной установки, да и обслуживать его могут только специалисты, но себестоимость киловатта энергии при этом получится существенно ниже.

В итоге оптимальная инструкция будет следующей: если есть возможность – подключаемся к линии электропередач и используем ее мощности, но на всякий случай устанавливаем в доме или сарае генератор с небольшим запасом топлива. Если возможности подключения нет – просто покупаем более производительный генератор, и проектируем электросеть участка с оглядкой на ограничения по производительности установки.

Альтернативные источники

Впрочем, современные технологии позволяют получить электричество на халяву для дачи. Под «халявой» в данном случае имеется полная или практически полная независимость от цен на энергоносители. Конечно, само альтернативное оборудование нужно приобретать, причем за довольно большие деньги, но со временем (от двух до пяти лет) оно окупается, и дальше работает «в плюс».

Фото крыльчатки ветряного генератора на крыше дома

Несколько наиболее эффективных технологий можно выделить, и их особенности мы свели в таблицу:

МетодикаОсобенности  выработки энергии
ГеотермальнаяНа участке пробуриваем скважину, в которую погружаем зонд с теплоносителем. Поскольку в глубине грунта температура практически постоянна, то при прохождении по зонду охлажденный теплоноситель будет отбирать часть грунтового тепла.

Извлеченная энергия может использоваться как для прямого обогрева дома, так и для выработки электричества.

СолнечнаяНа крыше устанавливаются либо солнечные коллекторы из стеклянных трубок, заполненных теплоносителем, либо солнечные батареи.

Как и в случае с геотермальными установками, энергией солнца можно не только обогревать дом, но и питать инвертор для обеспечения электроснабжения.

ВетрянаяНа крыше дома или на отдельной мачте устанавливаем ветряк, соединенный с генератором.

При вращении лопастей вырабатывается электричество, которое аккумулируется в батареях большой емкости и может быть использовано для решения самых разных задач.

Схема работы геотермального генератора

Впрочем, такое бесплатное энергоснабжение является достаточно капризным. Нет ветра или солнце зашло за тучи на целый день — и придется сидеть в темноте! Вот почему специалисты настоятельно рекомендуют комплектовать подобные установки емкими аккумуляторами, а в качестве резервного источника питания держать как минимум небольшой дизель-генератор.

Способ 1 — Нулевой провод –> нагрузка –> почва

Напряжение в жилые помещения подается через 2 проводника: фазный и нулевой. При создании третьего, заземлённого, проводника между ним и нулевым контактом возникает напряжение от 10 до 20 В. Этого напряжения достаточно для того, чтобы зажечь пару лампочек.

Таким образом, для подключения потребителей электроэнергии к «земляному» электричеству достаточно создать схему: нулевой провод – нагрузка – почва. Умельцы эту примитивную схему могут усовершенствовать и получить ток большего напряжения.

Способ 2 — Цинковый и медный электрод

Следующий способ получения электричества основан на использовании только земли. Берутся два металлических стрежня – один цинковый, другой медный, и помещаются в грунт. Лучше, если это будет грунт в изолированном пространстве.

Изоляция необходима для того, чтобы создать среду с повышенной солёностью, что несовместимо с жизнью – в таком грунте ничего расти не будет. Стержни создадут разницу потенциалов, а грунт станет электролитом.

В самом простом варианте получим напряжение в 3 В. Этого, конечно мало для дома, но систему можно усложнить, увеличив тем самым мощность.

Способ 3 — Потенциал между крышей и землёй

3. Достаточно большую разность потенциалов можно создать между крышей дома и землёй. Если на крыше поверхность металлическая, а в земле – ферритовая, то можно добиться разницы потенциалов в 3 В. Увеличить этот показатель можно за счёт изменения размеров пластин, а также расстояния между ними.

Это законно?

Да, за это не наказывают электросети, так как мы не будем задействовать фазу. И фактически это не воровство.

Электрические счетчики будут учитывать эту энергию?

Все зависит от типа электросчетчика. Бывают счётчики с одним шунтом (с одним измерительным элементом) – самые распространённые и двух шунтовые (с двумя измерительными элементами). Одно шунтовые как раз не учитываю ноль – так как измерительный шунт у них расположен на фазе.

Сколько электричества можно получить?

Все зависит от количества абонентов в сети и мощности всей проводки. Обычно это где-то 3-10 вольт. Если подключить повышающий трансформатор, то можно зажечь светодиодную лампу. Напряжение после повышающего трансформатора порядка 100-220 В.

Схема


Трансформатор любой от радиоприемника, магнитофона и т.п. Желательно на низкое напряжение 3-9 Вольт вторичной обмотки.
Учтите, что все манипуляции вы используете на свой страх и риск.

Мифы и реальность

Современная наука смогла доказать наличие собственного электромагнитного поля вокруг планеты. Оно не только создает естественные колебания в атмосфере Земли, но и призвано защищать все человечество от воздействия солнечного излучения, пыли и других мелких частиц, которые могли бы попасть из космоса. С теоретической точки зрения, если разместить один электрод на поверхности грунта, а второй поднять вверх на 500 м, то между ними получится разность потенциалов около 80 В. Если пропорционально увеличить расстояние до 1000 м, то и уровень напряжения должен увеличиться в два раза.

Однако на практике  все получается далеко на так складно:

  • Во-первых, электроды должны иметь достаточно большую площадь, из-за чего они будут обладать парусностью и возникнут сложности с их массой и фиксацией на высоте.
  • Во-вторых, электромагнитное состояние поля земли непостоянно, поэтому оно во многом зависит от различных факторов и его распределение в пространстве также неравномерно.
  • В-третьих, верхний электрод будет главным претендентом на притяжение разрядов атмосферного электричества, что приведет к перенапряжению в генераторе.

Тем не менее, определенные опыты получения бесплатного электричества все же существуют, но их практическая реализация носит скорее экспериментальный, чем предметный характер.

Что можно попробовать сделать?

Но следует быть осторожным, так как некоторые из предложенных вариантов созданы исключительно в качестве коммерческой рекламы и не представляют пользы даже с  теоретической точки зрения. Такие способы предназначены для продажи нерабочих устройств доверчивым соискателям бесплатного напряжения.

Однако, есть эксперименты, позволяющие извлечь электричество, пускай и относительно малого вольтажа.  Среди существующих способов получения электричества из земли мы рассмотрим несколько действительно рабочих вариантов.

Схема по Белоусову

Название метода произошло от фамилии ученного, предложившего такой способ получения электричества из земли. Для этого используется двойное пассивное заземление без каких-либо активаторов, два конденсатора и катушки индуктивности. Схема Белоусова приведена на рисунке ниже:


Рис. 1. Схема получения электричества по Белоусову

Извлечение электричества из земли будет происходить по такому принципу:

  • Через цепь двух заземлений постоянно пропускаются высокочастотные разряды, присутствующие в грунте. Но их будет отсеивать индуктивная составляющая первой катушки схемы Тр.1.
  • Конденсаторы в схеме подключаются положительными пластинами друг к другу, важно соблюдать эту последовательность, иначе накопление электричества, как в единой емкости не произойдет.
  • Ко второй катушке подключается лампочка, которая при наличии электричества покажет, что вам удалось добывать ток. Это своеобразная нагрузка, которую вы можете заменить на любой прибор.

Варианты автономной подсветки гаража

Как уже было сказано, самым лучшим выбором для любых гаражных сооружений будут светодиоды. Они имеют массу преимуществ, среди которых нужно выделить следующие моменты:

  • создание равномерного и яркого освещения;
  • по интенсивности свечения такой светильник создает световой поток, который приравнивается к дневному свету;
  • экономное расходование электроэнергии;
  • такие осветительные приборы можно запитать от различных приспособлений (например, от аккумулятора) в ситуации, когда нет источника электричества.

Светодиодное освещение гаража

Наиболее часто для подсветки гаражных помещений используют светодиодные ленты на 12 вольт. С ее помощью можно создать как общее освещение, пустив ленту по периметру сооружения. В такой ситуации свет, исходящий от ленты, будет падать равномерно. С помощью светодиодной ленты можно также создать локальную подсветку полок и стеллажей, а также смотровой ямы.

Обратите внимание! Для подсветки смотровой ямы светильник или светодиодная лента должны приобретаться с высоким классом влагозащищенности. Это связано с тем, что здесь всегда присутствует повышенная влажность из-за плохой вентиляции и отсутствия отопления.

Эти же условия и требования характерны и для подвала. В связи с этим осветительная установка, которая будет использоваться здесь, не должны иметь мощность выше 12 вольт.
О том, что в определенных местах гаража нужно установить влагозащищенный светильник нужно помнить, как при создании автономного освещения, так и при наличии электричества.

Автономная гаражная подсветка и способы ее реализации

В гараже автономное освещение необходимо в ситуации, когда на участке нет электричества или с ним бывают частые перебои. Поэтому, чтобы свет в гараже был всегда, многие автовладельце делают автономное освещение.

Обратите внимание! В гараже можно организовать два типа освещения: от сети питания в 220 вольт и автономную подсветку. При этом автономное освещение в данной ситуации будет уже называться аварийным. Но такой подход актуален только тогда, когда основное освещение уже было сделано ранее, а проблемы с ним появились относительно недавно.

Подсветка гаража

Сегодня существует много способов сделать своими руками автономную подсветку гаража. Наиболее популярными среди автовладельцев являются следующие способы организовать свет в гараже без наличия в нем электричества:

  • размещение солнечных батарей;
  • установка ветрогенератора;
  • покупка бензинового генератора;
  • использование аккумулятора;
  • садовый светильник;
  • филиппинский фонарь.

Для лучшего понимания рассмотрим каждый способ подсветки более детально.

Освещение с помощью солнечных батарей

Сегодня многие люди у себя в частных домах и даже в квартирах устанавливают солнечные батареи. С их помощью можно не только экономить на электроэнергии, но и осветить гараж, в котором нет электричества.

Освещение гаража солнечными батареями

Несмотря на популярность такого способа подсветки, для гаража он вряд ли подойдет по следующим причинам:

  • стоимость одной солнечной батареи и ее подключение обойдется в значительную сумму;
  • установить такую систему своими руками без помощи специалистов вряд ли удастся;
  • сложность системы подключения осветительных приборов и батарей к накопительной аппаратуре (аккумуляторам).

Но один раз потратившись на закупку и установку солнечных батарей, вы получите не только качественную автономную подсветку любого помещения, в том числе и гаража, но и сможете продавать государству избыток электроэнергии, который накопился.
Питать от такой системы можно светильник в 12 вольт. При этом их количество может достигать нескольких штук, что как раз подходит для данного помещения. Если есть потребность в напряжении в 220 вольт, тогда в данную систему нужен преобразователь на 12 вольт или инвертер.

Освещение с помощью ветрогенератора

Для автономного освещения гаража можно использовать самодельный ветрогенератор. Такой ветряк также будет генерировать бесплатное электричество, от которого можно запитать светильник на 12 вольт.

Обратите внимание! Ветряк можно как сделать своими руками, так и купить уже готовое устройство. Однако покупной ветрогенератор обойдется в кругленькую сумму.

Самодельный ветрогенератор

При создании такого типа подсветки необходимо учитывать скорость ветра. В ситуации, если в районе проживания сильные ветры редкость, то такой способ освещения будет малоэффективным. Здесь все затраты, которые пошли на установку ветрогенератора, не окупятся.

Подсветка с помощью бензинового генератора

Вместо ветрогенератора для создания автономной подсветки гаража можно использовать бензиновый или дизельный генератор.

Бензиновый генератор

Применять бензиновый генератор рационально только в том случае, когда проблемы с электричеством носят редкий характер, а свет отключают на непродолжительный период времени. Также его рационально приобрести в том случае, если вы в гараже часто пользуетесь электроинструментами.

Аккумуляторные батареи и их применение

Еще одним способом создать в гаражной постройке автономную подсветку будет подключение светильников к аккумулятору. От аккумулятора можно запитать светильник в 12 вольт.

Автомобильный аккумулятор

При отключении света такой осветительный прибор (рассчитанный на 12 вольт) сможет работать на протяжении 10 часов. Конечно, если до этого аккумулятор был полностью заряжен.
Для подсветки гаража можно использовать запасной автомобильный аккумулятор. С его помощью лучше всего питать светодиодную ленту, которую можно пустить по всему периметру помещений.

Особенности монтажа электросети

Если с источниками все более-менее ясно, переходим к правилам обустройства самой электросети:

Установка электрощитка

  • Монтаж проводки и электроприборов в дачном доме вполне можно выполнить и своими руками, а вот подключение к магистрали или генератору лучше доверить специалистам-электрикам.
  • На входе в дом обязательно устанавливаем щиток со счетчиком. Также каждую ветку проводов присоединяем к щитку через УЗО – автоматический размыкатель цепи. Использование таких предохранителей способно защитить систему от перепадов напряжения и коротких замыканий.

Совет! Если вы часто бываете в отъездах, то есть смысл обустроить дистанционное включение электричества на даче. Для этого в щитке монтируем специальный модуль с GSM-приемником, который активирует всю систему по сигналу с мобильного телефона. Особенно удобно использовать такой управляемый блок в зимнее время: к вашему приезду отопительные приборы как раз успеют прогреть воздух.

Для защиты от огня провода прокладываем в негорючих каналах

  • При использовании генераторов нужно тщательно рассчитывать мощность всех включаемых в сеть приборов. К примеру, обогрев дачного дома электричеством может потребовать установки отдельной генерирующей установки, иначе осенью и зимой придется выбирать: либо у нас работают батареи, либо светят лампочки.
  • Дачные дома из блок — контейнеров, каркасные конструкции и бревенчатые здания отличаются высокой горючестью. Чтобы снизить риск пожара, вся проводка должна прокладываться в негорючих, желательно металлических, коробах.

Правильное  заземление  — одно из условий безопасности

  • Весьма желательным является также заземление проводов. Для этого каждую ветку системы присоединяем к заземляющему контуру, выведенному наружу. Контур чаще всего представляет собой треугольник из стальных или омедненных стержней, вкопанных в землю и соединенных с домовой электросетью токопроводящим кабелем.

Заключение

Для создания в гараже автономного освещения сегодня существует масса возможностей. Некоторые варианты будут достаточно дорогостоящими, но зато очень эффективными (например, установка солнечных батарей или покупка бензинового генератора), а некоторые более дешевыми, но менее эффективными (например, использование садовых светильников с солнечными батареями). Но если подойти к решению данной проблемы грамотно, то можно из всех имеющихся вариантом подсветки выбрать наиболее оптимальный метод и перестать зависит от электричества, которое подается с перебоями.

Источники

  • https://otlad.ru/svet/kak-poluchit-elektrichestvo-iz-zemli/
  • https://9dach.ru/kommunikacii/elektrichestvo/478-elektrichestvo-na-dache
  • https://SdelaySam-SvoimiRukami.ru/3739-besplatnoe-elektrichestvo-dlya-osvescheniya.html
  • https://www.asutpp.ru/elektrichestvo-iz-zemli.html
  • https://1posvetu.ru/istochniki-sveta/kak-bez-elektrichestva-sdelat-osveshhenie-v-garazhe.html

[свернуть]

Электричество из земли своими руками

Затраты на электроэнергию растут с каждым повышением тарифов. И если городские жители для уменьшения финансовых трат сокращают лишнее потребление электроэнергии, то владельцы частных домов имеют возможность дополнительно получать электричество из земли.

Получаем бесплатное электричество из земли

Вопрос эффективности

Получение электричества из земли окутано мифами – в Интернет регулярно выкладываются материалы на тему получения бесплатной электроэнергии за счет использования неисчерпаемого потенциала электромагнитного поля планеты. Однако многочисленные видео, на которых самодельные установки добывают ток из земли и заставляют сиять многоваттные лампочки или крутиться электромоторы, являются мошенническими. Если бы получение электричества из земли было настолько эффективно, атомная и гидроэнергетика давно ушли бы в прошлое.

Однако бесплатное электричество добыть из земной оболочки вполне реально и сделать это можно своими руками. Правда, полученного тока хватит только на светодиодную подсветку или на то, чтобы не торопясь подзарядить мобильное устройство.

Напряжение из магнитного поля Земли — возможно ли!?

Для получения тока из природной среды на постоянной основе (то есть, исключаем разряды молний), нам необходим проводник и разность потенциалов. Найти разность потенциалов проще всего в земле, которая объединяет все три среды – твердую, жидкую и газообразную. По своей структуре грунт представляет собой твердые частички, между которыми присутствуют молекулы воды и пузырьки воздуха.

Важно знать, что элементарной единицей почвы является глинисто-гумусовый комплекс (мицелла), который обладает определенной разностью потенциалов. Внешняя оболочка мицеллы накапливает отрицательный заряд, внутри нее формируется положительный. За счет того, что электроотрицательная оболочка мицеллы притягивает из окружающей среды ионы с положительным зарядом, в почве беспрерывно протекают электрохимические и электрические процессы. Этим почва выгодно отличается от водной и воздушной среды и дает возможность своими руками создать устройство для добычи электроэнергии.

Способ с двумя электродами

Простейший способ получить в домашних условиях электроэнергию – использовать принцип, по которому устроены классические солевые батарейки, где использована гальваническая пара и электролит. При погружении стержней, выполненных из разных металлов, в раствор соли, на их концах образуется разность потенциалов.

Мощность такого гальванического элемента зависит от целого ряда факторов, включая:

  • сечение и длину электродов;
  • глубину погружения электродов в электролит;
  • концентрацию солей в электролите и его температуру и т.д.

Чтобы получить электричество, требуется взять два электрода для гальванической пары – один из меди, второй из оцинкованного железа. Электроды погружают в грунт приблизительно на глубину в полметра, установив их на расстоянии около 25 см, относительно друг друга. Грунт между электродами следует хорошо пролить раствором соли. Замеряя вольтметром напряжение на концах электродов спустя 10-15 минут, можно обнаружить, что система дает бесплатно ток около 3 В.

Добыча электричества с помощью 2-х стержней

Если провести ряд экспериментов на разных участках, выяснится, что показания вольтметра варьируются в зависимости от характеристик грунта и его влажности, размеров и глубины установки электродов. Для повышения эффективности рекомендуется ограничить при помощи куска трубы подходящего диаметра контур, куда будет заливаться солевой раствор.

Внимание! Требуется использовать насыщенный электролит, а такая концентрация соли делает почву непригодной для роста растений.

Способ с нулевым проводом

Напряжение в жилой дом подается с использованием двух проводников: один из них фаза, второй – нуль. Если дом оборудован качественным заземляющим контуром, в период интенсивного потребления электроэнергии часть тока уходит через заземление в грунт. Подключив к нулевому проводу и заземлению лампочку на 12 В, вы заставите ее светиться, поскольку между контактами нуля и «земли» напряжение может достигать 15 В. И этот ток электросчетчиком не фиксируется.

