- Генератор водорода своими руками — поэтика мифа и проза реальности / Схемы / Водоснабжение и отопление / Публикации / Санитарно-технические работы
- что это, как работает, схема, фото, безопасность,
- Немного истории
- Что такое водородное топливо?
- Плюсы и минусы водородной установки для автомобиля
- Опасен ли водород для человека?
- Чем водородные авто лучше электромобилей?
- Как работает водородный автомобиль
- Где заправляют водородные автомобили?
- Список автомобилей на водородном топливе
- Есть ли будущее у автомобилей на водородном топливе
- Превращение классического автомобиля в автомобиль с нулевым выбросом углерода
- Исследование подтверждает то, о чем здравый смысл уже много лет ясно говорит: водородные топливные элементы не могут догнать аккумуляторные электромобили. лет: автомобили на водородных топливных элементах вряд ли догонят электромобили на батареях — даже для коммерческих грузовиков.
Генератор водорода своими руками — поэтика мифа и проза реальности / Схемы / Водоснабжение и отопление / Публикации / Санитарно-технические работы
Ракета мчит космический корабль в просторы Вселенной. Неимоверную мощь двигателей верхней её ступени питает сжиженное топливо: водород и кислород. Водород (Hydrogenium) не уступает по теплотворности природному газу, для работы на нём с минимальной переделкой подходят все существующие бензиновые ДВС и газовые котлы отопления. h3 — единственный известный науке абсолютно чистый вид топлива. В процессе горения образуется соединение с кислородом — прозрачная, как слеза, дистиллированная водица. Запасы водорода во Вселенной неисчерпаемы, этот чудесный газ вместе с гелием является основным строительным материалом мироздания.
Содержание
- Краткая история водородной энергетики
- Общее устройство электролитического генератора водорода
- Закон сохранения энергии
- Перспективы водородной энергетики
- Отечественный опыт строительства водородных генераторов в домашних условиях
- Выводы
Даже организм человека на 63% состоит из молекул водорода. Он окружает нас со всех сторон: протяни руки — и они полны гидрогениума. Больше всего h3 содержится в океанах, морях и реках. Одна беда: в свободном состоянии на Земле находится лишь ничтожная его часть, добыча в чистом виде невозможна. Небольшой процент h3 содержит биогаз, сепарацией его не занимаются, предпочитая сжигать вместе с метаном. Однако существует ряд технологий, позволяющих получать чистый водород из различных химических соединений. Наиболее перспективным является метод электролиза, сырьём служит вода.
Принципиальная схема получения водорода методом электролизаВ последнее время интернет заполонила коммерческая реклама недешёвых реакторов (генераторов) водорода, а сайты для домашних умельцев охотно клонируют статьи о том, как сделать водородный генератор для отопления своими руками.
Краткая история водородной энергетики
О выделении горючего газа при взаимодействии кислот и металлов известно было ещё средневековым алхимикам. Но только в 1783 году Лавуазье и Меньё смогли превратить эмпирические знания в прибор по получению «горючего воздуха» из воды. С тех пор не прекращаются научные исследования и попытки построить эффективный водородный генератор для отопления или автомобиля, который сделал бы водородную энергетику рентабельной.
На сегодняшний день нет никаких проблем в переходе энергетики и транспорта на водородное топливо, производители готовы сделать это хоть завтра. В 2008 году авиастроительная компания Airbus подтвердила свою готовность перейти с авиакеросина на h3, проведя испытательный полёт на модели A320. Первый серийный водородомобиль HondaFCX уже колесит по дорогам Японии. Тем не менее, в общей массе мировой энергетики это капля в море. Для массового развития водородной энергетики не хватает главного — дешёвого чистого h3. «Халявный» Hydrogenium получают лишь в качестве побочного продукта некоторых химических производств, именно на таком топливе работает на предприятии «Саянскхимпласт» с 2005 года первая и пока единственная в России «водородная» котельная. Активно работает в России с 2006 года «Институт водородной экономики», издавший уже более 60 томов научных исследований. Не ограничиваются научными трудами более предприимчивые зарубежные компании, в научно-технические разработки по генерации чистого водорода вкладывают миллиарды долларов.
Вариант исполнения электронного блока чудо-генератораВода расходуется, её уровень следует поддерживать постоянно и если делать это не вручную, понадобится система автоматической подпитки. Наконец, чтобы электролиз проходил с достаточной интенсивностью, вода должна содержать достаточное количество растворённых солей, в мягкой воде реакция будет слабой, а в дистиллированной вовсе отсутствовать. Значит, наливать воду из крана нельзя: её придётся готовить (самый простой вариант — столовая ложка гидроксида натрия на 10 л воды), а это дополнительные резервуары, трубопроводы и т.д.
На рисунке показана схема генератора водорода для автомобиля, но разница с устройством для отопления лишь в том, что потребителем газа являются не форсунки двигателя, а горелка котлаНо и это не всё. Теплогенератор (котёл) потребляет топливо неравномерно, к тому же требует определённого его давления и влажности. Чтобы система реактор топлива + генератор тепла работали взаимосвязано и чётко, hydrogenium должен поступать сначала в осушитель, потом компрессор, который будет закачивать его в хранилище, где с помощью дополнительной автоматики должно поддерживаться требуемое давление.