Добыча электричества с помощью нулевого провода

Схема, собранная по принципу ноль – потребитель энергии – земля, вполне рабочая. При желании для выравнивания колебаний напряжения можно использовать трансформатор. Недостатком является нестабильность появления электричества между нулем и заземлением – для этого требуется, чтобы дом потреблял много электроэнергии.

Обратите внимание! Данный способ добывать даровое электричество пригоден только в условиях частного домовладения. В квартирах нет надежного заземления, а использовать в этом качестве трубопроводы систем отопления или водоснабжения нельзя. Тем более запрещено соединять контур заземления с фазой для получения электричества, так как заземляющая шина оказывается под напряжением 220 В, что смертельно опасно.

Несмотря на то, что такая система задействует для работы землю, ее нельзя отнести к источнику земной электроэнергии. Как добыть энергию, используя электромагнитный потенциал планеты, остается открытым.

Энергия магнитного поля планеты

Земля представляет собой своего рода конденсатор сферической формы, на внутренней поверхности которой накапливается отрицательный заряд, а снаружи – положительный. Изолятором служит атмосфера – через нее проходит электрический ток, при этом разность потенциалов сохраняется. Утерянные заряды восполняются за счет магнитного поля, которое служит природным электрогенератором.

Как получить на практике электричество из земли? По сути, необходимо подсоединиться к полюсу генератора и организовать надежное заземление.

Устройство, получающее электричество из природных источников, должно состоять из следующих элементов:

  • проводник;
  • заземляющий контур, к которому подсоединен проводник;
  • эмиттер (катушка Тесла, высоковольтный генератор, позволяющий электронам покидать проводник).
Схема получения электроэнергии

Верхняя точка конструкции, на которой расположен эмиттер, должна располагаться на такой высоте, чтобы за счет разницы потенциалов электрического поля планеты электроны поднимались по проводнику вверх. Эмиттер их будет освобождать из металла и в виде ионов выпускать в атмосферу. Процесс будет продолжаться до тех пор, пока потенциал в верхних слоях атмосферы не станет вровень с электрическим полем планеты.

К цепи подключается потребитель энергии, причем чем эффективнее работает катушка Тесла, тем выше сила тока в цепи, тем больше (или мощнее) потребителей тока можно подключить к системе.

Так как электрическое поле окружает заземленные проводники, к которым относятся деревья, здания, различные высотные конструкции, то в городской черте верхняя часть системы должна располагаться выше всех имеющихся объектов. Своими руками создать подобную конструкцию не реально.

Видео по теме:

Из этого следует

Электроэнергия из земли потенциально может быть добыта, но сегодня нет технологий, которые позволяют сделать это эффективно. Если есть свой дом с участком, то можно поэкспериментировать с созданием земляной батареи из листов меди и алюминиевой фольги – чертежи и фотографии легко найти в Интернете. Но практика показывает, что мощность сделанного конденсатора заметно ниже заявленной и конструкция быстро выходит из строя. При этом финансовые затраты на материалы вряд ли когда-либо окупятся.

Можно ли получить электрический ток бесплатно

Поиски новых источников энергии постоянно ведутся в современной науке. Статическое электричество, присутствующее в воздухе, могло бы стать одним из них. В настоящее время это стало реальностью.

Известны два способа: ветряные генераторы и атмосферные поля. Не менее интересна энергия Земли. Добытое из нее «вечное» электричество помогло бы экономить обычную электроэнергию, стоимость которой увеличивается. Иногда необходимо получение даже мизерных его количеств.

Добыча из воздуха

Атмосферное электричество вполне может быть использовано. Многих привлекает возможность поставить себе на службу природную стихию во время грозы.

В атмосфере также присутствуют волны от поля планеты. Оказывается, электричество можно добыть из воздуха своими силами, не применяя сверхсложные устройства.

Некоторые способы следующие:

  • грозовые батареи используют свойство электрического потенциала накапливаться;
  • ветрогенератор преобразовывает в электричество силу ветра, работая долгое время;
  • ионизатор (люстра Чижевского) — популярный бытовой прибор;
  • генератор TPU (тороидального) электричества Стивена Марка;
  • генератор Капанадзе — бестопливный энергетический источник.

Рассмотрим подробно некоторые из устройств.

Ветрогенераторы

Популярный и всеобще известный источник энергии, получаемой с помощью ветра — ветрогенератор. Подобные устройства давно применяются во многих странах.

Установка в единственном числе ограниченно обеспечивает нужды электропитания. Поэтому приходится добавлять генераторы, если нужно обеспечить энергией крупное предприятие. В Европе существуют целые поля с ветряными установками, абсолютно не наносящими вреда природе.

[advice]Стоит отметить: недостатком может считаться невозможность рассчитать заранее величины напряжения и тока. Следовательно, нельзя сказать, сколько накопится электричества, так как действие ветра не всегда предсказуемо.[/advice]

Грозовые батареи

Устройство, накапливающее потенциал с использованием атмосферных разрядов, называется грозовой батареей.

Схема прибора включает лишь антенну из металла и заземление, не имея сложных преобразовывающих и накапливающих компонентов.

Между частями прибора появляется потенциал, который затем накапливается. Воздействие природной стихии не подлежит точному предварительному расчету и данная величина также непредсказуема.

[warning]Важно знать: это свойство довольно опасно при реализации схемы своими руками, так как создавшийся контур притягивает молнии с напряжением до 2000 Вольт.[/warning]

Тороидальный генератор С. Марка

Устройство, изобретенное С. Марком, способно вырабатывать электричество через некоторое время после его включения.

Генератор TPU (тороидальный) может питать бытовые приборы.

Конструкция состоит из трех катушек: внутренней, внешней и управляющей. Он действует из-за появляющихся резонансных частот и магнитного вихря, способствующих образованию тока. Правильно составив схему, подобный прибор можно сделать самому.

Генератор Капанадзе

Изобретатель Капанадзе (Грузия) воспроизвел генератор свободной энергии, в основе разработки которого лежал загадочный трансформатор Н. Тесла, дающий гораздо большую выходную мощность, чем в токе контура.

Генератор Капанадзе — бестопливное устройство, являющееся примером новых технологий.

Запуск осуществляется от аккумулятора, но дальнейшая работа продолжается автономно. В корпусе осуществляется концентрация энергии, добываемая из пространства, динамики эфира. Технология запатентована и не разглашается. Это практически новая теория электричества и распространения волн, когда энергия передается от одной частицы среды к другой.

Добыча из Земли

Невзирая на то, что запас энергии Земли очень большой, добыть ее весьма трудно. Нереально это сделать своими руками, если речь идет о достаточном количестве для промышленных целей.

Но электричество из планеты, ее магнитного поля возможно получить собственными силами в небольших порциях, достаточных для зажигания фонарика на светодиодах, неполной зарядки телефона. Можно надеяться, что возможность взять эти небольшие порции не нанесет вреда земному шару.

Гальванический способ (с двумя стержнями)

Известен способ получения электричества, основанный на взаимодействии двух стержней в растворе соли (гальваника).

Между стержнями из разных металлов в электролите появляется разность потенциалов.

Такие же детали (из алюминия и меди) можно погрузить в землю на 0,5 метров, полив пространство между ними раствором соли (электролитом). Это способ получения некоторого количество бесплатного электричества.

От заземления

Другой способ позволяет собрать электроэнергию от заземления при использовании ее различными потребителями.

Например, в частном доме электроснабжение оснащено заземляющим контуром, на который при включенной нагрузке стекает какая-то часть электричества. Конкретно, переменный ток идет по проводам: «фаза» и «ноль», второй из которых заземляется и чаще всего не опасен. А удар током можно получить из фазового провода.

[advice]Примите во внимание: не стоит пробовать получить электроэнергию подобным способом в домашних условиях при недостатке знаний. Если перепутать «фазовый» провод заземления с «нулевым», с которого можно получить данную энергию, токовый удар придется по всему зданию.[/advice]

Количество электричества, взятое из нулевого провода, гораздо меньше чем от солнечной батареи. (От редакции: экспериментировать с данным методом чрезвычайно опасно и категорически не рекомендуется).

Другие способы

Халявное электричество требуется и на садовом участке, в связи с чем один из умельцев утверждает: его добыча возможна, если применить наполовину мистические способы. А именно: даром его могут дать самодельные пирамиды.

Начитавшись о необычных свойствах этих конструкций, он соорудил пирамиду 3 на 3 метра и начал делать реальные испытания. То есть — пробовать доказать: невозможно получить энергию из «ничего», ограниченного пространства либо из космоса.

Возможно с юмором, но, по словам частного дачника, смонтированный из алюминиевой фольги и гелевого аккумулятора (накопителя энергии) генератор питал светильники на участке. Одним словом, из пирамиды потекла дармовая (вернее — дешевая) электрическая энергия, ток.

Далее дачник уверяет, что строительством подобных конструкций из дерева или других изоляционных материалов заинтересовалась вся деревня. Якобы, есть реальная возможность взять энергию из пирамиды на халяву.

Однако, ведутся серьезные научные изыскания в области получения малого электричества из продуктов жизнедеятельности растений, переходящих в землю.

Такие источники, дающие вечное электричество, то есть — работающие с восполнением энергии, используют в системах контроля за влажность. Судя по тому, что эксперименты проводятся на горшечных растениях, подобные приборы можно делать и испытывать самостоятельно.

Из глубин Земли успешно идет добыча тепла станциями геотермальной энергии в Калифорнии, Исландии. Недра, вулканы используются для выработки сотен МВт электроэнергии также, как это делается посредством солнца и ветра.

На практике своими руками жители районов с вулканической деятельностью могут самостоятельно сделать, например, геотермальный насос для отопления. А тепло известными способами можно превратить в электричество.

Множество ученых и изобретателей ищут путь к энергетической независимости, будь то свет, тепло, атмосферные явления или холодный фотосинтез. При повышающихся ценах на электроэнергию это вполне уместно. Некоторые способы давно стали реальностью и помогают получать энергию даже в значительных масштабах.

Изобретатели и ученые разрабатывают проекты на основе токов в земной мантии, потока частиц в виде солнечного ветра. Считается, что планета представляет собой большой сферический конденсатор. Но до сих пор не удалось выяснить, как восполняется его заряд.

Во всяком случае, человек не имеет права значительно вмешиваться в природу, пытаясь разрядить этот запас энергии, не изучив процесс досконально с учетом последствий.

Смотрите видео, в котором пользователь разъясняет, как без особых затрат сделать ветрогенератор и получить желаемое бесплатное электричество:

Оцените статью: Поделитесь с друзьями!

Электричество из ничего как добыть энергию из воздуха и земли своими руками

Содержание статьи:

Почему электричество добывают из земли

Для того, чтобы получить электричество, нужно найти разность потенциалов и проводник. Соединив всё в единый поток, можно обеспечить себе постоянный источник электроэнергии.

Однако в действительности приручить разность потенциалов не так-то просто.

Природа проводит через жидкую среду электроэнергию огромной силы. Это разряды молнии, которые, как известно, возникают в воздухе, насыщенном влагой. Однако это всего лишь единичные разряды, а не постоянный поток электроэнергии.

Человек взял на себя функцию природной мощи и организовал перемещение электроэнергии по проводам. Однако это всего лишь перевод одного вида энергии в другой. Извлечение электричества непосредственно из среды остаётся преимущественно на уровне научных поисков, опытов из разряда занимательной физики и создания небольших установок малой мощности.

Проще всего извлекать электричество из твёрдой и влажной среды.

Что можно попробовать сделать

Давайте разберем два простейших способа, как добыть энергию из земли.

Принцип гальванической пары

Наша задача, найти разность потенциала, и в земле это сделать проще всего, так как она состоит из газов, воды и минеральных веществ. Грунт – это множество твердых частиц, между которыми находятся пузырьки воздуха и молекулы воды.

Элементарная единица почвы – мицелла. Это глинисто-гумусовый комплекс, обладающий разностью потенциалов. Эти частицы накапливают заряды по тому же принципу, что и вся планета, поэтому в почве постоянно протекают электрохимические реакции. И наша задача подключится к этой «сети».

Использовать можно два электрода, сделанных из разных металлов (медь и оцинкованное железо), то есть будет использоваться принцип, как в обычной солевой батарейке. Помимо гальванической пары нам потребуется электролит (раствор соли).

  • Погружаем электроды в грунт где-то на полметра, на расстоянии в 25 сантиметров друг от друга.
  • Устанавливаем вокруг кусок трубы нужного диаметра, чтобы оградить остальную почву от электролита, так как уровень соли не позволить расти в месте поливки никаким растениям.
  • Готовим насыщенный водный раствор соли и проливаем им землю между электродами.
  • Подключаем к выводам вольтметр спустя минут 15 и видим, что прибор показывает напряжение в 3В.

Итого, к полученному источнику питания можно подключить маломощную светодиодную лампу. Показания вольтметра будет разниться в зависимости от плотности грунта, его влажности и прочих показателей, так что на разных участках результаты будут отличными.

Способ с заземлением

Если ваш частный дом оборудован нормальным контуром заземления, то знайте, что часть потребляемого вами тока уходит через него в грунт, особенно если включено сразу много электроприборов.

В результате этого процесса, между нулевым проводом вашей сети и заземляющим возникает разница потенциалов, составляя от 15 до 20 Вольт. Подключив к ним низковольтную лампочку, вы заставите ее светиться

Интересно знать! Данный ток не будет регистрироваться электрическим счетчиком, так как фактически он через него уже прошел.

Схему можно усовершенствовать, установив трансформатор и выровняв тем напряжение. А включив в схему аккумулятор, можно запасать энергию, что позволит использовать схему, когда остальные приборы в доме «молчат».

Вариант рабочий, но подходит он только для частных домовладений, так как в квартирах нет нормального заземления, а использование водопроводных труб для этого законодательно запрещено. Тем более нельзя использовать для подключения землю и фазу, так как заземление окажется под напряжением в 220В – цена такого опыта, возможно, чья-то жизнь.

Бесплатное электричество из сетевого фильтра

Многие искатели бесплатного электричества наверняка находили в интернете версии о том, что удлинитель может стать источником нескончаемой свободной энергии, образовывая замкнутую цепь. Для этого следует взять сетевой фильтр с длиной провода не менее трех метров. Из кабеля сложить катушку, диаметром не более 30 см, подключить к розетке потребителя электроэнергии, изолировать все свободные отверстия, оставив только еще одну розетку для вилки самого удлинителя.

Далее сетевому фильтру необходимо дать изначальный заряд. Легче всего это сделать подключив удлинитель к функционирующей сети, а затем за доли секунды замкнуть в себе. Бесплатное электричество из удлинителя подойдет для питания осветительных приборов, но мощность свободной энергии в такой сети слишком мала для чего-то большего. А сам метод достаточно спорный.

Электроэнергия от нулевого провода

Как правило, для электропитания жилых домов используется трёхфазная сеть с глухозаземленной нейтралью. Отдельные потребители запитываются фазным напряжением от одной фазы и нулевого провода. Если в доме имеется надёжный контур заземления с низким сопротивлением, то в периоды интенсивного потребления электрической энергии, между нулевым проводом питающей сети и заземляющим проводником образуется разность потенциалов. Эта разность может достигать 12-15 В. Проблема заключается в нестабильности величины напряжения между нулем и заземлением, которая напрямую зависит от величины потребляемой домом мощности. Максимальное напряжение достигается только при пиковом токопотреблении.

Описанные выше способы получения электроэнергии вполне работоспособны. С применением импульсных электронных преобразователей, возможно получение напряжения любой величины. Однако, для реального использования в быту описанные способы не годятся ввиду очень низкой мощности подобных источников тока. Исключение составляет схема с металлическими электродами, но для достижения приемлемой мощности, потребуется занять большую площадь металлическими штырями и периодически поливать её раствором соли. Добыть электричество из земли в достаточном для использования количестве не так просто, как кажется. Несмотря на то, что магнитные и электрические поля окутывают планету, на сегодняшний день нет технической возможности использовать этот потенциал. Рассматривать такие способы как источник энергоснабжения дома нельзя. Своими руками можно соорудить разве что источник питания для пары светодиодов, часов или радиоприёмника с очень низким уровнем потребления мощности.

Читайте также:

  • Вихревое электрическое поле
  • Атмосферное электричество своими руками

Что ещё

Среди обычных, можно встретить и довольно необычные способы получения электричества. В последнее время идёт интенсивная работа учёных всего мира по развитию альтернативной энергетики. Мир ищет возможности для более широкого её использования.

Чуть ниже приводится небольшой обзор лучших способов и идей:

Термический генератор — преобразовывает тепловую энергию в электрическую. Встроен в отопительно-варочные печи.

Пьезоэлектрический генератор — работает на кинетической энергии. Внедряют в Танцполы, турникеты, тренажёры.

Наногенератор — применяется энергия колебаний человеческого тела при движении. Процесс отличается мгновенностью. Учёные работают над совмещением работы наногенератора и солнечной батареи.

Безтопливный генератор Капанадзе — работает на постоянных магнитах в роторе и бифлярных катушках в статоре. Мощность 1-10 кВт. За основу взято одно из изобретений Н.Тесла, но многие не верят в этот принцип. Ещё по одной из версий, настоящая технология аппарата удерживается в большом секрете.

Экспериментальные установки, которые работают на эфире — электро-магнитное поле. Пока ещё идут поиски, проверяются гипотезы, проводятся эксперименты.

Учёные подсчитали, что природных запасов, используемых в современной энергетике, может хватить ещё на 60 лет. Разработками в данной области занимаются лучшие умы. В Дании население пользуется ветровой энергетикой, составляющей 25%.

В России планируются проекты, по использованию восстанавливаемых источников в энергетической системе на 10%, а в Австралии на 8%. В Швейцарии большинство проголосовало за полный переход на альтернативную энергетику. Мир голосует за!

Мифы и реальность

На просторах интернета есть большое количество видеороликов, где люди зажигают от земли лампы мощностью 150 Вт, запускают электродвигатели и так далее. Еще больше есть различных текстовых материалов, подробно рассказывающих о земляных батареях. К подобной информации не рекомендуется относиться слишком серьезно, ведь написать можно что угодно, а перед съемкой видеоролика провести соответствующую подготовку.

Просмотрев или прочитав эти материалы, вы действительно можете поверить в разные небылицы. Например, что электрическое или магнитное поле Земли содержит океан дармовой электроэнергии, получение которой довольно легко. Правда заключается в том, что запас энергии действительно огромен, но вот извлечь ее вовсе не просто. Иначе никто бы уже не пользовался двигателями внутреннего сгорания, не обогревался природным газом и так далее.

Для справки. Магнитное поле у нашей планеты действительно существует и защищает все живое от губительного воздействия разных частиц, идущих от Солнца. Силовые линии этого поля проходят параллельно поверхности с запада на восток.

Если в соответствии с теорией провести некий виртуальный эксперимент, то можно убедиться, насколько непросто заполучить электричество из магнитного поля земли. Возьмем 2 металлических электрода, для чистоты эксперимента – в виде квадратных листов со сторонами 1 м. Один лист установим на поверхности земли перпендикулярно силовым линиям, а второй – поднимем на высоту 500 м и сориентируем его в пространстве таким же образом.

Теоретически между электродами возникнет разность потенциалов порядка 80 вольт. Тот же эффект будет наблюдаться, если второй лист расположить под землей, на дне самой глубокой шахты. А теперь представьте такую электростанцию – в километр высотой, с огромной площадью поверхности электродов. Кроме того, станция должна противостоять ударам молний, что обязательно будут бить именно по ней. Возможно, это реальность далекого будущего.

Тем не менее получить электричество от земли – вполне возможно, хотя и в мизерных количествах. Его может хватить на то, чтобы зажечь светодиодный фонарик, включить калькулятор или немного зарядить сотовый телефон. Рассмотрим способы, позволяющие это сделать.

Вечная лампа и электричество изничего

Рубрики: Поделки , физика , Электрический ток | Теги: Поделки, физика, Электрический ток | 1 марта 2011 | Svetlana

Уверен, редко кто знает, что электрический ток можно получить из… “пустоты”. Удивляться тут нечего — об этом и не было известно никому в мире вплоть до 1993 года, когда в отечественной лаборатории “Наномир” впервые подобным образом была извлечена электроэнергия. Сделано это было при помощи специального прибора, называемого резонатором.

Специалисты обнаружили, что резонансными свойствами обладают многие культовые предметы симметричной формы, например, кресты, звезды, короны, трезубцы, кусудамы….. Последние вы уже знаете из занятий оригами.

Полученный  ток был  очень слабым,  он регистрировался приборами на пределе чувствительности.   Еще  два  года не   удавалось  создать мощного источника энергии, так как незатухающие электрические колебания могут возникнуть  только в том резонаторе, степень симметрии которого превышает 100 000.   Как  же   сделать   лилию   или   трезубец  с   такой невероятной точностью? Ведь ошибка при размерах лепестков в 0,5 м не должна превышать нескольких микрон! Но если нельзя сделать точно столь сложный резонатор,   то, может быть, найдутся сведения о прямолинейных преобразователях? Кусудамы как раз и оказались подобным устройством. Они состоят из плоских элементов и обладают той формой, которую современными средствами можно изготовить с нужной точностью. Хотите попробовать? Станете обладателем вечной лампы, которую не нужно включать в розетку да и заменять не  придется — она не перегорает.

Правда, заказать кусудаму придется обратиться на завод, где есть точные станки, и изготовить ее из материала, слабо деформирующегося при нагревании.
Чтобы кус у дама стала преобразовывать энергию,  ее поверхность необходимо отполировать и покрыть с помощью напыления проводящим материалом.  Лучший проводник — серебро,   однако чистое серебро быстро покроется окислом, и “вечная” лампочка скоро погаснет. Дабы этого не случилось,  поверх скин-слоя серебра нужно напылить защитный слой другого металла в 100 раз тоньше. Одного грамма золота хватит, чтобы защитить несколько “вечных” лампочек по 300 ватт.

Сама кусу дама светить не будет. Она лишь превращает   внутреннюю   энергию   эфира   в электромагнитные колебания, которые, как это ни странно, не излучаются в виде электромагнитных  волн.   На  расстоянии  вытянутой   руки  их  уже невозможно зарегистрировать без высокочувствительного прибора. Кусудама является не излучающей антенной. Она — резонатор.

Как же превратить невидимые колебания электрического и магнитного полей в видимый свет? Здесь нам помогут знания об атомах, молекулах и кристаллах. Оказывается, достаточно в зону электромагнитных колебаний поместить кусочек кварца, и он засияет голубоватым светом. Это явление можно наблюдать, если минерал положить в микроволновую печь с прозрачной дверцей.
Может возникнуть вопрос: почему же тогда не светятся драгоценные камни, вставленные в золотую корону? Ведь она тоже резонатор. Тем, кто не догадался, напомню: степень симметрии резонатора должна быть больше 100 000. А у корон она, конечно, значительно ниже.
Журнал Левша №12-95г.

Как сделать бесплатное электричество дома

Бесплатное электричество в квартире должно быть мощным и постоянным, поэтому для полного обеспечения потребления потребуется мощная установка. Первым делом следует определить наиболее подходящий метод. Так, для солнечных регионов рекомендуется установка . Если солнечной энергии недостаточно тогда следует использовать ветряные или геотермальные электростанции. Последний метод особенно подходит для регионов расположенных в относительной близости к вулканическим зонам.

Определившись с методом получения энергии, следует также позаботиться о безопасности и сохранности электроприборов. Для этого домашняя электростанция должна быть подключена к сети через инвертор и стабилизатор напряжения для обеспечения подачи тока без резких скачков. Стоит также учитывать, что альтернативные источники достаточно капризны к погодным условиям. При отсутствии соответствующих климатических условий выработка электроэнергии остановиться или будет недостаточной. Поэтому следует обзавестись также мощными аккумуляторами для накопления на случай отсутствия выработки.

Готовые установки альтернативных электростанций широко представлены на рынке. Правда, их стоимость достаточно высока, но в среднем все они окупаются от 2-х до 5-ти лет. Сэкономить можно приобретая не готовую установку, а ее комплектующие, а затем уже самостоятельно спроектировать и подключить электростанцию.

Немного о том, что такое бесплатное электричество

На данный момент стоимость коммунальных услуг достаточно высока. Поэтому многие люди задумываются об источниках необходимых ресурсов, более дешевых, чем централизованный газ и электроэнергия.

Для обеспечения дому тепла с минимальной затратой средств был изобретен твердотопливный пиролизный котел. В данном агрегате газ образуется за счет перегорания твердого топлива. Этого прибора достаточно для обогрева целого дома.

Более того, многие твердотопливные печи имеют варочные поверхности и духовки. Используя такой прибор, вы можете вовсе отказаться от в свой дом.

С электричеством все намного сложнее. На данный момент в современных домах столько электроприборов, что обеспечить достаточное количество энергии альтернативными способами для них всех, действительно тяжело. Однако вы можете с помощью необычных способов получения бесплатной электроэнергии, сделать максимально дешевым обслуживание некоторой части электроприборов. Давайте посмотрим, что это за способы.

  • Самым распространенным считается электричество, полученное от энергии солнца;
  • Также пользуется дармовая энергия, получаемая из воздуха и атмосферы;
  • Очень интересно получение статического электричества из земли;
  • Электрический ток также можно вырабатывать из эфира;
  • На грани фантастики кажется халявное электричество из нечего;
  • Как оказалось, из магнитного поля тоже можно добывать электричество;
  • Возможна добыча электричества из дерева, воды и других подручных средств.

Некоторые из этих способов способны обеспечить электричеством лишь маленькую лампочку. Других хватит, чтобы заставить работать как минимум половину электроприборов в доме.

Домашний генератор электроэнергии «на халяву» создать невозможно. Ведь на материал для таких устройств нужно потратить некоторые деньги. Поэтому, говоря: «Выработка электричества на шару», мы имеем ввиду дешевое электричество, если, конечно, речь идет не про Anticlove.

Добывать бесплатное электричество можно с помощью простых технических приспособлений

Сегодня мы расскажем вам о нескольких, самых перспективных альтернативных способах добычи электричества. Также мы поговорим о возможности получения электроэнергии из нечего.

Известные способы добычи электричества

В первом случае получение электричества из земли осуществляется с помощью двух стержней, изготовленных из разнородных металлов. Данный способ никак не связан с электрическим или магнитным полем Земли. Стержни используются в качестве гальванической пары, помещенной в солевой раствор. Если проводить эксперимент в чистом виде, то на концах металлических прутков, погруженных в раствор электролита, образуется разность потенциалов, то есть, электрический ток.

Величина получаемого тока будет разной в зависимости от таких факторов, как размеры электродов, характеристики электролита, глубина закладки и прочее.

По такой же схеме можно получить электричество из земли. Для этой цели берутся стержни из меди и алюминия, которые будут использоваться в качестве гальванической пары. Их нужно заглубить в землю примерно на 50 см, расположив на расстоянии 20-30 см друг от друга. На площадь грунта, расположенную между стержнями, выливается большое количество солевого раствора, и уже через 5-10 минут можно проводить контрольные замеры с помощью электронного вольтметра.

Вольтметр показывает разные значения, максимальный результат составил 3 вольта. Раствор электролита готовится из дистиллированной воды и поваренной соли.

Второй вариант добычи тока также не связана с магнитным полем Земли. Суть заключается в извлечении электричества, стекающего по проводу «земля» во время максимального энергопотребления. В этом процессе участвует и проводник «ноль».

Всем известно, что подача напряжения потребителям осуществляется по фазному и нулевому проводам. При наличии третьего провода, соединенного с контуром заземления, между ним и нулевым проводником нередко возникает напряжение, иногда доходящее до 15 вольт. Подобное состояние можно определить с помощью лампы накаливания на 12 вольт, подключенной к обоим проводникам. Другим способом зафиксировать невозможно, поскольку приборы учета никак на это не реагируют и ток, идущий от «земли» к нулю не определяют.

Данный способ непригоден для квартиры, поскольку в них как правило отсутствует заземление, способное выполнить свою функцию. Подобные эксперименты хорошо получаются в частных домах с классическим заземляющим контуром. Схема подключения осуществляется от нулевого проводника к нагрузке и далее – к проводу заземления. В процессе добычи электричества из земли своими руками, некоторые домашние электрики используют трансформаторы для сглаживания токовых колебаний и затем подключают наиболее оптимальную нагрузку.

Категорически запрещается, чтобы фаза подключалась вместо нулевого проводника, во избежание смертельно опасных ситуаций.

Электричество от земли и нулевого провода

Данное явление тоже возникает не от магнитного поля Земли, а вследствие того, что часть тока «стекает» через заземление в часы наибольшего потребления электроэнергии. Большинству пользователей известно, что напряжение для дома подается через 2 проводника: фазный и нулевой.

Если имеется третий проводник, присоединенный к хорошему заземляющему контуру, то между ним и нулевым контактом может «гулять» напряжение до 15 В. Этот факт можно зафиксировать, включив меж контактами нагрузку в виде лампочки на 12 В. И что характерно, проходящий из земли на «ноль» ток абсолютно не фиксируется приборами учета.

Воспользоваться таким бесплатным напряжением в квартире затруднительно, поскольку надежного заземления там не найти, трубопроводы таковым считаться не могут. А вот в частном доме, где априори должен быть заземляющий контур, электричество получить можно.

Для подключения применяется простая схема: нулевой провод – нагрузка – земля. Некоторые умельцы даже приспособились сглаживать колебания тока трансформатором и присоединять подходящую нагрузку.

Внимание! Не идите на поводу у «добрых» советчиков, предлагающих вместо нулевого проводника использовать фазный! Дело в том, что при подобном подключении фаза и земля дадут вам 220 В, но прикасаться к заземляющей шине смертельно опасно. Особенно это касается «умельцев», проделывающих подобные вещи в квартирах, присоединяя нагрузку к фазе и батарее

Они создают опасность поражения током для всех соседей.

Альтернатива Марка

Устройство также известно как генератор электричества из воздуха TPU, разработанный Стивеном Марком. Он позволяет получать различные количества электричества, чтобы питать разные цели, и делается это без необходимости подпитки из внешней среды. Но из-за некоторых особенностей она всё ещё не работает. Такая проблемка не помешает, тем не менее, рассказать вам о ней.

Принцип работы простой: в кольце создается резонанс магнитных вихрей и токов, что способствует появлению токовых ударов в металлических отводах. Чтобы собрать такой тороидальный генератор, позволяющий получить электричество из воздуха своими руками, вам нужно:

  1. Основание, в качестве которого может выступить кусок фанеры, похожий на кольцо, полиуретан или отрезок резины; 2 коллекторные катушки (внешняя и внутренняя) и катушка управления. В качестве основания наилучшим образом подойдёт кольцо, у которого наружный диаметр 230 миллиметров, а внутренний 180.
  2. Намотайте катушку внутри коллектора. Намотка должна быть трехвитковой и делаться многожильным проводом, сделанным из меди. Теоретически, чтобы запитать лампочку, вам должно хватить одного витка как на фотографиях. Если не получилось – сделайте ещё.
  3. Управляющих катушек необходимо 4 штуки. Каждую из них следует разместить под прямым углом, чтобы не создавать помех магнитному полю. Намотка должна быть плоской, а зазор между витками не должен превышать 15 миллиметров. Меньше тоже нежелательно.
  4. Чтобы намотать управляющие катушки, используйте одножильный провод. Необходимо сделать не менее 21 витка.
  5. Для последней катушки используйте медный провод с изоляцией, который следует наматывать по всей площади. Основное конструирование завершено.

Соедините выводы, предварительно установив между землёй и обратной землёй конденсатор на десять микрофарад. Чтобы запитать схему, используйте мультивибраторы и транзисторы. Подбирать их придется опытным путём ввиду того, что нужны разные характеристики для разных конструкций.

Мифы и реальность

Попытки рядовых граждан самостоятельно, в обход государственных тарифов, «добыть» электричество, обросли множеством слухов и домыслов:

  • Главный миф, связанный с самостоятельным получением энергии из земли, звучит так: это электричество вечно.

Опровержение: для того, чтобы в принципе извлечь электричество из земли, необходимо выполнение множества условий, в числе которых – особые качества почвы, металлический штырь или стержень, вкопанный в землю на достаточном расстоянии, и неокисляемые провода.

Ни одно из этих условий не может быть выполнено идеально, так что электричество, добываемое таким образом, совсем не вечно.

  • Миф второй: энергия земли бесплатна.

Опровержение: частично это так: человек может делать со своим личным земляным участком все, что угодно. Но для того, чтобы получить хоть какой-то электрический заряд, нужно много земли.

  • Миф третий: электричество, которое можно получить благодаря земле, имеет огромную мощность.

Опровержение: выходной мощности электричества, получаемого из земли, хватает на очень медленную зарядку простенького мобильного телефона или зажигание небольшой лампочки. Для того, чтобы вскипятить электрический чайник, зарядить ноутбук или включить холодильник, понадобится столько земли, металлических штырей и проводов, что одной семье нужны будут безграничные наделы и финансы.

Альтернативные и сомнительные методы

Многим известна история про незатейливого дачника, которому якобы удалось получить халявную электроэнергию из пирамид. Этот человек утверждает, что построенные им из фольги пирамиды и аккумулятор в качестве накопителя помогают освещать весь приусадебный участок. Хотя выглядит это маловероятным.

Другое же дело, когда исследования ведут учёные мужи. Здесь уже есть над чем задуматься. Так, проводятся опыты по получению электричества из продуктов жизнедеятельности растений, которые попадают в почву. Подобные опыты вполне можно проводить и в домашних условиях. Тем более что полученный ток не опасен для жизни.

В некоторых зарубежных странах, там, где есть вулканы, их энергию с успехом используют для добычи электроэнергии. Благодаря специальным установкам работают целые заводы. Ведь полученная энергия измеряется мегаваттами. Но особо интересно то, что добыть электричество своими руками подобным способом могут и рядовые граждане. К примеру, некоторые используют энергию тепла вулкана, которую совсем несложно трансформировать в электрическую.

Многие учёные бьются над поиском добычи альтернативных методов энергии. Начиная от использования процессов фотосинтеза и заканчивая энергиями Земли и солнечными ветрами. Ведь в век, когда электроэнергия особенно востребована, это как нельзя кстати. А имея интерес и некоторые знания, каждый может внести свой вклад в изучение получения халявной энергии.

Генератор Стивена Марка

Есть еще одна интересная и рабочая схема — генератор TPU, позволяющий добыть электричество из атмосферы. Ее придумал знаменитый исследователь Стивен Марк.

С помощью этого прибора можно накопить определенный электрический потенциал для обслуживания бытовых приборов, не задействуя при этом дополнительную подпитку. Технология была запатентована, в результате чего сотни энтузиастов пытались повторить опыт в домашних условиях. Однако из-за специфических особенностей ее не удалось пустить в массы.

Работа генератора Стивена Марка осуществляется по простому принципу: в кольце устройства происходит образование резонанса токов и магнитных вихрей, которые вызывают появление токовых ударов. Для создания тороидального генератора нужно придерживаться следующей инструкции:

  1. В первую очередь следует подготовить основание прибора. В качестве него можно использовать отрезок фанеры в форме кольца, кусок резины или полиуретана. Также необходимо найти две коллекторные катушки и катушки управления. В зависимости от чертежа размеры конструкции могут отличаться, но оптимальным вариантом являются следующие показатели: наружный диаметр кольца составляет 230 мм, внутренний — 180 мм. Ширина составляет 25 мм, толщина — 5 мм.
  2. Необходимо намотать внутреннюю коллекторную катушку, используя многожильный медный провод. Для лучшего взаимодействия применяют трехвитковую намотку, хотя специалисты уверены, что и один виток сможет запитать лампочку.
  3. Также следует подготовить 4 управляющие катушки. При размещении этих элементов нужно соблюдать прямой угол, иначе могут появиться помехи магнитному полю. Намотка этих катушек плоская, а зазор между витками составляет не больше 15 мм.
  4. Осуществляя намотку управляющих катушек, принято задействовать одножильные провода.
  5. Чтобы выполнить установку последней катушки, следует применить заизолированный медный провод, который наматывают по всей площади основания конструкции.

После выполнения перечисленных действий остается соединить выводы, установив перед этим конденсатор на 10 микрофарад. Питание схемы осуществляется с помощью скоростных транзисторов и мультивибраторов, которые подбираются с учетом размеров, типа проводов и других конструкционных особенностей.

Бесплатная энергия из атмосферного электричества

Сейчас существует всего два способа, с помощью которых можно добыть электричество из воздуха – с помощью ветрогенераторов и с помощью полей, которые пронизывают атмосферу. И если ветряные мельницы видели уже многие и примерно представляют, как они работают, и откуда берется энергия, то второй тип приборов вызывает множество вопросов.

Интересные открытия и машины принадлежат двум изобретателям – Джону Серлу и Сергею Годину. И большая часть экспериментов, которые проводят любители у себя дома, основывается на одной из двух схем. Как же этим двум людям удалось получить энергию из воздуха?

Джон Серл утверждает, что ему удалось создать вечный двигатель. В центр своей конструкции он поместил мощный многополюсный магнит, а вокруг него намагниченные ролики. Под действием электромагнитных сил ролики катятся, стараясь обрести стабильное положение, однако центральный магнит устроен так, что ролики никогда этого положения не достигают. Конечно, рано или поздно такая конструкция все равно должна остановиться, если не придумать способ подпитывать ее энергией извне. Во время одного из испытаний машина Серла проработала без остановки два месяца. Учёный утверждал, что ему удалось запатентовать способ подпитки своего прибора прямо от энергии вселенной, которая, как он считал, содержится в каждом кубическом сантиметре пространства. В это трудно поверить, но первую версию своего двигателя Джон Серл запатентовал еще в 1946 году.