Закон сохранения энергии
Всё в природе взаимосвязано. Если куда-то что-то прибыло, значит, откуда-то убыло. Эта народная мудрость упрощённо, но в целом верно описывает закон сохранения энергии. Водород, сгорая, выделяет тепловую энергию. Но, чтобы получить газ методом электролиза, придётся затратить некоторое количество электроэнергии. Которая, в свою очередь, по большей части получается за счёт генерации тепла при сжигании других видов топлива. И если брать чистую тепловую энергию, необходимую для получения электричества и ту энергию, которую даст при сгорании водород, даже на самых продвинутых установках получаются двукратные потери. Половину денег мы буквально выбрасываем. И это только эксплуатационные затраты, но ведь следует учесть и стоимость весьма недешёвого оборудования.
Проект ветро-водородного дирижабля AeromodellerII. Картинку бельгийские инженеры нарисовали красивую, остаётся подкрепить её конкретными экономически оправданными технологиямиПо данным исследовательской лаборатории INEEL, на промышленных генераторах водорода США себестоимость одного килограмма водорода составила:
- Электролиз от промышленной электросети — 6,5 usd.
- Электролиз от ветрогенераторов — 9 usd.
- Фотоэлектролиз от солярных устройств — 20 usd.
- Производство из биомассы — 5,5 usd.
- Конверсия природного газа и угля — 2,5 usd.
- Высокотемпературный электролиз на атомных электростанциях — 2,3 usd. Это наименее дорогой способ и наиболее далёкий от домашних условий.
Причём, даже самый лучший генератор водорода в домашних условиях будет заметно уступать промышленному в эффективности. С такими ценами нет никаких оснований говорить о сколь-нибудь серьёзной конкуренции водородного топлива по сравнению не только с дешёвым природным газом, но и с дорогим электроотоплением, дизельным топливом и даже тепловыми насосами.
Перспективы водородной энергетики
Есть ли реальные пути серьёзного снижения себестоимости чистого Hydrogenium? Конечно. Это, в первую очередь, получение дешёвого электричества из возобновляемых источников. Во-вторых, применение более совершенных химических катализаторов процесса. Они, кстати, давно известны и применяются в автомобильных топливных водородных ячейках. Но опять всё упирается в слишком большую их стоимость.
Реально полезное применение альтернативной энергетики: серийное газосварочное устройство со встроенным водородным реактором. В данном случае стоимость газа не имеет решающего значения, для сварщика имеет значение то, что вместо неудобных в транспортировке баллона и сварочника он имеет один относительно небольшой и лёгкий ящикНаука идёт вперёд, техника совершенствуется. Когда-нибудь нефть закончится и человечеству придётся перейти на иные источники энергии. Пока же можно с уверенностью сказать — водородная энергетика убыточна (за исключением тех случаев, когда горючий газ является побочным продуктов технологических процессов), а программы развития водородного транспорта возможны только благодаря государственным и корпоративным программам поддержки альтернативной энергетики.
Муниципалитеты крупных немецких городов компенсируют транспортным компаниям все убытки, чтобы эти прекрасные гидрогениумные автобусы перевозили пассажиров, не отравляя окружающую средуОтечественный опыт строительства водородных генераторов в домашних условиях
А что у нас, в среде отечественных «кулибиных»? Интернет-форумы полны споров о возможности постройки генератора водорода своими руками. Адепты гидрогениума тычут в глаза скептикам фотками самогонных аппаратов, переделанных в установки по производству чистого топлива. Скептики: покажите конкретный пример постоянно работающего устройства. В ответ — тишина. Кто-то что-то собрал, подключил к кухонной плите, пожарил на водороде яичницу, съел. Теперь вот стоит в сарае, а к плите опять подключен газ, это проще, дешевле, безопаснее. Правда, умные люди всё же извлекают из «диванной» гидрогениумной энергетики пользу: завлекательные посты обеспечивают владельцев аккаунтов лайками, большим числом просмотров и подписчиков, что приносит неплохие деньги.
Если кто-то из читателей хочет повторить опыт гаражных мастеров, то, пожалуйста, вот достаточно подробное описание конструкции «самопального» водородного реактора. Ничего сложного.
В этом ролике нам красиво показывают, как мелкосерийное отечественное устройство обслуживает два десятка радиаторов, но не называют ни его тепловую мощность, ни себестоимость килокалории тепла.
Выводы
Сегодня сложно сказать, какая из перспективных энергетических технологий «выстрелит» в будущем, когда запасы углеводородов иссякнут. Будет ли это термоядерный синтез, солярные или гравитационные системы, водородная энергетика? Пока что идёт эволюционное развитие перспективных направлений и революционных прорывов в ближайшее время в этой области не предвидится, о чём бы ни писал «жёлтый» интернет. По оценке специалистов, появление электролизных реакторов водорода, которые могли бы составить реальную конкуренцию традиционным видам топлива, ожидается не ранее, чем через лет 20-30. Многие эксперты вообще скептически оценивают перспективы водородной энергетики, оставляя этому виду топлива лишь узкую нишу в ракетостроении. Но все, кто занимается этим делом профессионально, сходятся на том, что действительно эффективные водородные реакторы будут продуктом высоких технологий, а не «приспособами», собранными из старых кастрюль и других ненужных железок на коленке.