Будучи собранным, это устройство приходило в самовращение и вырабатывало электрическую мощность. На Серла мгновенно посыпались заказы от желающих приобрести такую машину, способную черпать энергию из воздуха, однако разбогатеть на своем изобретении ученый не успел. Оборудование из лаборатории вывезли в неизвестном направлении, а его самого посадили в тюрьму по обвинению в краже электричества. Независимый британский суд просто не смог поверить, что всю электроэнергию для освещения своего дома Джон Серл производил сам.

Другой аппарат, внешне похожий на летающую тарелку, был обнаружен в подмосковном дачном поселке, и это первый в мире генератор электричества, которому не требуется топливо. Его изобретатель Сергей Годин уверен, что такого агрегата вполне хватит, чтобы обеспечить электричеством всех своих соседей по даче. Такое устройство, будучи установлено в подвале дома, полностью бы обеспечило большой современный жилой дом электричеством. Физик уверен, что на земле существует субстанция, до сих пор неизвестная современным учёным. Сергей Годин называет это явление эфиром.

Где взять бесплатное электричество

Добыть электричество можно из всего. Единственное условие: необходим проводник и разница потенциалов. Ученые и практики постоянно ищут новые альтернативные источники электричества и энергии, которые будут бесплатными. Следует уточнить, что под бесплатными подразумевается отсутствие платы за централизованное энергоснабжение, но само оборудование и его установка все же стоит средств. Правда, такие вложения с лихвой окупаются впоследствии.

На данный момент бесплатная электроэнергия добывается из трех альтернативных источников:

Методика получения электричестваОсобенности выработки энергии
Солнечная энергияТребует установки солнечных батарей или коллектора из стеклянных трубок. В первом случае электричество будет вырабатываться благодаря постоянному движению электронов под воздействием солнечных лучей внутри батареи, во втором — электричество будет преобразовано из тепла от нагрева.
Ветряная энергияПри ветре лопасти ветряка начнут активно вращаться, вырабатывая электричество, которое может сразу поставляться в аккумулятор или сеть.
Геотермальная энергияМетод заключается в получение тепла из глубины грунта и его последующей переработки в электроэнергию. Для этого пробуривают скважину и устанавливают зонд с теплоносителем, который будет забирать часть постоянного тепла, существующего в глубине земли.

Такие методы используются как обычными потребителями, так и в широких масштабах. Например, огромные геотермальные станции установлены в Исландии и вырабатывают сотни МВт.

loading…

Электричество из земли своими руками

Сначала на поверхности земли устанавливают проводник, который заземляют. Затем нужно подумать об устройстве, помогающем покинуть электронам проводник, то есть эммитере. Для этого можно использовать высоковольтный генератор или устройство, названное катушкой Тесла. Именно от его работы будет зависеть конечная сила тока.

Верхняя точка находится на определенном уровне потенциала земного электрического поля, которое начнет двигать электроны вверх к ней — туда, где находится эмиттер. Он будет освобождать электроны из металла проводника, а они, уже в качестве ионов, отправятся в атмосферу. Движение продолжается до тех пор, пока там потенциал не выровняется с электрическим полем Земли, то есть пока не будет достигнута нейтрализация.

Так природная электрическая цепь замыкается, и в нее включается потребитель энергии.

Следует учитывать, что электрическое поле находится выше заземленных проводников. В их роли выступают все постройки, деревья, линии электропередач и так далее. Поэтому чтобы установка работала в городских условиях, ее необходимо поднять выше расположенных поблизости крыш, шпилей и заземлителей.

Можно так представить электричество из земли. Схема перед вами.

Что необходимо для создания простой станции получения энергии

Как же осуществить получение электричества из воздуха? Минимум, необходимый для забора электроэнергии из воздуха, – земля и металлическая антенна. Между этими проводниками с разной полярностью устанавливается электрический потенциал, который накапливается на протяжении длительного времени. Учитывая непостоянность величины, рассчитать её силу почти невозможно. Подобная станция работает как молния: разряд тока происходит через определённое время, когда достигается максимальный потенциал. Таким способом можно получить довольно много электроэнергии, чтобы поддерживать работу электрической установки.

Альтернатива

В 1901 году знаменитый, гениальный учёный Николай Тесла сконструировал огромную башню Ворденклиф в Нью-Йорке. Компания JP Morgan взяла на себя финансовую часть проекта. Тесла хотел осуществить бесплатную радиосвязь и снабдить человечество бесплатным электричеством. Морган же просто ожидал беспроводную международную связь.

Идея бесплатного электричества привела в ужас промышленные и финансовые «Тузы». Желающих революций в мировой экономике не оказалось, все держались за сверхприбыли. Поэтому проект свернули.

Так что же построил Тесла? Как он собирался сделать бесплатное электричество? В XXI веке всё большую поддержку получает идея альтернативной энергетики, работающей на других источниках. Своеобразным оппонентом нефти, углю, газу здесь выступают возобновляемые ресурсы Земли и других планет.

Из чего можно получить бесплатное электричество? Солнечный свет, энергия ветра, земли, использование приливов и отливов, мускульная энергия человеческого тела могут изменить будущее планеты. Уйдут в прошлое трубопроводы, саркофаги реакторов. Многие государства смогут освободить свою экономику от необходимости закупать дорогостоящие источники электричества.

Поиску альтернативных источников энергии, которые легко возобновляются, уделяют большое внимание. В последние десятилетия человечество волнуют проблемы чистоты экологии, экономичности ресурсов

Полезные советы

Создавая прибор по добыче электроэнергии из воздуха, необходимо помнить об определенной опасности, которая связана с риском появления принципа молнии

Чтобы избежать непредвиденных последствий, важно соблюдать правильность подключения, полярность и прочие важные моменты.

Работы по изготовлению устройства для получения доступного электричества не требуют больших финансовых затрат или усилий. Достаточно подобрать простую схему и в точности следовать пошаговому руководству.

Конечно же, сверхмощный прибор своими руками создать проблематично, так как он требует более сложных схем и может обойтись в кругленькую сумму. А вот что касается изготовления простых механизмов, то такую задачу можно реализовать в домашних условиях.

Способ с нулевым проводом

Напряжение в жилой дом подается с использованием двух проводников: один из них фаза, второй – нуль. Если дом оборудован качественным заземляющим контуром, в период интенсивного потребления электроэнергии часть тока уходит через заземление в грунт. Подключив к нулевому проводу и заземлению лампочку на 12 В, вы заставите ее светиться, поскольку между контактами нуля и «земли» напряжение может достигать 15 В. И этот ток электросчетчиком не фиксируется.

Добыча электричества с помощью нулевого провода

Схема, собранная по принципу ноль – потребитель энергии – земля, вполне рабочая. При желании для выравнивания колебаний напряжения можно использовать трансформатор. Недостатком является нестабильность появления электричества между нулем и заземлением – для этого требуется, чтобы дом потреблял много электроэнергии.

Обратите внимание! Данный способ добывать даровое электричество пригоден только в условиях частного домовладения. В квартирах нет надежного заземления, а использовать в этом качестве трубопроводы систем отопления или водоснабжения нельзя

Тем более запрещено соединять контур заземления с фазой для получения электричества, так как заземляющая шина оказывается под напряжением 220 В, что смертельно опасно.

Несмотря на то, что такая система задействует для работы землю, ее нельзя отнести к источнику земной электроэнергии. Как добыть энергию, используя электромагнитный потенциал планеты, остается открытым.

Способ с двумя электродами

Простейший способ получить в домашних условиях электроэнергию – использовать принцип, по которому устроены классические солевые батарейки, где использована гальваническая пара и электролит. При погружении стержней, выполненных из разных металлов, в раствор соли, на их концах образуется разность потенциалов.

Мощность такого гальванического элемента зависит от целого ряда факторов, включая:

  • сечение и длину электродов;
  • глубину погружения электродов в электролит;
  • концентрацию солей в электролите и его температуру и т.д.

Чтобы получить электричество, требуется взять два электрода для гальванической пары – один из меди, второй из оцинкованного железа. Электроды погружают в грунт приблизительно на глубину в полметра, установив их на расстоянии около 25 см, относительно друг друга. Грунт между электродами следует хорошо пролить раствором соли. Замеряя вольтметром напряжение на концах электродов спустя 10-15 минут, можно обнаружить, что система дает бесплатно ток около 3 В.

Добыча электричества с помощью 2-х стержней

Если провести ряд экспериментов на разных участках, выяснится, что показания вольтметра варьируются в зависимости от характеристик грунта и его влажности, размеров и глубины установки электродов. Для повышения эффективности рекомендуется ограничить при помощи куска трубы подходящего диаметра контур, куда будет заливаться солевой раствор.

Внимание! Требуется использовать насыщенный электролит, а такая концентрация соли делает почву непригодной для роста растений.

Ответ читателю

Спасибо Вам, Александр, за очень интересный вопрос. Данная тема, поверьте, волнует не только Вас, но и большое количество жителей наше планеты, в том числе и автора данного материала и причин тому несколько.

  • Во-первых, это постоянный рост цен на энергоносители, что очень сильно толкает вверх инфляцию на прочие товары, из-за чего мы вынуждены вращаться как белки в колесе, постоянно наращивая производства, плюс современные банковские системы, но не будем об этом.
  • Во-вторых, многим не дает покоя окутанная тайной биография знаменитого сербского изобретателя Никола Тесла, который, по слухам, смог построить полноценную электростанцию, которая смогла обеспечить электрической энергией, взятой из эфира, целы город, но технологию заблокировали царившие в то время в Америке промышленники.
  • В-третьих, существуют рабочие схемы, которые мы и обсудим сегодня, а, как известно, все, что работает, можно усовершенствовать.

В интернете можно найти огромное количество видео, в которых домашние умельцы демонстрируют свои установки, которые в качестве источника энергии используют магнитное и электрическое поле Земли. Кто-то даже умудряется такие агрегаты продавать, но видеть в работе подобные устройства нам не приходилось, что, однако, не отрицает их реального существования.

Ходят слухи, что некая швейцарская компания, чье название автор успешно позабыл, официально продает за баснословные деньги компактные аппараты, с условием обслуживания только ее специалистами, компактные установки, способные обеспечивать электричеством полноценный дом со всеми приборами в нем.

Однако стоит понимать, что большинство таких фото и видео материалов являются подделками, с целью получения выгоды или славы, а отговорки, мол, выложить схемы устройств не можем, так как тут же изобретателей «прессанут» спецслужбы, можно считать лишь отговорками. При желании в интернет можно запустить что угодно, и вычистить это полностью будет нереально, хотя отрицать до конца теорию заговора, мы не хотим. Мало ли…

Но все это лирика, давайте поговорим, что мы можем соорудить своими руками, и может ли такая энергия пригодиться в быту.

Что правда, а что миф

Пробуем зажечь лампочку

Итак, можно ли получить электричество, использовав электрическое магнитное поле Земли?

Теоретически да! Земля – это, по сути, один огромный конденсатор, имеющий сферическую форму.

  • На внутренней поверхности планеты происходит накопление отрицательного заряда, тогда как на наружной – положительного.
  • Изолятор между ними – это атмосфера, через которую постоянно протекает ток, а разница потенциалов при этом сохраняется;
  • Потерянные заряды восстанавливаются за счет магнитного поля, являющегося, по сути, генератором.

Как же извлечь электричество из этой нехитрой схемы? Устройство должно состоять из следующих элементов:

  • Катушка Тесла (эмиттер) — генератор высоковольтный, который позволяет электронам покидать проводник;
  • Проводник;
  • Контур заземляющий, соединенный с проводником.

Дальнейшая инструкция в теории проста! В идеале, нам осталось подключиться к полюсу генератора и позаботится о качественном заземлении, но…

  • Самая высока точка установки, где располагается эмиттер, должна расположиться на такой высоте, чтобы потенциал электрического поля Земли, а точнее его разница, поднимал электроны вверх по проводнику.
  • Эмиттер, в виде ионов, станет их высвобождать в атмосферу и будет это происходить до тех пор, пока уровень потенциалов не сравняется.
  • К такой цепи могут подключаться потребители тока, причем их количество будет зависеть от мощности катушки Тесла.
  • Да, чуть не забыли! Нужно учесть высоту всех заземленных проводников в округе (деревья, металлические столбы, высотки и прочее) и сделать установку выше их всех, что делает затею практически нереальной к исполнению.

Реальность или миф

Когда речь идет о получении энергии из воздуха, большинство людей думает, что это откровенный бред. Однако добыть энергоресурсы буквально из ничего вполне реально. Более того, в последнее время на тематических форумах появляются познавательные статьи, чертежи и схемы установок, позволяющих реализовать такой замысел.

Принцип действия системы объясняется тем, что в воздухе содержится какой-то мизерный процент статистического электричества, только его нужно научится накапливать. Первые опыты по созданию такой установки проводились еще в далеком прошлом. В качестве яркого примера можно взять знаменитого ученого Николу Теслу, который неоднократно задумывался о доступной электроэнергии из ничего.

Талантливый изобретатель уделил этой теме очень много времени, но из-за отсутствия возможности сохранить все опыты и исследования на видео большинство ценных открытий осталось тайной. Тем не менее ведущие специалисты пытаются воссоздать его разработки, следуя найденным старым записям и свидетельствам современников. В результате многочисленных опытов ученые соорудили машину, которая открывает возможность добыть электричество из атмосферы, то есть практически из ничего.

Тесла доказал, что между основанием и поднятой пластиной из металла присутствует определенный электрический потенциал, являющий собой статическое электричество. Также ему удалось определить, что этот ресурс можно накапливать.

Затем ученый сконструировал сложный прибор, способный накапливать небольшой объем электрической энергии, используя лишь тот потенциал, который находится в воздухе. Кстати, исследователь определил, что незначительное количество электроэнергии, которая содержится в воздухе, появляется при взаимодействии атмосферы с солнечными лучами.

Рассматривая современные изобретения, следует обратить внимание на устройство Стивена Марка. Этот талантливый изобретатель выпустил тороидальный генератор, который удерживает намного больше электроэнергии и превосходит простейшие разработки прошлых времен

Полученного электричества вполне хватает для функционирования слабых осветительных приборов, а также некоторых бытовых устройств. Работа генератора без дополнительной подпитки осуществляется в течение большого промежутка времени.

Электричество из земли своими руками

Тем не менее многие люди не оставляют попыток извлечь электричество из земли, чтобы облегчить или изменить свою жизнь, и их не стоит останавливать, ведь самые важные открытия в истории человечества совершались именно упорными людьми, влюбленными в свои идеи.

Существует рейтинг самых популярных способов дешевого и быстрого получения электричества из земли.

Нулевой провод – нагрузка – почва

Переменный ток, благодаря которому в квартирах питаются все электрические приборы, поступает в жилища через два проводника: ноль и фазу. Из-за заземления большое количество энергии уходит в почву. Конечно, никому не хочется платить за то, что не удается использовать полностью. Поэтому предприимчивые люди уже давно поняли, как при помощи нулевого провода можно извлекать из земли энергию.

Этот способ основан на том, что земля в силу своих физических свойств является одновременно накопителем энергии и ее проводником.

Схема подземной прокладки кабеля

Чтобы извлечь электричество, нужно создать простейшую цепь.

  • На достаточном расстоянии в землю вкапывается два металлических кола, один из которых является катодом, а второй – анодом, в результате чего появится энергия напряжением от 1 до 3 В. Сила тока в этом случае будет ничтожно малой.
  • Чтобы увеличить напряжение и силу тока, придется на участке с огромной площадью вбить множество штырей, как последовательно, так и параллельно соединенных между собой. Последовательное соединение повышает напряжение, а параллельное – силу тока.
  • Когда напряжение достигнет 20-30 В, к цепи необходимо подключить простейший трансформатор для увеличения напряжения при выходе и аккумулятор для накопления и стабилизации электрической энергии. Последний этап – трансформация постоянного тридцати вольтажного тока в переменный, напряжением в 220 В.

Цинковый и медный электрод

Это самый простой, дешевый и эффективный на данный момент способ получения электрической энергии, именно по этому принципу устроены привычные всем батарейки.

Первым делом необходимо изолировать какое-то количество почвы, чтобы создать в ней максимально кислую среду. Затем подключить к этой изолированной земле цинковый и медный электроды. На выходе действительно получается электроэнергия. Этот принцип получения энергии во многом зависит от качества почвы – чем она кислее, тем лучше.

Аккумулятор из цинка и меди

Можно провести интересный эксперимент, поместив два ключа – медный и железный – в апельсин. В результате появляется напряжение до 1 В. Решающим фактором является площадь электродов, соприкасающихся с кислотой, и уровень кислотности самого апельсина.

Этого количества энергии хватает на зарядку простого телефона. Чтобы увеличить мощность, необходимо параллельно подключить к этой схеме еще несколько таких же цепей. В результате получится зарядить смартфон или ноутбук, но под электростанцию из апельсинов и электродов придется выделить огромное помещение.

Этот метод получения энергии хороший, но не надежный и не долговечный: как только начнется окисление цинковых и медных электродов, начнет падать напряжение, а затем прекратится поступление энергии. Исправить положение может счистка окиси и добавление кислоты.

Потенциал между крышей и землей

В земле устанавливается металлический штырь, от него к крыше протягивается провод, получившейся электрической энергией можно спокойно пользоваться.

Правда, только до первой грозы, ведь по сути – это настоящий проводник.

В лучшем случае пострадают проводка и электроприборы, в худшем возникнет угроза жизни обитателей дома.

Виды добычи

Альтернативное электричество может добываться из воздуха двумя способами:

  1. Ветрогенераторами;
  2. За счет полей, пронизывающих атмосферу.

Как известно, электрический потенциал имеет свойство накапливаться в течение определенного времени. Сейчас атмосфера изнизана различными волнами, производящимися электрическими установками, приборами, естественным полем Земли. Это позволяет говорить о том, что электричество из атмосферного воздуха можно добыть своими руками, даже не имея никаких специальных приспособлений и схем, но про особенности токопроизводства по этому варианты мы расскажем ниже.

Фото – грозовая батарея

Ветрогенераторы – это давно известные источники альтернативной энергии. Они работаю за счет преобразования силы ветра в ток. Ветряной генератор – это устройство, способное работать продолжительное время и накапливать энергию ветра. Данный вариант широко используется в различных странах: Нидерландах, России, США. Но, одной ветряной установкой можно обеспечить ограниченное количество электрических приборов, поэтому для питания городов или заводов устанавливаются целые поля ветроустановок. В использовании этого способа есть как достоинства, так и недостатки. В частности, ветер – это непостоянная величина, поэтому нельзя предугадать уровень напряжения и накопления электричества. При этом, это возобновляемый источник, работа которого совершенно не вредит окружающей среде.