что это, как работает, схема, фото, безопасность,
Водородный автомобиль считается самым экологичным транспортом наряду с электрокарами. Заправка авто на водородном топливе занимает считанные минуты, а «горючего» хватит на 400 км и более. А баллон водорода после использования оставляет после себя полведра чистой воды.
Почему же автомобильные концерны неохотно переходят на этот альтернативный источник энергии? Вопрос в стоимости и производстве этого газа.
В автомобилях с водородным двигателем применяются специальные топливные ячейки. Называются такие авто FCEV, что расшифровывается как Fuel Cell Electric Vehicles — электрокары с топливным элементом вместе батареи. Самая известная модель – это Toyota Mirai. А вообще многие модели есть только в виде концепта, серийно пока выпускается немного экземпляров.
В статье расскажу что это такое — водородный автомобиль, принцип работы и устройство, что такое водородный двигатель, плюсы и минусы авто на водороде, список моделей, ждёт ли будущее эта технология. Обещаю, будет интересно!
Немного истории
Впервые двигатель внутреннего сгорания придумал Франсуа Исаак де Риваз в 1806 г. Этот изобретатель извлёк чистый водород при помощи такой технологии, как электролиз воды. Он изобрёл поршневой двигатель, который назвали в его честь — машина де Риваза. Через пару лет изобретатель сконструировал передвижное устройство с настоящим водородным двигателем. Таким образом, первый водородный автомобиль появился гораздо раньше, чем думают многие.
Риваз и его машина
А самые первые водородные топливные элементы создал в 1863 году английский учёный Вильям Гроув. При помощи опыта он выявил, что при разложении воды на кислород и водород высвобождается энергия. В дальнейшем он создал водородные ячейки, которые стали называть Fuel Cell. Их можно было объединить для получения необходимого количества энергии для автомобиля.
Во время блокады Ленинграда был высокий дефицит бензина, а вот водорода было немало. Техник Б. Шелищ предложил вместо стандартного топлива применять смесь воздуха и водорода для двигателей. Таким образом, в городе работало на водороде более 500 автомобилей ГАЗ-АА.
Первый водородный автомобиль на топливных ячейках создала компания General Motors в 1966, и назывался он GM Electrovan. Гораздо позже, в 1980-х годах, одновременно во многих развитых странах (Япония, США, Канада, Германия и СССР) запустили эксперимент по созданию автомобилей, которые использовали в качестве топлива водород, а также его смеси с бензином и природным газом.
Фото GM Electrovan
После этих экспериментов в 2000-х годах крупные автоконцерны стали разрабатывать коммерческие автомобили на водородном двигателе. Самым продвинутым и популярным автомобилем стал Toyota Mirai, в котором находится многоячеистый топливный генератор.
На данный момент создание автомобиля на водородном топливе – это дорогое удовольствие, поэтому многие производители ищут способы для снижения этих расходов.
А что значит водородное топливо на самом деле?
Что такое водородное топливо?
Водородное топливо поставляется на заправки в газообразном или жидком состоянии. Водород в этом виде уменьшается в объёме более чем в 800 раз. Примерное время одной заправки составляет не более 3-5 минут. Для сравнения – заправка бензином занимает примерно то же самое время.
На чём ездит водородный автомобиль? На водороде – экологически чистом источнике энергии.
Водород для топлива добывают следующими способами:
- Электролиз воды. Это выделение водорода из воды с помощью электричества. Такой метод применяется в тех регионах, где стоимость электроэнергии дешёвая, в том числе и в России. Чистота выхода водорода при помощи электролиза – около 100%! Но здесь присутствует повышенное загрязнение окружающей среды. Предсказывают, что когда-нибудь будут созданы множество солнечных и ветряных электростанций, которые будут производить топливо без отрицательного воздействия на окружающую среду.
- Паровая конверсия метана. Этот природный газ нагревают до температуры 1000 градусов по Цельсию и смешивают с катализатором. Этот метод будет работать до тех пор, пока метан не закончатся в недрах земли. Реформированный водород – самый популярный и дешёвый метод создания.
- Газификация биомассы. Это извлечение водорода в реакторе из отходов животных и сельского хозяйства, а также сточных вод. Сейчас существуют огромные территории с биомассой, потенциал которой не оценён и тратится впустую.
В чём преимущество этого альтернативного источника энергии?
- Топливные элементы не выделяют вредных выбросов.
- Огромный потенциал и возможные прибыли.
- Моментальная заправка автомобилей (3 минуты).
- Топливные ячейки на 80% эффективнее бензина, а также дёшево стоят.
Автомобиль на водороде не оставляет так называемого «углеродного следа», который загрязняет окружающую среду. Например, Toyota Mirai за 100 км пробега выделяет 5 л воды и больше ничего, никаких выбросов в атмосферу. Но, к сожалению, на Земле слишком не существует месторождений чистого водорода, а вот нефти и газа – хоть отбавляй. Зато водорода полным-полно в атмосфере, но в виде соединений, которые надо разрушить, чтобы извлечь желанный элемент. А для этого надо затратить немалую энергию, по сравнению с той, которую мы получим при прямом расходовании водорода.
Плюсы и минусы водородной установки для автомобиля
Расскажу про плюсы и минусы топлива, которым заправляют водородный автомобиль.
Недостатки водородного топлива:
- Нет эффективного способа добычи газа, к тому же производство загрязняет окружающую среду.
- Для создания сети водородных заправок требуются внушительные средства (около 2 млн. долл. на одну среднюю заправку). Поэтому очень сложно найти заправки, их практически нет.
- Высокая стоимость автомобиля.
- Передвигаться можно лишь в тех местах, где имеются заправки.
- Стоимость заправки будет стоить столько же, как и бензин. В этом смысле электрокар гораздо выгоднее.
- Водородный автомобиль тяжёлый из-за сложной конструкции: много топливных ячеек, аккумулятор, электропреобразователь, большие баллоны для водорода, где давление целых 700 атм. В электромобиле всё проще – требуется только место под большой АКБ.
Плюсы водородного топлива:
- Нет вредных выбросов в атмосферу.
- Водородные двигатели практически не шумят.
- Быстрая заправка – менее 5 минут.
- Есть большой потенциал для развития.
- Водород даёт в 3 раза больше энергии, чем бензин.
- Высокий крутящий момент при начале движения.
- Водорода очень много на планете – 1% от массы Земли. При сгорании он просто превращается в воду, поэтому – это неиссякаемый источник энергии по сравнению с другим ископаемым топливом.
- Водород безопаснее бензина, он воспламеняется в 15 раз меньше. Но если на водород попадёт искра, то он моментально воспламенится.
- Хороший запас хода водородного авто – 400-1000 км.
Опасен ли водород для человека?
Водород очень летуч, а также это легковоспламеняющийся газ, который хранить и перевозить следует предельно аккуратно. Сгорает он тоже довольно быстро. Например, газ в дирижабле «Гинденбург» полностью сгорел за полминуты, поэтому погибло только треть пассажиров.
Когда на дорогах появится большое количество водородных автомобилей, то надо будет ввести новые меры безопасности. Ведь при пробитии бака с водородом и наличием искр рядом газ может загореться. Поэтому в водородных автомобилях баки делают очень прочные, которые даже могут выдержать выстрел из крупнокалиберного пистолета. Поэтому при соблюдении правил безопасности, авто на водороде не опаснее бензиновых и дизельных моделей.
Чем водородные авто лучше электромобилей?
Этот вопрос не совсем правильный, поскольку автомобили на водородных ячейках и электробатарее считаются электромобилями. Всё зависит от того, чем заправляют машину – водородом или электричеством.
Водород в автомобиле применяют в двух вариантах: сжигание топлива в цилиндрах или подзарядка топливных элементов.
Главное отличие водородных топливных ячеек от батарей в том, что они служат очень много лет и не нуждаются в обслуживании. А батарея в электромобиле выходит из строя уже через 5 лет.
Как выглядит батарея в электрокаре
На холоде водородное транспортное средство включится без проблем, а аккумулятор электрического авто может полностью потерять заряд. Стоимость электрокаров дешевле, чем водородного: Toyota Mirai стоит 57 тыс. долл., а Tesla – от 45 тыс. долл. Водородные машины заправляются за считанные минуты, а электрокары – пару часов.
Теперь перейдём к устройству и принципу работы водородного авто, как он обеспечивает работу двигателя?
Как работает водородный автомобиль
Расскажу про то, как устроен автомобиль на примере популярной модели Toyota Mirai.
Не так давно, в 2013 году Тойота представила миру первый в мире серийный водородный автомобиль Mirai, который сам вырабатывает для себя электричество. В нём находится электрический двигатель, который имеет мощность 154 л. с. В Mirai находятся 370 топливных элементов, постоянный ток которых преобразуется в переменный, а напряжение при этом повышается до 650 В. Максимальная скорость Toyota Mirai 175 км/ч. Дополнительный аккумулятор собирает лишнюю энергию, который может при необходимости обеспечить питание небольшого дома. Запас хода этого автомобиля 500 км, а по факту – примерно 350 км. Для сравнения — электрокар Tesla Model S может пройти на одном заряде целых 540 км, но, к сожалению, зарядка занимает целых 1,5 часа.
За несколько км пробега автомобиль Mirai вырабатывает стакан дистиллированной воды, которая вполне пригодна к употреблению (она с лёгким привкусом пластика).
А как работает топливный элемент, простыми словами? Автомобиль заправляется водородом. Он смешивается с платиновым катализатором и кислородом в электрохимической системе. В результате этой реакции вырабатывается электрический ток, который питает двигатель и аккумуляторную батарею. В результате реакции образуется вода или пар.
Топливные ячейки с протонообменными мембранами сразу же производят энергию, обеспечивают очень высокую мощность и мало нагреваются. Максимальный срок службы водородных ячеек 250 тыс. км пробега, которые при необходимости можно заменить.