Фото – ветряки

Видео: создание электричества из воздуха

Простые схемы

Желая добыть атмосферное электричество своими руками, следует рассмотреть различные схемы и чертежи. Некоторые из них настолько простые, что даже начинающий изобретатель без особых трудностей сможет воплотить их в жизнь и создать примитивную установку

Важно отметить, что современные сети и линии электропередач вызывают дополнительную ионизацию воздушного пространства, что повышает количество электрического потенциала, содержащегося в атмосфере. Остается научиться добывать его и накапливать

Наиболее простая схема подразумевает использование земли в качестве основания и металлической пластины в виде антенны. Такое устройство может накапливать электроэнергию из воздуха, а затем распределять ее для решения бытовых задач.

При создании такой установки не приходится задействовать дополнительные накопительные приборы или преобразователи. Между металлической землей и антенной устанавливается электрический потенциал, который имеет свойство расти. Однако из-за непостоянной величины предугадать его силу очень проблематично.

Принцип работы такого устройства чем-то напоминает молнию — когда потенциал достигает пиковой отметки, происходит разряд. Из-за этого можно добыть из земли и атмосферы внушительный объем полезных ресурсов.

Среди плюсов вышеописанной схемы следует выделить:

  1. Простоту реализации в домашних условиях. Такой опыт можно с легкостью выполнить в домашней мастерской, используя подручные материалы и инструменты.
  2. Дешевизну. При создании устройства не придется покупать дорогие приспособления или узлы. Достаточно найти обычную металлическую пластину с токопроводящими свойствами.

Однако кроме плюсов есть и существенные недостатки. Один из них заключается в высокой опасности, связанной с невозможностью рассчитать примерное количество ампер и силу импульса. Также в рабочем состоянии система создает открытый контур заземления, способный притягивать молнию. Именно по этой причине проект не приобрел массового распространения.

Атмосферное электричество своими руками

По схеме, расположенной ниже, можно провести опыт посерьезней, и повторить эксперимент самого Теслы, собрав миниатюрную катушку.

Саму катушку можно намотать корпус от маркера (диаметр маркера около 25 мм), количество витков должно быть в диапазоне от 700 до 1000, провод с сечением 0,14 мм. Вторичная обмотка должна состоять из 5 витков провода диаметром 1,5 мм. Для первичной обмотки потребуется около 50 м провода. Активный компонент в этом устройстве – это транзистор 2n2222, также имеется резистор и, в общем-то,  это все компоненты, которые входят в эту катушку.

Несмотря на то, что катушка получится маленькой, она все равно сможет выдавать небольшую искру, если вы дотронетесь до нее пальцем, зажечь спичку или заставить лампочку гореть. Наматывать проволоку можно на любой корпус, главное, чтобы в нем не было металлических частей. Не повторяйте ошибку, которую совершают многие. Если хотите сделать ее автономно не засовывайте батарею внутрь корпуса, если внутри находится транзистор, катушка работает нормально и почти не греется, но если бы там была батарея, то магнитное поле, которое создает сам трансформатор Теслы, будет влиять на батарею, и вы выведете из строя транзистор. Чем аккуратнее получится у вас наматывать витки, тем лучше будет результат, а для того, чтобы катушка сохранилась у вас подольше, можно покрыть ее бесцветным лаком для ногтей.

Более серьезные эксперименты требуют больших денежных, временных и силовых затрат, но даже на схеме выглядят впечатляюще.

Наверняка у вас на кухне есть вентиляционный канал, который иногда работает даже в выключенном состоянии, от сквозняка. Его можно использовать для того, чтобы бесплатно осветить комнату. Сделать это можно из подручных материалов, все подробно рассказано в видео:

Схема простой электростанции:

Читайте также:

  • Какой электрический ток называют переменным: где используют
  • Напряженность электрического поля

Электричество из земли

Земля является своего рода сферическим конденсатором, который заряжен до 300 000 В. Внутри поверхность имеет отрицательный заряд, а снаружи, в ионосфере — положительный. Атмосфера выступает в роли изолятора. Через нее протекают огромные токи, но разность потенциалов остается прежней.

Из этого следует, что существует природный генератор, восполняющий утерянные заряды. Им выступает магнитное поле, благодаря подключению к которому и удается получать электричество из земли.

Процесс состоит в создании надежного заземления с одной стороны, и подсоединении к генераторному полюсу, с другой. Если первую задачу реализовать просто, то со второй придется изрядно повозиться.

Добыча из воздуха

Атмосферное электричество вполне может быть использовано. Многих привлекает возможность поставить себе на службу природную стихию во время грозы.

В атмосфере также присутствуют волны от поля планеты. Оказывается, электричество можно добыть из воздуха своими силами, не применяя сверхсложные устройства.

Некоторые способы следующие:

  • грозовые батареи используют свойство электрического потенциала накапливаться;
  • ветрогенератор преобразовывает в электричество силу ветра, работая долгое время;
  • ионизатор (люстра Чижевского) — популярный бытовой прибор;
  • генератор TPU (тороидального) электричества Стивена Марка;
  • генератор Капанадзе — бестопливный энергетический источник.

Рассмотрим подробно некоторые из устройств.

Ветрогенераторы

Популярный и всеобще известный источник энергии, получаемой с помощью ветра — ветрогенератор. Подобные устройства давно применяются во многих странах.

Установка в единственном числе ограниченно обеспечивает нужды электропитания. Поэтому приходится добавлять генераторы, если нужно обеспечить энергией крупное предприятие. В Европе существуют целые поля с ветряными установками, абсолютно не наносящими вреда природе.

Стоит отметить: недостатком может считаться невозможность рассчитать заранее величины напряжения и тока. Следовательно, нельзя сказать, сколько накопится электричества, так как действие ветра не всегда предсказуемо.

Грозовые батареи

Устройство, накапливающее потенциал с использованием атмосферных разрядов, называется грозовой батареей.

Схема прибора включает лишь антенну из металла и заземление, не имея сложных преобразовывающих и накапливающих компонентов.

Между частями прибора появляется потенциал, который затем накапливается. Воздействие природной стихии не подлежит точному предварительному расчету и данная величина также непредсказуема.

Важно знать: это свойство довольно опасно при реализации схемы своими руками, так как создавшийся контур притягивает молнии с напряжением до 2000 Вольт.

Тороидальный генератор С. Марка

Устройство, изобретенное С. Марком, способно вырабатывать электричество через некоторое время после его включения.

Генератор TPU (тороидальный) может питать бытовые приборы.

Конструкция состоит из трех катушек: внутренней, внешней и управляющей. Он действует из-за появляющихся резонансных частот и магнитного вихря, способствующих образованию тока. Правильно составив схему, подобный прибор можно сделать самому.

Генератор Капанадзе

Изобретатель Капанадзе (Грузия) воспроизвел генератор свободной энергии, в основе разработки которого лежал загадочный трансформатор Н. Тесла, дающий гораздо большую выходную мощность, чем в токе контура.

Генератор Капанадзе — бестопливное устройство, являющееся примером новых технологий.

Запуск осуществляется от аккумулятора, но дальнейшая работа продолжается автономно. В корпусе осуществляется концентрация энергии, добываемая из пространства, динамики эфира. Технология запатентована и не разглашается. Это практически новая теория электричества и распространения волн, когда энергия передается от одной частицы среды к другой.

Гальванический элемент

Следующий способ – простая химия. Это самый реальный и понятный способ получения электричества из земли в домашних условиях. Для этого нужны медные и цинковые электроды. В их роли могут выступать пластины, штыри, гвозди. Если медь распространена – с цинком могут возникнуть проблемы, поэтому легче найти оцинкованное железо.

Нужно забить ваши электроды в землю на одинаковом расстоянии друг от друга. Допустим 1 метр в глубину и 0,5 метра между электродами. В таком случае медь будет катодом, а цинк – анодом. Напряжение такого элемента может составлять порядка 1-1,1 Вольта. Это значит, чтобы получить из земли электричество напряжением в 12 вольт нужно забить 12 таких электродов и соединить их последовательно.

Решающим фактором в такой батарее является площадь электродов, от этого зависит и сила тока, ровно, как и от того, что находится между ними. Для того, чтобы батарея выдавала ток – земля должна быть влажной, для этого её можно полить, иногда цинковый электрод заливают раствором соли или щёлочи. Для повышения токовой отдачи можно забить больше электродов и соединить их параллельно. Таким образом устроены все современные батареи и аккумуляторы.

На схеме ниже вы видите еще одну интересную реализацию такой батареи из медных труб и оцинкованных стержней.

Однако с течением времени электроды разрушаться и батарея постепенно прекратит свою работу.

Возможно ли это

Прежде чем рассмотреть технологические схемы и ответить на вопрос «как взять электроэнергию из почвы?», давайте разберемся насколько это реально.

Считается, что в земле очень много энергии и, если сделать установку – вы вечно будете бесплатно ей пользоваться. Это не так, ведь чтобы получить энергию нужен определенный участок земли и металлические штыри, которые вы в неё установите. Но штыри будут окисляться и рано или поздно приём энергии закончится. Кроме того, её количество зависит от состава и качества самой почвы.

Чтобы добиться хорошей мощности нужен очень большой участок земли, поэтому в большинстве случаев энергии, полученной из земли, достаточно для включения пары светодиодов или небольшой лампочки.

Из этого следует, что энергию из земли получить можно, но использовать её как альтернативу электросетям вряд ли получится.

Электричество из земли дома своими руками: как получить

Вопрос эффективности

Получение электричества из земли окутано мифами – в Интернет регулярно выкладываются материалы на тему получения бесплатной электроэнергии за счет использования неисчерпаемого потенциала электромагнитного поля планеты. Однако многочисленные видео, на которых самодельные установки добывают ток из земли и заставляют сиять многоваттные лампочки или крутиться электромоторы, являются мошенническими. Если бы получение электричества из земли было настолько эффективно, атомная и гидроэнергетика давно ушли бы в прошлое.

Однако бесплатное электричество добыть из земной оболочки вполне реально и сделать это можно своими руками. Правда, полученного тока хватит только на светодиодную подсветку или на то, чтобы не торопясь подзарядить мобильное устройство.


Напряжение из магнитного поля Земли — возможно ли!?

Для получения тока из природной среды на постоянной основе (то есть, исключаем разряды молний), нам необходим проводник и разность потенциалов. Найти разность потенциалов проще всего в земле, которая объединяет все три среды – твердую, жидкую и газообразную. По своей структуре грунт представляет собой твердые частички, между которыми присутствуют молекулы воды и пузырьки воздуха.

Важно знать, что элементарной единицей почвы является глинисто-гумусовый комплекс (мицелла), который обладает определенной разностью потенциалов. Внешняя оболочка мицеллы накапливает отрицательный заряд, внутри нее формируется положительный. За счет того, что электроотрицательная оболочка мицеллы притягивает из окружающей среды ионы с положительным зарядом, в почве беспрерывно протекают электрохимические и электрические процессы. Этим почва выгодно отличается от водной и воздушной среды и дает возможность своими руками создать устройство для добычи электроэнергии.

Способы добычи энергии из земли

Не секрет, что легче всего добывать электричество из твердой и влажной среды. Самым популярным вариантом является почва, в которой сочетается и твердая, и жидкая, и газообразная среда. Между мелкими минералами содержатся капли воды и пузырьки воздуха. К тому же в почве присутствует еще одна единица — мицелла (глинисто-гумусовый комплекс), которая является сложной системой с разницей потенциалов.

Если внешняя оболочка создает отрицательный заряд, то внутренняя — положительный. Мицеллы с отрицательным зарядом притягивают к верхним слоям ионы с положительным. В результате в почве постоянно осуществляются электрические и электрохимические процессы.

Учитывая тот факт, что в почве содержатся электролиты и электричество, ее можно рассматривать не только как место для развития живых организмов и выращивания урожая, но и как компактную электростанцию. Большинство помещений концентрирует в эту оболочку внушительный электрический потенциал, который подается с помощью заземления.

В настоящее время используется 3 способа добычи энергии из почвы в домашних условиях. Первый заключается в таком алгоритме: нулевой провод — нагрузка — почва. Второй подразумевает использование цинкового и медного электрода, а третий задействует потенциал между крышей и землей.

В первом варианте напряжение в дом подается с помощью двух проводников: фазного и нулевого. Третий проводник, заземленный, создает напряжение от 10 до 20 В, чего вполне хватает для обслуживания нескольких лампочек.

Следующий способ базируется на получении энергии только из земли. Для этого нужно взять два стержня из токопроводящих материалов — один из цинка, а другой из меди, а затем установить их в землю. Желательно использовать тот грунт, который находится в изолированном пространстве.

Найти промышленные устройства для получения электрики из земли проблематично, ведь их практически никто не продает. Но создать такое изобретение своими руками, следуя готовым схемам и чертежам, вполне реально.

Создавая прибор по добыче электроэнергии из воздуха, необходимо помнить об определенной опасности, которая связана с риском появления принципа молнии. Чтобы избежать непредвиденных последствий, важно соблюдать правильность подключения, полярность и прочие важные моменты.

Работы по изготовлению устройства для получения доступного электричества не требуют больших финансовых затрат или усилий. Достаточно подобрать простую схему и в точности следовать пошаговому руководству.

Конечно же, сверхмощный прибор своими руками создать проблематично, так как он требует более сложных схем и может обойтись в кругленькую сумму. А вот что касается изготовления простых механизмов, то такую задачу можно реализовать в домашних условиях.

В 1729 году мир узнал, что на земле существуют материалы (в основном это металлы), которые могут пропускать через себя ток. Эти материалы стали именоваться проводниками. Были найдены и другие вещества (например янтарь, стекло, воск), которые не проводят ток которые стали именоваться изоляторами. Но применять электричество человечество смогло лишь в начале 17 века. Стало ясно, что ток может быть использован для получения тепла и света. Тогда же было установлено, что электричество — это поток небольших заряженных частиц — электронов. И каждый из них несет малый заряд энергии. Но когда собирается много электронов, заряд становится большим, вот тогда и появляется электрическое напряжение. Поэтому электричество может по проводам перемещаться на длинные расстояния.

Давайте рассмотрим одно занятное явление. Человек снимает свитер через голову и вдруг ни с того, ни сего раздается треск. Если раздеваться в темноте, то можете наблюдать, как этот треск сопровождается искрами. Это искрит и трещит одежда. Посмотрев внимательнее можно увидеть, что свитер прилегает к рубашке, которая еще была одета на теле. Таким образом, между вещами возникает ток. Его проявление на разных предметах приводит не только к притяжению, но и к отталкиванию. Это и есть действие электричества. Выходит, что человек в нынешнее время не может и шагу ступить без электричества.

Способ с двумя электродами

Простейший способ получить в домашних условиях электроэнергию – использовать принцип, по которому устроены классические солевые батарейки, где использована гальваническая пара и электролит. При погружении стержней, выполненных из разных металлов, в раствор соли, на их концах образуется разность потенциалов.

Мощность такого гальванического элемента зависит от целого ряда факторов

, включая:

  • сечение и длину электродов;
  • глубину погружения электродов в электролит;
  • концентрацию солей в электролите и его температуру и т.д.

Чтобы получить электричество, требуется взять два электрода для гальванической пары – один из меди, второй из оцинкованного железа. Электроды погружают в грунт приблизительно на глубину в полметра, установив их на расстоянии около 25 см, относительно друг друга. Грунт между электродами следует хорошо пролить раствором соли. Замеряя вольтметром напряжение на концах электродов спустя 10-15 минут, можно обнаружить, что система дает бесплатно ток около 3 В.


Добыча электричества с помощью 2-х стержней

Если провести ряд экспериментов на разных участках, выяснится, что показания вольтметра варьируются в зависимости от характеристик грунта и его влажности, размеров и глубины установки электродов. Для повышения эффективности рекомендуется ограничить при помощи куска трубы подходящего диаметра контур, куда будет заливаться солевой раствор.

Внимание! Требуется использовать насыщенный электролит, а такая концентрация соли делает почву непригодной для роста растений.

Мифы и реальность

На просторах интернета есть большое количество видеороликов, где люди зажигают от земли лампы мощностью 150 Вт, запускают электродвигатели и так далее. Еще больше есть различных текстовых материалов, подробно рассказывающих о земляных батареях. К подобной информации не рекомендуется относиться слишком серьезно, ведь написать можно что угодно, а перед съемкой видеоролика провести соответствующую подготовку.

Просмотрев или прочитав эти материалы, вы действительно можете поверить в разные небылицы. Например, что электрическое или магнитное поле Земли содержит океан дармовой электроэнергии, получение которой довольно легко. Правда заключается в том, что запас энергии действительно огромен, но вот извлечь ее вовсе не просто. Иначе никто бы уже не пользовался двигателями внутреннего сгорания, не обогревался природным газом и так далее.

Для справки.

Магнитное поле у нашей планеты действительно существует и защищает все живое от губительного воздействия разных частиц, идущих от Солнца. Силовые линии этого поля проходят параллельно поверхности с запада на восток.

Если в соответствии с теорией провести некий виртуальный эксперимент, то можно убедиться, насколько непросто заполучить электричество из магнитного поля земли. Возьмем 2 металлических электрода, для чистоты эксперимента – в виде квадратных листов со сторонами 1 м. Один лист установим на поверхности земли перпендикулярно силовым линиям, а второй – поднимем на высоту 500 м и сориентируем его в пространстве таким же образом.

Теоретически между электродами возникнет разность потенциалов порядка 80 вольт. Тот же эффект будет наблюдаться, если второй лист расположить под землей, на дне самой глубокой шахты. А теперь представьте такую электростанцию – в километр высотой, с огромной площадью поверхности электродов. Кроме того, станция должна противостоять ударам молний, что обязательно будут бить именно по ней. Возможно, это реальность далекого будущего.

Тем не менее получить электричество от земли – вполне возможно, хотя и в мизерных количествах. Его может хватить на то, чтобы зажечь светодиодный фонарик, включить калькулятор или немного зарядить сотовый телефон. Рассмотрим способы, позволяющие это сделать.

Способ с нулевым проводом

Напряжение в жилой дом подается с использованием двух проводников: один из них фаза, второй – нуль. Если дом оборудован качественным заземляющим контуром, в период интенсивного потребления электроэнергии часть тока уходит через заземление в грунт. Подключив к нулевому проводу и заземлению лампочку на 12 В, вы заставите ее светиться, поскольку между контактами нуля и «земли» напряжение может достигать 15 В. И этот ток электросчетчиком не фиксируется.


Добыча электричества с помощью нулевого провода

Схема, собранная по принципу ноль – потребитель энергии – земля, вполне рабочая. При желании для выравнивания колебаний напряжения можно использовать трансформатор. Недостатком является нестабильность появления электричества между нулем и заземлением – для этого требуется, чтобы дом потреблял много электроэнергии.

Обратите внимание! Данный способ добывать даровое электричество пригоден только в условиях частного домовладения. В квартирах нет надежного заземления, а использовать в этом качестве трубопроводы систем отопления или водоснабжения нельзя. Тем более запрещено соединять контур заземления с фазой для получения электричества, так как заземляющая шина оказывается под напряжением 220 В, что смертельно опасно.