А какое устройство и принцип работы водородного двигателя? Для работы применяют роторные ДВС, потому что стандартные поршневые двигатели быстро выходят из строя из-за влияния водорода на смазку и детали ДВС. Из-за высокой разницы между бензином и водородом перевести обычный двигатель непросто, особенно если это делать своими руками. Водород при горении вызывает перегрев клапанов, масла, поршней. Если нагрузку сделать очень высокую, то возникает детонация.
Решили эту задачу заменой чистого водорода на его смесь с бензином. Подача газа уменьшается при повышении крутящего момента, чтобы предотвратить перегрев деталей силового агрегата. Это применяется в таких моделях, как Mazda RX-8 Hydrogen RE и BMW Hydrogen 7, который был выпущен всего в 100 экземплярах. Здесь переключение между 2 типами топлива происходит автоматически. Но, несмотря на успешность эксперимента, всё равно имелись проблемы: сильно падала мощность авто, запаса водорода хватало всего на 200 км, а также из-за наличия бензина автомобиль не был признан экологически чистым.
Mazda RX-8 Hydrogen RE
Зачем в водородных автомобилях платина? Этот дорогой металл использовался в качестве катализатора, цена которого очень высока, что не может не отражаться на стоимости автомобиля. Хотя американские учёные уже создали катализатор на основе углеродных трубок, который стоит в 650 дешевле платины.
Таким образом, механизм работы водородного автомобиля похож на работу электромобилей. Всё дело только в источнике энергии.
Где заправляют водородные автомобили?
К сожалению, заправочных водородных станций в мире совсем мало. В 2018 г. их около 300, половина которых находится в Северной Америке, а другие – в Японии, Германии и Китае.
Кроме этого, существуют домашние и мобильные заправки. Они могут производить около тонны чистого водорода в год. Этого вполне хватит для заправки нескольких автомобилей в день. Топливо производится при помощи гидролиза воды, установку запускают только ночью, чтобы не нагружать электрическую сеть.
Автозаправки бывают 3 типов:
- Малые. Они производят около 20 кг водорода в 24 часа. Хватит для полной заправки 5 легковых автомобилей.
- Средние. Вырабатывают от 50 до 1250 кг топлива в сутки. Могут в день заправлять 250 стандартных машин или 25 грузовиков.
- Промышленные. Производят более 2500 кг чистого водорода. Могут заправлять больше 500 легковушек в сутки.
Заправка состоит из компрессора, диспенсера, системы очистки, электрического лизёра, система хранения водорода. Топливо может производиться как при помощи электролиза воды, так и с помощью паровой конверсии метана.
Для того, чтобы заменить большую сеть бензиновых заправок на водородные, понадобится примерно 1,5 трлн. долларов. А стоимость одной водородной станции обойдётся в 2-3 млн. долл., но окупаемость её быстрее, чем для электрической станции из-за быстрой зарядки.
Список автомобилей на водородном топливе
Существует ли автомобиль на водородном топливе? Да, причём их количество не такое уж и малое. Расскажу про самые популярные модели.
Honda Clarity
Автомобиль продавали в Японии и Калифорнии до 2014 года. Запас хода около 600 км, что больше, чем у любого электрокара. Заправляется Honda Clarity за считанные минуты.
Затем автоконцерн Honda выпустил конкурента Toyota Mirai, цена которого 72 тыс. долл. под названием Clarity Fuel Cell. На полной заправке можно было проехать до 700 км. Мотор имеет мощность 174 л.с. Автомобиль 5-местный.
Toyota Mirai
Это японский автомобиль, который создали после несколько десятков лет разработок. Автомобиль сначала выпустили для японского рынка, а затем и для американского.
Запас хода автомобиля на одной заправке 502 км, максимальная скорость – 178 км/ч., мощность – 153 л.с. В авто встроена система, которая видит препятствия и автоматически включает тормоз. В машине есть сенсорные экраны, при помощи которых осуществляется управление навигацией и микроклиматом.
Ford Airstream
Это гибридный автомобиль с электрическим мотором и водородными ячейками. Поэтому кроме водорода автомобиль может применять для движения аккумуляторы, которые подзаряжаются от водородных элементов.
На аккумуляторе Ford Airstream может проехать около 40 км (это половина заряда), а затем активируется водородное топливо. Запас хода чуть более 450 км, а максимальная скорость — 135 км/ч.
Mercedes-Benz GLC F-CELL
Это первый серийный автомобиль, который сочетает в себе аккумулятор и водородные топливные ячейки. На электричестве он может проехать 50 км, а на водороде – около 430 км. Отмечу, что аккумулятор можно зарядить от обычной электрической розетки.
Автомобиль можно использовать как в качестве электрокара на небольшие расстояния, так и в качестве водородного авто для длительных поездок.
Pininfarina h3 Speed
Это итальянский автомобиль, который способен разгоняться до 100 км/ч всего за 3,4 секунд. Максимально автомобиль может разгоняться до 299 км/ч. Запасы чистого водорода в баке – чуть более 6 кг. Кроме этого Pininfarina имеет мощный аккумулятор и электромоторы. Цена этого продвинутого автомобиля составляет 2,5 млн. долл.
BMW Hydrogen 7
Авто создано на базе стандартной BMW 7. Он работает как на бензине, так и на жидком водороде. В BMW Hydrogen 7 имеется бензиновый бак на 74 литра и большой водородный баллон весом целых 8 кг. Таким образом, максимальный запас хода в этой машине 780 км.
Автомобиль автоматически переключается между двумя типами топлива. Мощность двигателя на водороде – 228 л.с., а на бензине – больше на 32 л.с. Максимальная скорость 229 км/ч, разгон до 100 км/ч осуществляется чуть меньше, чем за 10 секунд.
Hyundai Nexo
Этот автомобильный концерн также стал одним из первых производить серийные водородные автомобили. Мощность двигателя Hyundai Nexo составляет 161 л.с., запас хода – 600 км. Разгоняется авто до 100 км/ч за 10 секунд. Цена автомобиля от 70 тыс. долл.
Grove Obsidian
Это водородный китайский автомобиль нового поколения, у которого запас хода составляет впечатляющие 1000 км. Он экономно расходует топливо за счёт облегчённого корпуса из углеродного материала и невысокому аэродинамическому сопротивлению. Заправка бака происходит всего за 3 минуты, а сам топливный бак очень прочен. А если бак будет повреждён, то водород из него вытечет в жидком виде и сгорит менее чем за 2 минуты.
Серийно автомобили станут выпускать с 2020 года, а к 2030 планируется создать 1 миллион экземпляров.
Другие авто
Ограниченно выпускают:
- Audi A7 h-tron quattro;
- Hyundai Tucson FCEV;
- Mazda RX-8 Hydrogen RE;
- Автобус Ford E-450;
- Низкопольные автобусы MAN Lion City Bus.
Испытывают:
- Focus FCV;
- Honda FCX;
- Nissan X-TRAIL FCV;
- Toyota Highlander FCHV;
- Volkswagen — space up!;
- Mercedes-Benz A-Class и Mercedes-Benz Citaro;
- Irisbus;
- Toyota FCHV-BUS;
- единичные модели в Чехии, Китае и Бразилии.
Есть ли будущее у автомобилей на водородном топливе
В настоящее время имеется множество препятствий для того, чтобы перевести большую часть автомобилей на водородное топливо:
Высокая цена водорода. Примерная цена 9 долларов на 100 км пробега. Гибридный автомобиль (Toyota Prius) проедет те же сто км за 2,8 долларов, а Tesla Model S – за 3 бакса. А снижение цены на водород до уровня цен на бензин не прогнозируют даже сами производители автомобилей. Поэтому здесь не получится никакой экономии как при покупке транспорта, так и при заправках.
Производство водорода — вредно для экологии. Сейчас водород производится при помощи паровой конверсии метана, либо частичного окисления. После производства чистого водорода в атмосферу оксид углерода (углекислый газ, CO2), против которого борются многие страны при помощи альтернативных источников энергии для автомобилей. Поэтому здесь получается замкнутый круг.
Отсутствие развития водородных заправок. Для открытия средней водородной заправочной станции требуется не очень большие средства. Все станции можно пересчитать по пальцам, поэтому на водородном автомобиле далеко не уедешь. Придётся осуществлять поездки только в тех местах, где имеются эти самые водородные станции.
Высокая цена на водородные автомобили. Цена на Toyota Mirai на данный момент составляет от 58 тыс. долларов, а на самом деле его продают почти по себестоимости. Из-за таких цен многие не спешат с покупкой таких автомобилей.
Отсутствие преимуществ перед электрокарами. Запас хода, цена заправки, безопасность, мощность и разгон – везде выигрывают электрические автомобили по сравнению с водородными машинами. Единственный плюс у водородных авто – это очень быстрая заправка – 3-5 минут, тогда как электромобили заправляются за 30 минут и более. В любом случае можно в электрокарах можно быстро поменять батарею и через пару минут ехать на «полном баке». Да и когда изобретут более быстрый метод заправок электрических автомобилей, то водородные авто отойдут на 2 план.
Для чего тогда автоконцерны производят и разрабатывают автомобили? Во-первых, это вложение, вдруг через несколько лет именно эта технология окажется наиболее перспективной. Во-вторых, между фирмами идёт соперничество. В-третьих, в некоторых штатах законодательство так поменялось, что сделать водородное авто в 5 раз выгоднее, чем электрокар, плюс государство даёт постоянные гранты и вливания на развитие заправок. Если появится большое количество заводов по производству водорода, то цена автомобилей и водорода будет более интересная.
Видео: Автогиганты бьют по ТЕСЛА: ВОДОРОДНЫЕ автомобили будущего!
Водородный автомобиль – это авто будущего, к переходу на которые могут перейти в недалёком будущем. Сейчас самый популярный авто на водороде – это Toyota Mirai, стоимость которого сравнима с ценой электрокаров. Обеспечивается работа автомобилей при помощи специальных топливных ячеек или элементов, число которых достигает несколько сотен.
Если бы цена на газ была меньше, а заправок было бы больше, то авто с водородными двигателями получили бы не меньшую популярность, чем электромобили. Посмотрим, что покажет будущее.
Да
72.73%
Не знаю
27.27%
Уже попробовал
0%
Проголосовало: 11
Превращение классического автомобиля в автомобиль с нулевым выбросом углерода
Этот студент колледжа борется с изменением климата, делая автомобили более доступными по цене
в?
Этот вопрос — в буквальном смысле — движет Блейком Тернером, студентом колледжа в первом поколении из сельского штата Орегон, который изобрел революционный комплект для переоборудования автомобилей на водород.
За рулем своей бирюзы 1963 Chevrolet Corvair, Тернер на первый взгляд может не показаться послом топливной эффективности. Но откройте капот и приготовьтесь удивиться: двигатель старой школы Тернера оснащен комплектом, который может превратить любой двигатель, работающий на бензине, в двигатель, работающий на безуглеродном водороде.
Это рабочий прототип, который Тернер надеется масштабировать за один день. Его цель? Предоставить альтернативу людям, которые хотят ездить на экологически чистых автомобилях, но не могут позволить себе варианты, представленные в настоящее время на рынке. «Возьмите уже имеющуюся у вас машину и переоборудуйте ее, — говорит он, — это гораздо более экологично, потому что вы не выбрасываете старую машину и покупаете новую».
Изобретение не входило в первоначальный план Тернера. Выросший в небольшом городке Медфорд, штат Орегон, в средней школе он решил пойти очень практичным путем: после школы поступить в общественный колледж, затем поступить в университет, а затем найти работу инженера-автомобилестроителя. . Выбор карьеры имел смысл для Тернера. Во-первых, он унаследовал страсть к автомобилям, особенно к классике, от своего отца.
Во-вторых, он вырос в семье, где все «сделай сам». «Потому что у нас не было много денег, — говорит он, — если вы хотите что-то починить, вы не можете просто отнести это к механику, вы должны починить это сами». И так рано у него развился талант восстанавливать вещи.
Но химический проект, посвященный Дню Земли, полностью изменил его курс.
Это было весной 2018 года, и Тернер посещал занятия в Общественном колледже Роуг недалеко от своего родного города Медфорд. На День Земли его учитель химии дал ученикам задание на тему окружающей среды: разработать идею, которая могла бы помочь смягчить последствия изменения климата.
Недавняя единица класса работала на сгорании, говорит Тернер, и сгорание всегда напоминало ему об одном — автомобильном двигателе. Что, если, задавался он вопросом, бензиновый двигатель автомобиля можно было бы переоборудовать, чтобы вместо этого он работал на чисто горящем водороде? «Я подсчитал, — говорит он, — и обнаружил, что это не только возможно, но и реально практично». Так родилась идея его химического проекта.
Собрав проект и представив его, Тернер перешел к другим делам. «Я сделал свою маленькую будку и немного рассказал об этом, вот и все», — говорит он.
Затем наставник предложил ему продвинуть свою идею еще на шаг — построить прототип и представить его на InventOregon, региональном конкурсе изобретений среди коллег, спонсируемом Портлендским государственным университетом (PSU). «Я сидел и думал, что, может быть, я смогу сделать это по-настоящему», — говорит Тернер. Так вот, используя двигатель от своего же классического Corvair, он так и сделал.
После проб и ошибок с меньшим двигателем для картинга Тернер успешно переоборудовал двигатель автомобиля для работы на водороде. Вместе с несколькими другими инженерами и своим братом Мелом он разработал комплект, который можно было прикрутить к двигателю и активировать с помощью переключателя внутри автомобиля для перехода с бензина на водород. — Вам даже не нужно выходить из машины.
Они выставили его на конкурс, но появление прототипа в здании вызвало у некоторых удивление, вспоминает он. «Гинденбург всегда приходит на ум всякий раз, когда вы говорите о водороде».
Просто загнать машину внутрь было подвигом, потому что трансмиссия сломалась, и команде пришлось толкать ее по пандусу. И потом, после всех этих усилий, они не выиграли ни одного приза.
Тем не менее Тернер не растерялся. Следующие несколько месяцев он провел, дорабатывая свой дизайн и изучая, как продать свою идею и превратить ее в бизнес. Он переехал в Портленд и поступил в PSU, где программа Business Accelerator помогла ему еще больше развить концепцию. Он нанял Мела в качестве медиа-менеджера и студента бизнес-школы Шона Кривоногоффа в качестве бизнес-менеджера. По словам Тернера, он всегда считал себя изобретателем. Теперь он начал думать о себе и как о предпринимателе. Вместе со своим братом, сестрой и Кривоногофом он основал собственную стартап-компанию под названием Turner Automotive.
Команда приняла участие в другом конкурсе изобретений в PSU под названием CleanTech. На этот раз они выиграли главный приз, а также большинство второстепенных призов. Затем команда снова приняла участие в InventOregon 2019 и заняла второе место и приз зрительских симпатий.
Они продолжают участвовать в конкурсах технологий, изобретений и устойчивого развития и продолжают демонстрировать свои комплекты перед широкой аудиторией. Они также собрали дополнительные средства, чтобы превратить свой прототип в реальность.
В конце концов, Тернер хочет оказать влияние на общество и окружающую среду. «Я чувствую, что изменение климата — это, безусловно, самая большая проблема, которую нам как обществу предстоит решить», — объясняет он. И в своем стремлении сделать экологическую ответственность доступной для всех, он черпает вдохновение в еще более классическом автомобиле – модели T. Хотя это был не первый изобретенный автомобиль, он был первым автомобилем, который был широко доступен большому количеству людей. сегмент населения.
Вот какое влияние я хочу иметь», — говорит Тернер. «Делать что-то, что, даже если люди не знают моего имени, они могут использовать и извлекать из этого пользу».
youtube.com/embed/0eCuosZiCuY?feature=oembed&iv_load_policy=3&modestbranding=1&rel=0&autohide=1&playsinline=0&autoplay=0″ frameborder=»0″ sandbox=»allow-scripts allow-same-origin allow-presentation allow-popups allow-popups-to-escape-sandbox» scrolling=»no» src=»https://www.youtube.com/embed/0eCuosZiCuY?feature=oembed&iv_load_policy=3&modestbranding=1&rel=0&autohide=1&playsinline=0&autoplay=0″>Исследование подтверждает то, о чем здравый смысл уже много лет ясно говорит: водородные топливные элементы не могут догнать аккумуляторные электромобили. лет: автомобили на водородных топливных элементах вряд ли догонят электромобили на батареях — даже для коммерческих грузовиков.
Автомобильная промышленность разделилась во мнениях относительно решений по удалению выбросов из своей продукции.
Большинство сделали ставку на аккумуляторные электромобили (BEV), но некоторые автопроизводители настаивают на том, чтобы заставить работать водородные силовые агрегаты на топливных элементах.
Toyota, Hyundai и GM больше всего сопротивлялись отказу от технологии, которая также может обеспечить транспорт с нулевым уровнем выбросов, но гораздо менее эффективна, чем электромобили.
Для легковых автомобилей игра на топливных элементах (FCEV) уже окончена.
Некоторые из крупнейших программ FCEV в мире, такие как Toyota Mirai и Hyundai Nexo, не получили никакой реакции спустя годы и миллиарды, вложенные в них.
Помимо того, что полный энергетический цикл FCEV намного менее эффективен (в три раза менее эффективен, как показано на диаграмме ниже), инфраструктура кажется главной проблемой.
И у BEV, и у FCEV есть проблемы с инфраструктурой, но у BEV есть большое преимущество, заключающееся в том, что они должны опираться на уже разветвленную инфраструктуру электросетей, при этом практически каждая электрическая розетка в мире может быть потенциальной зарядной станцией.
Единственная проблема состоит в том, чтобы построить более традиционные станции быстрой зарядки, что не является легкой задачей, но все же намного проще, чем создание целой индустрии по производству, транспортировке, хранению и распределению водорода.
Кроме того, большинство электромобилей заряжаются дома ночью, чего нельзя сказать о транспортных средствах на водородных топливных элементах.
Там, где у FCEV все еще был шанс, были коммерческие грузовики, но теперь новое исследование даже бросает тень на это.
Новое исследование Патрика Плетца из Института системных и инновационных исследований Фраунгофера ISI, Карлсруэ, Германия, опубликовало новое исследование в журнале Nature .
В исследовании, озаглавленном «Водородные технологии вряд ли сыграют важную роль в устойчивом дорожном транспорте», на основе данных показано, что транспортные средства на водородных топливных элементах вряд ли когда-либо догонят электромобили на батареях:
Техническое и экономическое развитие аккумуляторных батарей и технологий быстрой зарядки может вскоре сделать электромобили на топливных элементах, работающие на водороде, излишними для автомобильного транспорта.
Исследование указывает на то, что даже коммерческие грузовики вряд ли дадут силовым агрегатам на топливных элементах шанс в долгосрочной перспективе: в год) и перевозки очень тяжелых грузов (что предполагает высокий расход энергии на километр).
Некоторые производители грузовиков, такие как Nikola Motors, заявляют, что серийные полуприцепы FCEV будут доступны раньше, чем в 2027 году (2023-24), но даже они медленно продвигаются к аккумуляторным электромобилям.
Компания начала свою деятельность как компания по производству грузовиков, работающих на природном газе, затем она перешла на водородные автомобили на топливных элементах, затем на смесь водородных топливных элементов и аккумуляторных батарей, и сегодня первый грузовик компании на рынке — аккумуляторный электрический грузовик — лет впереди своих программ FCEV.
В исследовании отмечается, что с новым стандартом зарядки в мегаваттах для аккумуляторных электрических грузовиков и достижениями в технологии аккумуляторов следующее поколение электрических грузовиков, вероятно, оставит позади водородные автомобили на топливных элементах.
Как вы думаете, есть ли у водородных топливных элементов шансы на успех? Дайте нам знать в разделе комментариев ниже.
FTC: Мы используем автоматические партнерские ссылки, приносящие доход. Еще.
Будьте в курсе последних событий, подписавшись на Electrek в Новостях Google. Вы читаете Electrek — экспертов, которые день за днем сообщают новости о Tesla, электромобилях и экологически чистой энергии. Обязательно заходите на нашу домашнюю страницу, чтобы быть в курсе всех последних новостей, и подписывайтесь на Electrek в Twitter, Facebook и LinkedIn, чтобы оставаться в курсе событий. Не знаете, с чего начать? Посетите наш канал YouTube, чтобы быть в курсе последних обзоров.