Несмотря на то, что такая система задействует для работы землю, ее нельзя отнести к источнику земной электроэнергии. Как добыть энергию, используя электромагнитный потенциал планеты, остается открытым.

Энергия магнитного поля планеты

Земля представляет собой своего рода конденсатор сферической формы, на внутренней поверхности которой накапливается отрицательный заряд, а снаружи – положительный. Изолятором служит атмосфера – через нее проходит электрический ток, при этом разность потенциалов сохраняется. Утерянные заряды восполняются за счет магнитного поля, которое служит природным электрогенератором.

Как получить на практике электричество из земли? По сути, необходимо подсоединиться к полюсу генератора и организовать надежное заземление.

Устройство, получающее электричество из природных источников, должно состоять из следующих элементов

:

  • проводник;
  • заземляющий контур, к которому подсоединен проводник;
  • эмиттер (катушка Тесла, высоковольтный генератор, позволяющий электронам покидать проводник).


Схема получения электроэнергии
Верхняя точка конструкции, на которой расположен эмиттер, должна располагаться на такой высоте, чтобы за счет разницы потенциалов электрического поля планеты электроны поднимались по проводнику вверх. Эмиттер их будет освобождать из металла и в виде ионов выпускать в атмосферу. Процесс будет продолжаться до тех пор, пока потенциал в верхних слоях атмосферы не станет вровень с электрическим полем планеты.

К цепи подключается потребитель энергии, причем чем эффективнее работает катушка Тесла, тем выше сила тока в цепи, тем больше (или мощнее) потребителей тока можно подключить к системе.

Так как электрическое поле окружает заземленные проводники, к которым относятся деревья, здания, различные высотные конструкции, то в городской черте верхняя часть системы должна располагаться выше всех имеющихся объектов. Своими руками создать подобную конструкцию не реально.

Видео по теме:

Ветрогенераторы — электричество из энергии ветра

А вот ветрогенератор сейчас уже стал реальностью. Фактически такое устройство можно назвать потомком ветряной мельницы. Основная проблема в получении электроэнергии таким способом — непостоянство ветра. Но там, где условия позволяют сейчас даже строятся электростанции, дающие неплохую отдачу буквально из ничего — из движения воздуха.

Поиски новых источников энергии постоянно ведутся в современной науке. Статическое электричество, присутствующее в воздухе, могло бы стать одним из них. В настоящее время это стало реальностью.

Известны два способа: ветряные генераторы и атмосферные поля. Не менее интересна энергия Земли. Добытое из нее «вечное» электричество помогло бы экономить обычную электроэнергию, стоимость которой увеличивается. Иногда необходимо получение даже мизерных его количеств.

Как далеки мы от беспроводного электричества? / Блог компании SkillFactory / Хабр

Привет, Хабр! Я хочу рассказать тебе историю о давних временах. Был 1891 год. Малоизвестный тогда сербско-американский ученый по имени Никола Тесла разработал устройство, генерирующее и передающее электричество без проводов. Катушка Тесла была прототипом технологии его же авторства, эта катушка считалась Священным Граалем передачи энергии.

Сегодня революция в науке возродила необыкновенную идею Теслы, которая когда-то считалась несбыточной мечтой и перспективы невероятно привлекательны.




Катушка Тесла


Катушка Теслы

— это электрический резонансный трансформатор. Радиочастотный генератор для получения высокого напряжения, при низких токах приводящий в действие трансформатор. Катушка работает по принципу электромагнитной индукции: проводник помещается в изменяющееся магнитное поле и генерирует напряжение на проводнике. Тесла устраивает демонстрации, показывающие, как можно использовать катушку для беспроводного питания ламп накаливания, расположенных на расстоянии нескольких метров друг от друга. 

Даже по современным стандартам Тесла намного опередил свое время. Но его амбиции выходили за пределы прототипа катушки Тесла. Он представлял мир, в котором все человечество могло бы иметь дешевое или даже бесплатное электричество. Он раздвинул границы, когда воплотил в жизнь нечто более функциональное.

Башня Уорденклиффа


Башня Wardenclyffe Tower была экспериментальной беспроводной передающей станцией, построенной для телекоммуникации по всему миру.

Однако главной одержимостью Теслы была беспроводная передача энергии. Он получил финансирование на строительство башни, скрыв ее как телекоммуникационную. Он уже доказал, что высокочастотные сигналы могут передаваться без проводов, с помощью катушечных трансформаторов Тесла.

Дальнейшие секретные эксперименты в его лаборатории убедили его в том, что он может передавать электроэнергию, задействуя верхние слои атмосферы Земли. Башня Wardenclyffe была прототипом того, что Тесла представлял как сеть башен, охватывающую весь земной шар и получающую удаленный беспроводной доступ к энергии от центральной станции.

План Теслы состоял в том, чтобы вырабатывать электроэнергию с близлежащего угольного месторождения и отправлять ее по всему миру с помощью башни, подобно тому, как радиоволны без проводов передаются на большие расстояния. В интервью американскому журналу «The American Magazine» Тесла запечатлел свое видение этими яркими словами:

«Питание может быть, и в ближайшем будущем будет передаваться без проводов, для всех коммерческих целей, таких как освещение домов и управление самолетами». Я открыл основные принципы, и остается только развивать их коммерчески. Когда это будет сделано, вы сможете отправиться в любую точку мира — на вершину горы с видом на вашу ферму, в Арктику или в пустыню — и установить небольшое устройство, которое даст вам тепло, чтобы готовить, и свет, чтобы читать».

К сожалению, необузданные амбиции Теслы не увидели свет. Путь был перекрыт после того, как Джей-Пи Морган прекратил финансирование проекта, и Тесла обанкротился. Незавершенная башня была снесена в 1917 году для выполнения некоторых финансовых обязательств Теслы. До сих пор концепция беспроводного электроснабжения была погребена под обломками бюрократических, политических и финансовых ограничений.

Беспроводное электричество в наше время


С крушения надежд прошло более 100 лет. Сейчас на рынок выходит несколько компаний с технологиями, которые могут по воздуху безопасно передавать энергию. Emrod, поддерживаемый правительством Новой Зеландии стартап, лидирует в гонке с ожиданиями потребителей, первым в мире развертывая беспроводную передачу энергии высокой мощности на большое расстояние на замену существующих технологии медных проводов.

Для беспроводной передачи энергии на большие расстояния эта технология использует электромагнитные волны. Энергия преобразуется передающей антенной в электромагнитное излучение, улавливается приемной антенной (ректенной), а затем распределяется локально традиционными способами. Система Emrod состоит из четырех компонентов: источника питания, передающей антенны, передающего реле и приемная ректенны.

Схематическая модель теле-энергетической системы Emrod

Во-первых, передающая антенна преобразует электричество в микроволновую энергию и фокусирует электричество в цилиндрический луч. Микроволновый луч посылается через ряд трансляторов до тех пор, пока не попадает в ректенну, которая преобразует луч обратно в электрическую энергию. Просто, правда?

То же самое происходит в любой радиосистеме, но в радио количество энергии, которое достигает приемника, может быть крошечным; уловить нескольких пиковатт — это все, что нужно, чтобы доставить понятный сигнал.

Напротив, именно количество чистой, отправляемой без проводов энергии, наиболее важно. Полученная доля переданной энергии становится ключевым проектным параметром, поэтому необходимо разработать эффективные способы минимизации потерь.

Emrod нашел способ решить эту проблему. Мы переняли идеи радаров и оптики. В сравнении с предыдущими попытками беспроводного питания на основе микроволн, Emrod используют метаматериалы (в реле) для более плотной фокусировки передаваемого излучения.

Потери мощности при такой передаче сведены к минимуму. Генеральный директор Emrod рассказывает, что их система работает с 70% эффективности, что меньше эффективности медных проводов, но в некоторых случаях система все же экономически выгодна. В будущем компания планирует повысить энергоэффективность.

Примечательно, что технология надежна, так как на нее не влияют погодные или атмосферные условия, поэтому непредвиденные перебои с подачей электроэнергии останутся в прошлом.

Один из вопросов, вызывающих озабоченность, — это вопрос безопасности. Электромагнитный луч Emrod работает на частотах, классифицируемых как ISM — промышленные, научные и медицинские лучи, безвредные для здоровья человека.

Пока стартап стремится доставлять энергию в сообщества вне электрической сети, или передавать энергию из источников в открытом море.

Перспективы беспроводного электричества


Можно утверждать, что беспроводное электричество — одно из тех изобретений, которые не обязательны для нас. В конце концов, мы уже передаем электричество, и оно прекрасно работает. Но это далеко не так. Скрытые издержки традиционного способа передачи электроэнергии чрезвычайно высоки.

Прокладка линий электропередач и их техническое обслуживание обходится дорого, не говоря уже о географических ограничениях распространения электрических сетей в отдаленные районы. Корабли в море, электромобили или самолеты могут дозаправляться во время движения. Подход Emrod решил бы проблему дальности, особенно для предлагаемых коммерческих тарифов на электроэнергию.

Но, пожалуй, самой большой революцией будет всемирный переход на экологически чистый, дешевый возобновляемый источник энергии. Осознать масштаб можно с помощью двух фактов.

1. Удаленная передача солнечной энергии


Согласно глобальной статистике по энергии, общее потребление энергии в мире в 2019 году в эквиваленте составило 13 миллиардов тонн нефти (MTOE). Иными словами, это 17,3 тераватта мощности.

Сегодня, если мы покроем солнечными батареями участок земли в 350 км на 350 км, это может дать более 17,4 ТВт мощности. Упомянутая площадь составляет около 43000 квадратных миль. Великая Сахара — это около 3,6 миллионов квадратных миль и более чем 12 часов светового дня, а значит энергии.

Это означает, что 1,2% пустыни достаточно для покрытия мировых энергетических потребностей. И ни ядерный синтез, ни какой-либо другой разрабатываемый в настоящее время источник энергии чище не могут конкурировать с этим.

Что, если беспроводное электричество станет реальностью, мы используем небольшую часть Сахары, чтобы собрать солнечную энергию и передать ее по всему миру без необходимости в дорогостоящих медных проводных линиях? Не станет ли это серьезным прорывом в решении проблем энергетического кризиса, загрязнения окружающей среды и изменения климата?

2. Космическая солнечная энергия


Гигантские солнечные батареи, собирающие солнечную энергию в космосе и передающие ее обратно на Землю — это выглядит как сумасшедшая сцена из научно-фантастического фильма.

Концептуально разработанная российским ученым Константином Циолковским в 1920-х годах, идея космической солнечной энергетики осталась по большей части призрачной. Но все меняется. Несколько месяцев назад Европейское космическое агентство объявило о своем плане финансирования космической солнечной энергетики как средства решения проблемы изменения климата путем продвижения производства зеленой энергии.

Солнечная энергетическая система космического базирования обеспечит чистой энергией всех и повсюду.

Космическая солнечная энергетика будет использовать концепцию беспроводного электричества. План заключается в преобразовании электричества от солнечных батарей в энергетические волны и использовании электромагнитного поля для передачи ниже, к антенне на поверхности Земли. Затем антенна преобразует волны обратно в электричество.

Благодаря нескольким преимуществам КСЭ — привлекательное решение надвигающегося энергетического кризиса, которое позволит генерировать больше энергии:

  • В космосе всегда солнечный полдень. Земные солнечные батареи ограничены дневным светом и погодными условиями.
  • Солнечные батареи могут получать более интенсивный солнечный свет из-за отсутствия препятствий со стороны атмосферных газов, облаков, пыли и других погодных явлений. Атмосфера Земли обычно поглощает и отражает обратно часть солнечного света.
  • Спутник на солнечных батареях может освещаться круглосуточно и без выходных. В настоящее время солнечную энергию собирают на протяжение в среднем 29% дня.
  • Питание может быстро перенаправляться в те области, которые нуждаются в нем больше всего.

Нет необходимости говорить о том, что КСЭ все еще сталкивается с многочисленными препятствиями, самым большим из которых являются затраты на запуск и развертывание огромных солнечных батарей. В настоящее время изучаются новые методы производства, такие как 3D-печать ультралегких солнечных батарей.

Беспроводное электричество: мечта Теслы и наша грядущая реальность


Используя огромный потенциал беспроводного электричества, наше поколение может обрести многое и ничего не потерять. В предстоящие годы мы можем лишь надеяться на то, что нынешние усилия, направленные на реализацию этого грандиозного подвига, дадут положительные результаты. К сожалению, Никола Теслы, великого изобретателя, нет с нами рядом, чтобы он мог увидеть воплощение своей мечты. Я рад поделиться одной из знаменитых цитат Теслы, прекрасным источником вдохновения для начинающих ученых во всем мире:

«Если вы хотите раскрыть секреты Вселенной, думайте о ней с точки зрения энергии, частоты и вибрации».



Другие профессии и курсыПРОФЕССИИ


КУРСЫ

Добываем электричество из воздуха в промышленных масштабах

Прошли новогодние праздники, отгорели гирляндами елки и пришли счета за электричество. Обогрев на основе электроконвекторов не перестает меня радовать общей стоимостью системы отопления загородного дома, но мысль о бесплатных киловатт-часах становится навязчивой. Поделюсь еще одной находкой из области очевидного и невероятного.

В этот раз электричество будем добывать непосредственно из воздуха. Про электростатические разряды все знают – если погладить пушистую кошку, а потом этой же рукой взяться за металлическую дверную ручку, то ударит током. Более интересный вариант – сняв шерстяной свитер, помыть руки водой из водопроводного крана. Она, оказывается, тоже бьется статическими разрядами! Но мы сегодня не об этом. Давайте упрощенно представим, как выглядит наша планета: твердая сфера – мы здесь, атмосфера – здесь летают птицы, ионосфера – здесь летают заряженные частицы. 

Верхние слои атмосферы называют ионосферой не просто так – в ней очень много положительно заряженных частиц – ионов. Считается, что сама планета, в свою очередь, заряжена отрицательно. Отсюда и «заземление» — подключение отрицательного полюса в полярной электрической схеме к «земле».

Теперь, если представить нашу планету в виде сферического конденсатора (в вакууме), то получится, что он состоит из двух обкладок – положительно заряженной ионосферы и отрицательно заряженной поверхности земли. Атмосфера играет роль изолятора. Через атмосферу постоянно протекают ионные и конвективные токи утечки этого «конденсатора». Но, несмотря на это, разность потенциалов между «обкладками» не уменьшается. Мы по прежнему наблюдаем молнии, полярные сияния, да и ионов меньше не становится.

Это значит, что существует некий генератор, который постоянно подзаряжает эту систему. Таким генератором является магнитное поле Земли, которое вращается вместе с нашей планетой, и солнечный ветер, ионизирующий верхние слои атмосферы. Если каким-либо способом подключить к этому генератору полезную нагрузку, мы получим практически вечный и бесплатный источник электроэнергии. 

Разность потенциалов атмосферы и земной поверхности может достигать от сотен до сотен тысяч вольт на разных высотах и в разное время года. Принципиальная схема «электростанции» в таком случае предельно проста: строим высокий столб-проводник (или поднимаем кабель аэростатом), хорошенько его заземляем и разрезаем у основания на нужной нам высоте. Верхняя часть столба будет иметь положительный заряд, нижняя- отрицательный. При помощи трансформаторов снижаем напряжение до нужных нам величин, попутно увеличив силу тока…и вроде как бы все. Включаем полезную нагрузку и радуемся.

Но в этой простоте и кроется вся хитрость. Проблема 1: высота проводника. Считается, что напряженность электрического поля планеты наиболее сильна у поверхности, т.е. на высоте 100-150 м. Выше строить сложно, хотя всегда есть аэростаты…Проблема 2, она же главная: чтобы по нашему проводнику пошел ток, т.е. движение электронов от отрицательного полюса к положительному, этот самый положительный полюс там должен быть. А если мы просто построим заземленный металлический столб, то электрическое поле в лице атмосферы его обойдет, «приняв» за новую точку поверхности земли. Таким образом, электроны, которые должны были бы двигаться снизу, от заземленной поверхности по проводнику вверх, к положительно заряженным ионам в атмосфере, этого делать не будут потому, что не смогут покинуть верхнюю часть проводника. Они останутся «запертыми» в нем, чем и обеспечится нейтральный заряд всей системы. 

Грубо говоря, с металла (проводника) через воздух и в воздух ток просто так не проходит. Если совсем заумно, то есть такие штуки, как векторы напряженности электрического поля. Векторы напряженности поля проводника направлены вверх, а векторы напряженности эл. поля атмосферы направлены вниз. Они встречаются в верхней точке проводника и складываясь, компенсируют друг друга. Общий заряд системы нейтрален, однако на кончике проводника сконцентрирована наибольшая напряженность электрического поля. 

Электроны не могут покинуть верхнюю точку проводника сами по себе, у них недостаточно энергии для того, чтобы покинуть проводник. Эта энергия называется работой выхода электрона из проводника и для большинства металлов она составляет менее 5 электронвольт, но даже ее пока взять неоткуда. А если помочь электронам покинуть проводник? Тогда все заработает – электроны будут подниматься вверх, захватываться электрическим полем и по проводнику пойдет ток. Нужно только постоянно помогать им в этом процессе. Весь фокус в устройстве, которое бы освобождало электроны из проводника в атмосферу и делало это постоянно.

Нам, получается, нужен трансформатор — проводник электронов в атмосферу. И такое чудо есть – катушки Тесла. Если избыточные электроны направлять в атмосферу при помощи коронных разрядов, или плазменной дуги или еще чего-то такого же плазменного, электроны будут покидать поверхность проводника и переходить в атмосферу по воздуху, еще как.

<

p align=»center»>

Совсем упрощенно – коронным разрядом на верхушке нашего столба мы соединим обкладки «кондесатора», плазменная дуга – тот самый проводник, которым можно соединить отрицательно заряженный металл заземленного проводника с положительно заряженной атмосферой…живой пример – молния, ударившая в громоотвод.

Электростанции-столбы с генераторами тесла на верхушках, уходящие на сотни метров в высоту – выглядит футуристично, технократично и канонично! Мне эта картинка так нравится, что я не буду портить ее расчетами и формулами. Любопытные все найдут сами. И на всякий случай – первооткрывателем стать не получится, технологию недавно запатентовали.

Использование Земли в качестве аккумулятора

Когда вы помещаете цинковый анод и медный катод в емкость с влажным буровым раствором, два металла начинают реагировать, потому что цинк теряет электроны легче, чем медь, и потому, что грязь содержит ионы. Смачивая грязь, он превращается в настоящий раствор электролита.

Использование Земли в качестве аккумулятора

Лен Кальдероне для | AltEnergyMag

В 1841 году Александр Бейн подтвердил способность влажной грязи генерировать электричество.Заземленная батарея — это пара электродов, состоящих из двух разнородных металлов, использующих влажную землю в качестве электролита. Чтобы сделать батарею, Бейн закопал в землю пластины из цинка (анода) и меди (катода) на расстоянии примерно ярда друг от друга. Он давал выходное напряжение примерно 1 вольт.

Когда вы помещаете цинковый анод и медный катод в контейнер с влажным буровым раствором, два металла начинают реагировать, потому что цинк теряет электроны легче, чем медь, и потому, что грязь содержит ионы. Смачивая грязь, он превращается в настоящий раствор электролита.Таким образом, электроды начинают обмениваться электронами, как в обычной батарее.

(Викискладе)

Если бы электроды соприкасались, при реакции они выделяли бы много тепла; но поскольку их разделяет почва, свободные электроны должны проходить через провод, соединяющий два металла. Если к замкнутой цепи подключить светодиод, значит, у вас почвенная лампа.

Чтобы получить естественное электричество, исследователи вбивали в землю две металлические пластины в направлении магнитного меридиана или астрономического меридиана.Более сильные течения текут с юга на север. Это обстоятельство влияет на значительную однородность силы тока и напряжения. Поскольку земные токи текут с юга на север, электроды располагаются, начиная с юга и заканчивая севером. Во многих ранних экспериментах стоимость была непомерно высокой из-за большого расстояния между электродами.

Было обнаружено, что уровень напряжения линейно возрастает за счет последовательного соединения нескольких заземляющих элементов аккумуляторной батареи, как в стандартной свинцово-кислотной аккумуляторной батарее.Ток нагрузки увеличивается за счет параллельного подключения заземляющих ячеек. Также было обнаружено, что емкость источника по току увеличивается за счет увеличения площади поверхности электродов, за исключением того, что напряжение отдельной ячейки остается постоянным независимо от размеров электродов.

Поскольку все обычные металлы ведут себя одинаково, два разнесенных электрода имеют нагрузку во внешней цепи между ними. Они приготовлены в электрической среде, и по мере передачи энергии среде свободные электроны в среде возбуждаются.Затем свободные электроны текут к одному электроду в большей степени, чем к другому электроду, тем самым заставляя электрический ток течь во внешней цепи через нагрузку.

Ток течет от той пластины, положение которой в ряду электрического потенциала близко к отрицательному концу. Пики тока возникают, когда два металла наиболее широко разнесены друг от друга в ряду электрического потенциала, и когда материал ближе, положительный конец находится на севере, а отрицательный конец — в направлении юга.Пластины, одна из которых медная, а другая — железная или углеродная, соединены над землей с помощью провода, не оказывающего большого сопротивления. При таком расположении электроды не подвергаются значительной химической коррозии, даже когда они находятся в земле, залитой водой, и соединены проводом в течение длительного времени.

Обратной стороной является то, что процедура не будет длиться вечно. В конце концов, грязь потеряет свои электролитные свойства, но замена почвы перезапустит процесс.

Другой источник, микробные батареи или микробные топливные элементы, уже существует, но их выходная мощность настолько мала, что они имеют минимальное использование для включения света, зарядки сотового телефона, калькулятора, электронных часов, детских игрушек и светодиодов белого света, так как у них минимальные потребности в энергии.

Почвенный микробный топливный элемент (Wikimedia Commons)

Это устройство состоит из графитовой ткани (анода), помещенной на дно контейнера, засыпанного землей, и отрезка проволочной сетки (катода).Электроны образуются, когда микробы поедают отходы в почве. Эти электроны проходят через сеть бактерий от анода из графитовой ткани через проводящую проволоку, чтобы добраться до катода с проволочной сеткой. Светодиодный индикатор, подключенный к цепи, загорается, когда ток течет по цепи.

По оценкам начинающей компании Lebone Solutions из Гарварда, топливный элемент размером 10,7 квадратных футов будет производить 1 ватт, который может заряжать сотовый телефон; на площади 53,8 квадратных футов можно было питать лампу или вентилятор.В большинстве стран мира микробный топливный элемент не был бы эффективным источником энергии. В сельских районах Африки, где нет электросети, такое расположение может иметь значение, когда для зарядки телефона требуется много миль пешком. Лебоне в настоящее время запускает топливный элемент для использования в нескольких сельских африканских деревнях. При поливе закопанные клетки могут работать месяцами.

Земля не состоит из одинаковых материалов. Тяжелые элементы, такие как железо, свинец и золото, спустились в горячее внутреннее пространство, в то время как более легкие элементы, такие как кислород и водород, поднялись на холодную поверхность.Когда тяжелые и легкие элементы соединяются, они реагируют.

Каждая группа элементов реагирует по-своему. Тяжелые элементы отдают электроны, а более легкие — собирают их. Это наша земная батарея. Камни в мантии Земли действуют как один электрод, а вода — как второй. Когда в земной коре происходит трещина, горячая порода контактирует с водой, и электроны переходят от одного к другому. Когда электроны контактируют с водой, образуется водород.

Если имеется достаточный запас холодной воды и горячей породы, он обеспечивает достаточно большую батарею, чтобы обеспечить работу в течение тысяч, миллионов или даже миллиардов лет. Тепло из недр Земли быстро рассеивается и не может быть сохранено. Электроны реагируют с молекулами воды с образованием водорода. Водород — это природный аккумулятор. Этот процесс эффективно переносит энергию из ядра Земли на поверхность, где она может быть потреблена. Микробы эволюционировали, чтобы высвобождать эту энергию контролируемым образом, перетекая в нужные части клетки для поддержания жизни.Вот почему ученые обсуждают воду как уникальную и необходимую для жизни. Извилистые камни, дающие пищу микробам, довольно распространены во Вселенной. Они были обнаружены на астероидах и на Марсе.

Экспериментальные исследования земных батарей очень обнадеживают. Первые результаты земных батарей показали разумный потенциал на будущее.

Содержание и мнения в этой статье принадлежат автору и не обязательно отражают точку зрения AltEnergyMag

Комментарии (0)

Эта запись не имеет комментариев.Будьте первым, кто оставит комментарий ниже.


Опубликовать комментарий

Вы должны войти в систему, прежде чем сможете оставлять комментарии. Авторизуйтесь сейчас.

Рекомендуемый продукт

Комплексное обеспечение качества для солнечной энергии и накопителей энергии

Clean Energy Associates предоставляет полное решение по обеспечению качества, которое охватывает весь жизненный цикл продукта фотоэлектрических модулей, систем хранения и каждого компонента баланса систем (BOS).Опытная местная и международная команда инженеров по контролю качества и менеджеров по работе с клиентами CEA предлагает беспрецедентный контроль качества, который может защитить инвестиции в солнечную энергию и накопители и обеспечить жизнеспособность производства энергии в будущем на протяжении всего срока службы продукта.

Никола Тесла мечтал о бесплатном электричестве; что случилось?

 Вы когда-нибудь задумывались, каким был бы мир, если бы электричество было бесплатным? 

Tesla — это хорошо известная торговая марка выдающегося предпринимателя Илона Маска и его электромобилей, но как насчет Теслы, этого человека?

Более 100 лет назад Никола Тесла (1856-1943) изобрел переменный ток (AC), многофазную систему переменного тока, которая заложила основу для современных источников питания массового производства.

Никола Тесла, человек или волшебник?

От изобретения луча частиц до радара, электромобиля, робототехники и дронов с дистанционным управлением, решения Тесла, смоделированные в уме, решения проблем с такой ясностью ума, что он мог визуализировать отдельные части машины или механизма в трех измерениях. . Затем запустите моделирование в его голове и проверьте на износ.

Он даже первым изобрел межпланетную радиосвязь с Гульельмо Маркони.С кем он позже поссорился, когда Патентное бюро США таинственным образом отменило его патенты и фактически приписало Маркони изобретение радио; который на самом деле использовал несколько патентов Теслы.

Тесла так далеко опередил свое время, гений многих из его ранних изобретений — использованных для разработки радио и телевидения, флуоресцентного и индукционного освещения, МРТ и рентгеновских лучей — стало известно только после его смерти.

Мечтал о бесплатном электричестве для всех

Тесла давно мечтал создать неисчерпаемый источник чистой энергии, который был бы бесплатным для всех.Он решительно выступал против централизованных угольных электростанций, выбрасывающих углекислый газ в воздух, которым дышат люди.

Он считал, что Земля имеет «жидкие электрические заряды», протекающие под ее поверхностью, что при прерывании серией электрических разрядов с повторяющимися заданными интервалами генерирует безграничный источник энергии, генерируя огромные низкочастотные электрические волны.

Один из самых необычных экспериментов Теслы заключался в передаче электроэнергии на большие расстояния без проводов и кабелей — подвиг, который с тех пор ставит ученых в тупик.

Его великое видение заключалось в том, чтобы освободить человечество от бремени добычи, перекачки, транспортировки и сжигания ископаемого топлива, которое он считал «греховной расточительностью».

«Невежественные, лишенные воображения люди, озабоченные личными интересами»

Tesla в конечном итоге была уничтожена тем, что он называл «невежественными, лишенными воображения людьми, поглощенными личными интересами» — влиятельными людьми, которые стремились защитить чрезвычайно прибыльные, низкотехнологичные отрасли, которые они строили всю свою жизнь.

Сегодняшняя индустрия ископаемого топлива, наследие того прошлого, в последние десятилетия столь же упорно боролась за защиту одних и тех же интересов — луддитов и отстающих, опасающихся потерять свои компании из-за ветра и солнца.

Когорта заговорщиков, захваченных углеродом

Название новой книги отмеченного наградами журналиста Мэриан Уилкинсон относится к той же когорте заговорщиков, уловивших углерод, что и Углеродный клуб : Как сеть влиятельных скептиков, политиков и бизнес-лидеров боролась за контроль над климатической политикой Австралии .

Уилкинсон отмечает, что на протяжении десятилетий наши «политики вели климатические войны, подпитываемые углеродным клубом. Но, несмотря на политическую бойню, наука об изменении климата не проиграла ».

Углеродный клуб опасался, что экономика Австралии, работающая на ископаемом топливе, действительно внезапно остановится, если уголь превратится в окаменелые остатки древней растительной жизни и не более того — в бесполезный кусок черного вещества.

Короче говоря: мы ехали на бараньей спине более полувека, и теперь нам вполне комфортно кататься на задней части угольной электростанции — как это совершенно невообразимо!

Никто не боялся, просто запутался в идиотизме

Так что же за одержимость старыми технологиями и углем в отличие от новых технологий возобновляемых источников энергии и новых рабочих мест, кажется, провоцирует такое безумие?

Трудно определить, например, что побудило нашего премьер-министра Скотта Моррисона, тогдашнего казначея, внести кусок угля в парламент во время опроса в феврале 2017 года.

Как отметила политический редактор Guardian Australia Кэтрин Мерфи: «Это уголь», — торжествующе сказал казначей, размахивая трофеем, как будто он только что наткнулся на экзотический вид, который ранее считался вымершим. «Не бойтесь, — сказал он успокаивающе, — не бойтесь».

Конечно, никто не испугался, просто растерялся на идиотизме.

Мерфи далее описал шараду: «Уголь был произведен как тотем того, как правительство в Канберре собиралось держать свет включенным, поддерживать низкие цены на электроэнергию и останавливать безжалостный марш социализма или предотвращать случайные мысленные преступления против низменности. -загрузить электростанции.”

Конечно, как мы знаем, это было только начало ScoMo, завораживающего маркетолога, который впоследствии стал премьер-министром Австралии и, таким образом, написал книгу о , как выиграть выборы при небольшом количестве вещества .

Мощность базовой нагрузки: последний фурфи, работающий на ископаемом топливе?

Перенесемся в настоящее: по крайней мере, либералы теперь могут произносить слова «изменение климата» без содрогания, даже если, когда они это произносят, их окружает странная аура несоответствия.

Но в стремлении к более дешевой и чистой энергии сохранилось, в частности, одно препятствие: ископаемое топливо «мощности базовой нагрузки».

Вкратце: поскольку и солнце, и ветер управляются непостоянством Матери-природы, периодически светящейся и дующей по ее воле — она ​​может быть дешевой, но ее нельзя купить — нам нужна мощность базовой нагрузки, измельчаемая в фон в анахроничных попытках сохранить ее честность.

Однако, Глен Буллед , управляющий директор Energa в Юго-Восточном Квинсленде, повторил то, что отраслевые эксперты знали все это время, что политики либо неверно истолковали, либо неправильно поняли, что такое мощность базовой нагрузки на самом деле:

«Мощность при базовой нагрузке использовалась для обозначения минимальной выходной мощности, которую угольные электростанции могут генерировать перед остановом.А отключение их, когда использование минимально, а возобновляемые источники энергии все еще поступают в сеть, обходится слишком дорого, поскольку на повторное включение может потребоваться несколько дней ».

На самом деле, как заметил Буллед, «базовой нагрузки не существует, есть только нагрузка. Базовая нагрузка — это термин, используемый для оправдания существования вырабатываемой ископаемым топливом энергии — умирающего бизнеса ».

Технологии отказались от мощности базовой нагрузки

По правде говоря, технологии сделали мощность базовой нагрузки архаичной.

Учитывая гибкость гидро-, ветровой и солнечной энергии, а также появление коммерческих аккумуляторов, круглосуточную работу угольных электростанций следует отнести к «слишком глупой корзине».

Батарея Tesla

в Южной Австралии, мощность которой скоро будет повышена до 150 мегаватт, является ярким примером победы науки и техники над политическим упрямством.

И хотя наш премьер-министр и его сообщники жестко раскритиковали «большую батарею» Южной Австралии, оператор рынка заявил, что она распределяет электроэнергию быстрее, чем обычные электростанции, и способствует снижению цен на энергоносители.

Не говоря уже о «еще большем преимуществе» сокращения выбросов углерода.

Может и чище, но будет ли дешевле?

Цены на энергию резко выросли за последнее десятилетие: в период с 2007 по 2013 год средняя цена выросла на 70 процентов в реальном выражении. Так что возвращение к «старым добрым временам» цен до 2007 г. маловероятно.

Хорошая новость заключается в том, что Комиссия по энергетическому рынку Австралии (AEMC) прогнозирует, что счета за электроэнергию — в период с 2018-19 по 2021-22 годы — вырастут в диапазоне от шести процентов в Западной Австралии (обратите внимание, что цены на электроэнергию для жилых домов устанавливаются правительство штата Вашингтон) и уменьшение в Юго-Восточном Квинсленде на 20 процентов.

В качестве альтернативы, коллективные оптовые закупки электроэнергии — например, для многоквартирных домов и жилых комплексов — также регулярно рекламируются как обеспечивающие снижение стандартной цены примерно на 40-50% за счет технологий совместного использования солнечной энергии. Хотя существуют определенные условия и препятствия, которые необходимо преодолеть, которые уменьшают полную стоимость скидки.

Но наш счет за электричество, как и жизнь, никогда не бывает таким простым!

Будет ли ваш счет за электроэнергию на самом деле меньше в мире, управляемом капиталистами, в котором бонусы руководителей остаются обязательными для максимизации прибыли?

Маловероятно, если история хоть сколько-нибудь достоверна.

Прогнозы AEMC не имеют ничего общего с оптовой стоимостью электроэнергии, которая постоянно колеблется, с заранее заключенными контрактами, с тем, как розничные торговцы устанавливают свои цены и прибыль, и какие последствия могут иметь текущие и будущие изменения в политике.

И к вашему счету за электроэнергию приложен еще один изрядный багаж. Инфраструктура, столбы и провода составляют примерно половину стоимости вашего счета за электроэнергию. Двадцать пять процентов — это оптовая стоимость самой электроэнергии, а остаток расходуется на размер прибыли и эксплуатационные расходы розничного продавца.

Да, и вы можете добавить еще 10 процентов к счету за скачки напряжения в сети в вашем доме. Допустимый диапазон составляет от 216 до 253 вольт, а номинальное напряжение составляет около 230, но часто выше. Еще раз, ремонт считается слишком дорогостоящим.

Итак, если у вас нет собственной солнечной системы на крыше, более дешевая оптовая цена за счет возобновляемых источников энергии может составлять всего несколько процентов от общего счета.

И давайте не будем забывать, что наша и без того стареющая инфраструктура может только стареть и требовать все большего и большего обслуживания.

Самая большая ошибка Теслы заключалась в том, что он больше заботился о людях, чем о прибыли.

Джон Дж. О’Нил написал в своей биографии Tesla:

«Панорама человеческой эволюции освещена внезапными вспышками ослепительного блеска интеллектуальных достижений, которые бросают свои лучи далеко вперед, чтобы дать нам представление о далеком будущем, чтобы мы могли более правильно направлять наши колеблющиеся шаги сегодня».

Только подумайте, человек, опередивший свое время, мог бы обеспечить всех чистым и бесплатным электричеством и предотвратить опасное изменение климата задолго до того, как оно началось.

Но, к сожалению для Tesla, наряду с миром природы и всеми нами, живущими сегодня, и грядущими поколениями, JP Morgan и другие его сторонники в то время видели в его мечте о бесплатной энергии угрозу своей бизнес-модели. Короче говоря: угроза капитализму, благодаря которому они заработали свои миллионы.

Tesla не смогла заручиться какой-либо финансовой поддержкой после ухода JP Morgan и вскоре после того, как он был объявлен банкротом.

Тесла, гений, чьей мечте мешала природа реальности, жил скромным существованием в нью-йоркской квартире до своей смерти в 1943 году.

Но каким был бы мир, если бы электричество было чистым и платным для всех?

Подобно Tesla, мы можем только мечтать.

Сопутствующие

Платите за грязь: Запуск потребляет электричество из земли

Вот возобновляемый источник энергии, о котором большинство из нас не задумывалось: грязь.

Компания Living Power Systems, созданная на базе Гарвардского университета, создала микробный топливный элемент, способный извлекать струйку электричества от садовых бактерий в земле.

Способность генерировать крошечный поток электронов из органического материала была изучена на протяжении десятилетий и является основным продуктом на ярмарках науки в начальной школе.

Компания Living Power Systems разработала систему, которая, по ее словам, может создавать полезное количество энергии, по крайней мере, для специализированных целей.

Маяк гидролокатора питается от земли, на которой он сидит. Живые Энергетические Системы

Его технология состоит из материала, который побуждает микробы в земле расти по поверхности электрода, и специальной схемы, которая откачивает электричество, создаваемое микробами во время метаболизма.

«Тераватты движутся через нашу биосферу. Солнечная энергия попадает в нашу почву и отложения», — сказал Питер Гиргуис, основатель и главный научный сотрудник Living Power Systems и профессор микробиологии в Гарварде.«Думайте об этом как о подземной солнечной энергии».

Компания, которая сейчас ищет финансирование, построила прототипы нескольких продуктов для приложений с низким энергопотреблением.

Один из них, названный Light Bucket, обеспечит электричеством, достаточным для светодиодного освещения и зарядного устройства сотового телефона, людям в развивающихся странах, которые не подключены к электросети. Компания также занимается разработкой источников питания для беспроводных датчиков и наружного освещения.

По словам Гиргуиса, который вместе с другими компаниями, занимающимися чистыми технологиями, выступил с презентацией на конференции по чистой энергии в Бостоне во вторник, этим устройствам нужно только подключиться к земле, чтобы работать.

Хотя компания изначально нацелена на несколько конкретных рынков, Гиргис сказал, что микробные топливные элементы могут обеспечить от 15 до 20 процентов энергии в домах за счет электричества во дворах или септических системах. По его словам, сегодня эту технологию можно использовать для питания вышки сотовой связи.

Прямо сейчас его устройства могут генерировать около половины ватта в день с квадратного метра земли или 12 ватт-часов в день. По словам Майкла Китинга, соучредителя и исполняющего обязанности генерального директора компании, в своих лабораториях он смог произвести в 10 раз больше.

По словам Китинга, такое производство энергии не будет работать с холодильником или даже с экраном ПК, но имеет смысл в развивающихся странах.

Руководители компании называют микробные топливные элементы «велосипедом электричества», потому что они просты в эксплуатации и могут быть произведены на местном уровне в развивающихся странах.

Естественные микробы против дизайнерских
По словам руководителей компании, беспроводные датчики также широко используются для микробных топливных элементов из-за высоких затрат, связанных с заменой сенсорных батарей.

Эскиз планируемого светильника и зарядного устройства сотового телефона для развивающихся стран. Живые Энергетические Системы

В течение последних двух лет устройство, использующее технологию компании, потребляло электричество из отложений на дне залива Монтерей в Калифорнии. Гидроакустический навигационный маяк для атомных подводных лодок был размещен в рамках военного гранта. Устройство в лаборатории работает шесть лет.

«Лучшая реализация этого — использовать его в условиях, когда вы хотите развернуть устройство и оставить его в покое», — сказал Гиргис.

Ряд организаций исследуют микробные топливные элементы, в том числе университеты, которые разрабатывают микробы специально для выработки электроэнергии. Synthetic Genomics, возглавляемая пионером генетики Дж. Крейгом Вентером, и другие фирмы стремятся получить энергию из человеческих отходов, манипулируя микроорганизмами.

По словам Гиргуиса, компания Living Power Systems, напротив, сосредоточена на попытках использовать энергию естественных бактерий, а не бактерий, специально разработанных для выработки электроэнергии.

В следующем году компания намерена выпустить продукты для комбинированного освещения и зарядного устройства для сотовых телефонов, предназначенные для развивающихся стран. По словам Китинга, в следующем году компания планирует получить садовый светильник и источник питания для беспроводных датчиков.

6 способов получения зеленой энергии в домашних условиях

Самый простой способ для большинства домовладельцев сократить свои счета за коммунальные услуги — это сократить потребление энергии за счет самодисциплины и повышения эффективности.Но для тех, у кого есть время и деньги для инвестиций, установка одной или нескольких систем зеленой энергии может принести более значительную и долгосрочную экономию, а также сделать больше для защиты окружающей среды.

Выбор и покупка системы зеленой энергии для жилых домов может стать большим проектом. Некоторые системы могут быть нерентабельными для вашего дома, а другие могут быть вообще несовместимы. Но как только вы определитесь с вариантами и установщиками в вашем районе, вы можете быть удивлены тем, что находится в пределах вашего ценового диапазона.

Изучите местные правила и стимулы для использования зеленой энергии

Прежде чем вы увлечетесь, следует иметь в виду несколько важных факторов.Во-первых, штаты и муниципалитеты различаются способами регулирования некоторых систем возобновляемой энергии, особенно солнечных батарей и ветряных турбин. Если выясняется, что ваш город серьезно ограничивает одно или оба, полезно выяснить это на раннем этапе. Позвоните в местную мэрию или проконсультируйтесь с местным установщиком ветряных и солнечных батарей, чтобы узнать, что разрешено в вашем районе.

Во-вторых, могут существовать налоговые льготы и другие стимулы, которые сделают для вас более доступным приобретение системы зеленой энергии.С 2018 года федеральный налоговый кредит на возобновляемые источники энергии для жилищного строительства был продлен до конца 2021 года и распространяется на такие системы, как солнечные панели, ветряные турбины, геотермальные тепловые насосы и солнечные водонагреватели. Ваш штат может предлагать дополнительные налоговые льготы, а у ваших местных коммунальных предприятий даже могут быть программы, упрощающие установку возобновляемых источников энергии.

Производство электроэнергии дома

1. Солнечные батареи для жилых домов

Каждый лучик солнца, падающий на вашу крышу, — это бесплатное электричество.Все, что вам нужно, это солнечная панель, чтобы уловить его. И отчасти благодаря вышеупомянутой налоговой льготе многие домовладельцы участвуют в акции.

Панели солнечных батарей

должны устанавливаться профессионалами, и многие установщики без каких-либо обязательств проведут оценку вашего дома, чтобы определить лучшие места для установки и предложить оценку. Некоторые могут даже установить солнечную черепицу, которая придаст более обтекаемый вид.

Энергию, вырабатываемую солнечными панелями, нужно сразу же использовать или хранить.Когда ваш дом потребляет больше энергии, чем производят ваши солнечные панели, солнечная энергия просто компенсирует количество электроэнергии, которое вам нужно покупать из сети. Но когда вы производите больше, чем используете, вы можете продавать эту избыточную энергию обратно в электросеть, что еще больше снизит ваши счета. Другой вариант — купить домашнюю батарею, которая может хранить эту энергию до тех пор, пока она вам не понадобится после наступления темноты.

2. Ветряные турбины

Вам не нужны огромные турбины, которые вы видите на ветряных электростанциях, для выработки зеленой энергии для вашего дома.Такой маленький пропеллер, как крышка мусорного ведра, может значительно сократить ваши домашние счета за электроэнергию, если он установлен в достаточно ветреном месте.

Профессиональная установка здесь также важна, как для обеспечения безопасности турбины, так и для ее размещения там, где до нее дойдет ветер. И, как и в случае с солнечными батареями, вы должны использовать ее или терять, когда вы генерируете энергию с помощью ветряных турбин.

3. Солнечные и ветровые гибридные системы

Если у вас солнечные дни и ветреные ночи, гибридная солнечно-ветровая система может быть идеальным вариантом для вашего региона.Эта комбинация повышает вероятность того, что ваш дом будет вырабатывать электричество круглосуточно, поэтому теоретически вы можете полностью отключиться от сети, добавив домашний аккумулятор.

4. Микрогидроэнергетические системы

Есть проточный ручей на вашем участке? Вы можете направить поток воды через небольшую турбину и позволить току генерировать бесплатное электричество 24 часа в сутки. Система микрогидроэнергетики часто даже лучше, чем гибридная система, потому что поток воды более постоянный и надежный, чем ветер и солнце.

5. Солнечные водонагреватели

Если полная система солнечных панелей выходит за рамки вашего ценового диапазона, но у вас все еще есть солнечная недвижимость на вашей крыше, солнечный водонагреватель — менее дорогой способ получить некоторую бесплатную энергию. В большинстве солнечных водонагревателей сам резервуар хранится на крыше как часть установки, что придает ему более громоздкий вид. Но это позволяет солнцу выполнять работу по поддержанию одного из самых больших источников энергии в вашем доме.

6. Геотермальные тепловые насосы

Температура под землей намного более стабильна, чем температура в наших домах, и зимой геотермальный тепловой насос может украсть часть этого скрытого тепла.Эти системы используют замкнутый контур труб для перекачки жидкости через подземный канал в ваш дом и обратно под землю. Внутри дома теплообменник использует тепло от труб для обогрева жилых помещений при минимальном расходе энергии.

Возобновляемые источники энергии — это разумный способ сократить ваши счета и снизить нагрузку на окружающую среду. И с таким количеством различных способов вернуть его домой, производство собственной энергии может оказаться более возможным, чем вы ожидали.

О Джоше Крэнке

Джош Крэнк — внештатный писатель и маркетолог с опытом работы в юридической журналистике, написании путевых заметок и маркетинге в различных коммерческих отраслях.В Direct Energy он идеально подходит для написания статей об обслуживании и ремонте дома, энергоэффективности и технологиях умного дома. Джош живет со своей женой, маленьким сыном и бесконечно воющей смесью гончих и бассет-хаундов в Новом Орлеане.

Как собирать свободную энергию из атмосферы

Схема коллектора свободной энергии помогает преобразовывать окружающие радиоволны в электрическую энергию и может обеспечивать от 40 Вт до 10 Вт на неопределенный срок.

Принципиальная схема

Возможность увеличения выходной мощности достигается за счет правильной настройки антенны. Размещение антенны в непосредственной близости от большого металлического объекта помогает генерировать дополнительную мощность.

Провод антенны должен быть более 150 футов в длину, который должен быть размещен горизонтально на более высокой платформе для получения наилучшего результата.

Чем выше установлена ​​антенна, тем эффективнее она работает. Однако рекомендуется держать схему ближе к антенне.

Предлагаемая схема коллектора свободной энергии, с другой стороны, также действует как пассивный детектор. Когда большой металлический объект проходит через волну, мощность увеличивается. Одно из основных применений этого процесса — в области вулканических исследований.

Выбор антенны

Чувствительность антенны позволяет обнаруживать колебания энергии от земли и часто используется для приема сигнала предупреждения о возможной сейсмической активности.

Итак, можно резюмировать, что размещение антенны очень важно для лучшего вывода.Также можно использовать многие из этих цепей для создания и соединения их входов вместе, чтобы производить достаточно энергии для подачи электричества в дом. Однако следует отметить, что каждому устройству нужна собственная антенна, чтобы построить такую ​​же.

Мощность радиочастоты зависит от местоположения. Если место установки находится недалеко от города или в непосредственной близости от передатчиков, которые генерируют высокий уровень радиочастоты; приводит к оптимальной производительности.

Если вам нравится генерировать бесплатную энергию в вашем доме из атмосферы, то вы можете провести некоторый эксперимент с другой длиной и размером антенны.

Высота имеет решающее значение

Однако не забывайте размещать антенну на более высоком месте для лучшего результата. Во время строительства также необходимо учитывать, что заземление цепи должно быть надлежащим образом проводящим. Заземление также должно состоять из металлической токопроводящей трубы или стержня.

Больше схем свободной энергии можно найти по следующей ссылке:

Устройства свободной энергии, которые можно построить дома

Представлено: Dhrubajyoti Biswas

Принципиальная схема
Список деталей

Все диоды — 1N4148

C1— -C8 = 0.22 мкФ / 100 В майлар

C9 —- C16 = 33 мкФ / 25 В электролитический

Улучшение устройства свободной энергии

Один из заинтересованных читателей этого блога г-н Прашант послал мне следующую более полную схему получения свободной энергии. Дхонде.

Дополнительная информация о вышеуказанной конструкции:

Использование диодов быстрого восстановления

Для выработки большего количества электроэнергии можно использовать большее количество диодов. Для правильной работы решающую роль играет тип диодов и конструкция антенны.

Для начала давайте приступим к настройке антенны. Чтобы правильно настроить антенну, необходимо учесть несколько ключевых моментов.

Антенна должна быть сделана из феррита, а высота стержня 30 дюймов — идеальный вариант для установки антенны для приема радиоволн.

Что касается диодов, Geranium диоды с наименьшими потерями и низкое напряжение пробоя ~ 0,2 — 0,4 В идеально подходят, если вы не можете найти, вы можете использовать обычный 1N4148, просто подойдет.

Радиоволна перехватывается в районах с повышенной концентрацией и заторами. В такой ситуации видно, что каждый диод может потреблять около 30 мВ.

Объяснение устройства свободной энергии

Прежде чем увидеть , как работает генератор Тесла , было бы полезно иметь представление о том, как любой электрический генератор, даже теоретически, может быть способен производить самоподдерживающийся ток.

Это было ясно объяснено Уолтером М. Эльзассером в статье Scientific American (май 1958 г.), озаглавленной «Земля как динамо.”

Эльзассер смоделировал земное динамо, что удобно для этого объяснения, на основе генератора Фарадея металлического диска, вращающегося над стержневым магнитом, расположенным на краю диска. Он также отмечает, что стержневой магнит можно заменить электромагнитом, который мог бы получать энергию от вращающегося диска, прикрепив один конец провода электромагнита к внешней стороне диска, а другой конец провода — к металлическому стержню, движущемуся. через центр диска.

Эльзассер затем указывает, что обычный дисковый «генератор Тесла » не может поддерживать ток очень долго, потому что ток, индуцируемый в диске, настолько слаб, что он скоро рассеется за счет сопротивления проводника [диска ].Это обычное устройство не было бы ответом на вопрос, «как можно создавать и поддерживать токи для поддержания магнитного поля Земли».

Тем не менее, он предлагает три варианта модели динамо-машины, которые объяснили бы постоянный магнетизм Земли.
Если бы у нас был материал, который проводил бы электричество в тысячу раз лучше, чем медь, система действительно давала бы самоподдерживающийся ток.

Мы также могли бы заставить его работать, очень быстро раскрутив диск генератора Тесла … третий способ сделать такое динамо самоподдерживающимся … — это увеличить размер системы: теория гласит, что чем больше мы делаем такую ​​динамо-машину динамо-машина, тем лучше она будет работать.Если бы мы могли построить такой аппарат из катушек и дисков, масштаб которого составлял бы много миль, у нас не было бы никаких трудностей в том, чтобы сделать токи самоподдерживающимися.

У Николы Теслы не было материала, в тысячу раз более проводящего, чем медь, для использования в его генераторе, он не мог вращать диск со сверхвысокой скоростью, необходимой для создания такого тока, и не планировал использовать кусок вращающегося металла диаметром несколько миль. Генератор Тесла использует то, что обычно теряется в генераторе, и превращает его в источник энергии.

(Посещали 38550 раз, сегодня 7 посещений)

Об электроэнергетической системе США и ее влиянии на окружающую среду

Электроэнергетическая система США

Современная электроэнергетическая система США представляет собой сложную сеть, состоящую из электростанций, линий передачи и распределения, а также конечных потребителей электроэнергии. Сегодня большинство американцев получают электроэнергию от централизованных электростанций, которые используют широкий спектр энергоресурсов для производства электроэнергии, например уголь, природный газ, ядерную энергию или возобновляемые ресурсы, такие как вода, ветер или солнечная энергия.Эту сложную систему генерации, доставки и конечных пользователей часто называют электросетью .

Используйте схему ниже, чтобы узнать больше об электросети. Щелкните каждый компонент, чтобы получить обзор со ссылками на более подробную информацию.

Посмотреть текстовую версию этой схемы ►

Источник: Управление энергетической информации США, Обозреватель данных по электроэнергии. Доступ к этим данным был осуществлен в декабре 2017 года.

Как и где вырабатывается электроэнергия

Электроэнергия в Соединенных Штатах вырабатывается с использованием различных ресурсов.Три наиболее распространенных — это природный газ, уголь и атомная энергия. Одними из наиболее быстрорастущих источников являются возобновляемые ресурсы, такие как ветер и солнце. Большая часть электроэнергии в США вырабатывается на централизованных электростанциях. Гораздо меньшее, но растущее количество электроэнергии производится за счет распределенной генерации — различных технологий, которые генерируют электроэнергию там, где она будет использоваться или поблизости от нее, таких как солнечные панели на месте и комбинированное производство тепла и электроэнергии. Узнайте больше о централизованной и распределенной генерации.

Подача и использование электроэнергии

Когда электричество вырабатывается на централизованной электростанции, оно проходит через серию взаимосвязанных высоковольтных линий электропередачи. Подстанции «понижают» мощность высокого напряжения до более низкого напряжения, отправляя электроэнергию более низкого напряжения потребителям через сеть распределительных линий. Подробнее о доставке электроэнергии.

На бытовых, коммерческих и промышленных потребителей приходится примерно треть потребляемой в стране электроэнергии.На транспортный сектор приходится небольшая часть потребления электроэнергии. Узнайте больше о конечных потребителях электроэнергии.

Источник: Управление энергетической информации США, Обозреватель данных по электроэнергии. Доступ к этим данным был осуществлен в декабре 2017 года.

Как сеть соответствует выработке и спросу

Количество электроэнергии, используемой в домах и на предприятиях, зависит от дня, времени и погоды. По большей части электричество должно вырабатываться в то время, когда оно используется.Электроэнергетические компании и операторы сетей должны работать вместе, чтобы производить необходимое количество электроэнергии для удовлетворения спроса. Когда спрос увеличивается, операторы могут отреагировать увеличением производства на уже работающих электростанциях, вырабатывая электроэнергию на электростанциях, которые уже работают на низком уровне или в режиме ожидания, импортируют электроэнергию из удаленных источников или обращаются к конечным пользователям, которые согласились потребляют меньше электроэнергии из сети.

Воздействие энергосистемы на окружающую среду

Почти все части электроэнергетической системы могут повлиять на окружающую среду, и размер этих воздействий будет зависеть от того, как и где электроэнергия вырабатывается и доставляется.В общем, воздействие на окружающую среду может включать:

  • Выбросы парниковых газов и других загрязнителей воздуха, особенно при сжигании топлива.
  • Использование водных ресурсов для производства пара, охлаждения и других функций.
  • Сбросы загрязняющих веществ в водные объекты, в том числе теплового загрязнения (вода, температура которой превышает исходную температуру водоема).
  • Образование твердых отходов, включая опасные.
  • Использование земель для производства топлива, выработки электроэнергии, а также линий передачи и распределения.
  • Воздействие на растения, животных и экосистемы в результате воздействия на воздух, воду, отходы и землю, указанные выше.

Некоторые из этих воздействий на окружающую среду могут также потенциально повлиять на здоровье человека, особенно если они приводят к тому, что люди подвергаются воздействию загрязнителей в воздухе, воде или почве.

Воздействие на окружающую среду используемой вами электроэнергии будет зависеть от источников генерации («структуры электроэнергии»), имеющихся в вашем районе. Чтобы узнать о выбросах, связанных с потребляемой электроэнергией, посетите Power Profiler EPA.

Вы можете уменьшить воздействие на окружающую среду от использования электроэнергии, покупая экологически чистую энергию и повышая энергоэффективность. Узнайте больше о том, как уменьшить свое влияние.

В более широком смысле, несколько решений могут помочь снизить негативное воздействие на окружающую среду, связанное с производством электроэнергии, в том числе:

  • Энергоэффективность. Конечные пользователи могут удовлетворить некоторые свои потребности, приняв энергоэффективные технологии и методы. В этом отношении энергоэффективность — это ресурс, который снижает потребность в выработке электроэнергии.Узнайте больше об энергоэффективности.
  • Чистая централизованная генерация. Новые и существующие электростанции могут снизить воздействие на окружающую среду за счет повышения эффективности производства, установки средств контроля за загрязнением и использования более чистых источников энергии. Узнайте больше о централизованной генерации.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *