Вспененный полиэтилен теплопроводность: Технические характеристики вспененного полиэтилена (ППЭ) 2023

Исследование тепловой изоляции на основе вспененного полиэтилена в форме трубок. Часть 3. Теплопроводность | C.O.K. archive | 2019

Введение

Коэффициент теплопроводности (далее «теплопроводность») — это один из важнейших показателей эффективности теплоизоляционных материалов (ТИМ), определяемый физической величиной, равной количеству тепла, которое переносится через единичную поверхность за одну секунду при единичном градиенте температур. Теплопроводность ТИМ зависит в первую очередь от плотности материала, от размера ячейки материала, пористости, а для материалов с низкой плотностью теплопроводность зависит ещё и от коэффициента излучения (степени черноты или «прозрачности»).

Теплопроводность как процесс в чистом виде не характерен для ТИМ, для подобных материалов передача тепловой энергии является результатом комплекса сложных процессов теплообмена, включая конвекцию, теплопроводность и лучистый теплообмен. В научной терминологии используется термин «эквивалентный коэффициент теплопроводности», в технической терминологии — термин «коэффициент теплопроводности

», а в общем, популяризированном лексиконе — «теплопроводность».

Функция тепловой изоляции в конструкции заключается в формировании основного термического сопротивления тепловому потоку. Теплопроводность обратно пропорциональна тепловому сопротивлению материала, следовательно, можно считать, что теплопроводность является основной характеристикой теплоизоляционного материала. При выполнении теплотехнических расчётов инженеры отталкиваются от декларируемых производителями, ГОСТ и иной нормативно-технической документацией (НТД) значений теплопроводности ТИМ. Недостоверные величины данного параметра приводят к невыполнению основной функции изделия, а именно к снижению теплового взаимодействия и к неработоспособности или неэффективности конструкции.

Насколько параметры закупаемых изделий, декларируемые производителями, соответствуют стандартам, и какие проблемы могут возникнуть с определением достоверного значения теплопроводности согласно ГОСТ Р 56729–2015 (EN 14313:2009) «Изделия из пенополиэтилена теплоизоляционные заводского изготовления, применяемые для инженерного оборудования зданий и промышленных установок.

Общие технические условия», — подобные вопросы и будут рассмотрены в данной статье.

Основная часть

Объём выборки испытываемых изделий приведён в табл. 1.

Выдержки из ГОСТ Р 56729–2015:

«…Теплопроводность плоских образцов определяют по ГОСТ 7076 [3], теплопроводность плоских образцов изделий большой толщины — по ГОСТ 31924 [4], теплопроводность образцов цилиндрической формы — по ГОСТ 32025 [5]. Теплопроводность определяют с учётом требований, приведённых в 5.3.2.

5.3.2. Теплопроводность

Теплопроводность плоских изделий определяют по ГОСТ 7076, плоских изделий большой толщины — по ГОСТ 31924, изделий цилиндрической формы — по ГОСТ 32025. Испытания по ГОСТ 32025 допускается заменять испытаниями по ГОСТ 31924 или ГОСТ 7076 при условии, если эти испытания дают большую надёжность значений (значения выше).

Теплопроводность определяют для всего диапазона температур эксплуатации изделия…»

Согласно ГОСТ Р 56729–2015 теплопроводность трубчатой ТИМ должна испытываться в соответствии с ГОСТ 32025. ЛТИ выявила следующие ключевые моменты в данном стандарте, принимая во внимание сложившуюся ситуацию в России в области производства испытательного оборудования по измерению теплопроводности:

1. По данным ЛТИ, в России на данный момент нет ни одной установки, на которой возможно было бы проводить измерения согласно ГОСТ 32025 даже при одной фиксированной температуре, не говоря уже о выполнении требований стандарта в отношении определения теплопроводности в диапазоне температур от −40 до +150°C. Отечественное оборудование, основанное на ГОСТ 7076, в подавляющем большинстве позволяет проводить измерения теплопроводности только в температурном интервале от +20 до +50°C, при нормируемом ГОСТ 7076 диапазоне от −40 до +200°C.

2. В ГОСТ Р 56729–2015 допускается измерять теплопроводность трубчатых ТИМ по ГОСТ 7076 при условии, если эти испытания дают бóльшую надёжность значений (значения выше).

Рассмотрим ситуацию с «надёжностью получаемых значений» по ГОСТ 7076 в разрезе российской действительности.

ГОСТ 7076 был введён в 2000 году и до сих пор не актуализирован, что уже по определению указывает, что отрасль приборостроения в сегменте измерения теплопроводности находится в глубоком кризисе. Подробнее тему состояния отечественного производства установок по измерению теплопроводности в рамках данной статьи ЛТИ не раскрывает, ограничившись лишь несколькими тезисами.

Приборный парк в России в основном представлен тремя отечественными производителями:

  • компания ООО «ИзТех» с серией приборов «ПИТ»;
  • Научно-производственное предприятие «Интерприбор» с серией «ИТС-1″;
  • компания ООО «СКБ Стройприбор» с серией приборов ИТП-МГ4 [6],

и двумя иностранными компаниями:

  • LaserComp, Inc. (США) — серия приборов FOX 200;
  • Netzsch-Gerätebau (Германия) — серия приборов HFM 446 Lambda.

По удобству пользования, техническим возможностям, клиентоориентированности и точности измерения российские установки существенно проигрывают зарубежным. Исключением является серия приборов «ПИТ», которая обладает минимальной погрешностью измерений не только среди отечественных приборов, но и зарубежных, однако по всем остальным параметрам они также несопоставимо хуже иностранной продукци. Значительных изменений и улучшений в отечественной отрасли приборостроения не ожидается, поэтому можно сделать прогноз, что через десять лет все испытательные центры будут работать на иностранном оборудовании.

Научно-исследовательский институт по строительству трубопроводов провёл на базе ЛТИ испытания по определению теплопроводности исследуемых образцов на приборе ИТП-МГ4/100 «Поток» (рис. 1). По мнению Лаборатории тепловой изоляции, этот прибор является самым распространённым на российском рынке, соответственно, он и был выбран для проведения независимого исследования. Погрешность измерения «Потока» достигает ≈ 10% при максимально требуемой по ГОСТ 7076–3%.

Хотя точность получаемых результатов недостаточна высока, ЛТИ ставила цель не столько проверить на соответствие декларируемых производителями значений теплопроводности истинным показателям производимых изделий, а сравнить теплопроводность материалов различных производителей в единых условиях.

Образцы испытывались на одном и том же приборе, в связи с чем результаты исследований можно считать достоверными и сопоставимыми.

Дополнительно стоит добавить, что ЛТИ закупила прибор HFM 446 Lambda немецкой марки Netzsch, как наиболее прогрессивный из доступных в России по определению теплопроводности.

Особенности испытаний трубчатой изоляции по ГОСТ 7076

ГОСТ Р 56729–2015 разрешает проводить измерение теплопроводности ТИМ в форме трубок по методике ГОСТ 7076. Однако в ссылочном стандарте не учитываются особенности испытаний теплоизоляционных изделий цилиндрической формы, поскольку ГОСТ 7076 предназначен для проведения измерений плоских образцов, и, как отмечалось выше, стандарт технически значительно устарел.

Первой и основной особенностью испытаний ТИМ в форме трубок по ГОСТ 7076 является тот факт, что регламентируемый в стандарте метод не учитывает особенности трубчатых ТИМ, он предназначен для испытаний плоских образцов.

В ходе проведения испытаний трубчатых изделий ТИМ по методике пластин согласно ГОСТ 7076 следует выделить ряд практических особенностей в данном стандарте:

1. Не из каждого ТИМ цилиндрической формы можно подготовить образец в виде плоской пластины. Приборы для определения теплопроводности имеют измерительную зону, сортамент доступных размеров которой у производителей начинается с диаметра ≈ 26 мм круглой формы рабочей зоны и ≈ 50×75 мм для квадрата. Отсюда следует, чтобы испытывать в таких установках образец из трубчатого изделия необходимо вырезать минимально возможный участок размерами ≈ 50 мм для измерений на приборах с круглой рабочей зоной и ≈ 50×50 или ≈ 100×100 мм для квадрата.

2. В отечественных приборах для обеспечения плотного контакта образца с рабочими зонами установки прилагается механическое усилие «вручную» в 2,5 кПа. Плотное прилегание необходимо для снижения размеров воздушной прослойки между поверхностью образца к измерительным зонам прибора, которая искажает истинные значения теплопроводности материала за счёт дополнительного термического сопротивления воздуха. Усилие в 2,5 кПа достаточно для плотного прилегания изначально плоского образца, однако для вырезанного образца из трубного изделия необходимо учитывать дополнительное усилие для выпрямления его изогнутых кромок. В противном случае образуется воздушная прослойка, которая приводит к занижению или «улучшению» выходных значений теплопроводности. Дополнительно размеры вырезаемого образца из изделия цилиндрической формы следует предусматривать меньше на ≈ 10%, чем размеры рабочей зоны с целью компенсации расширения образца в рабочей зоне.

3. В ГОСТ 7076 не указаны требования, как необходимо располагать образец трубчатой ТИМ в приборе. Образец необходимо помещать так, чтобы тепловой поток входил со стороны внутренней поверхности образца. При этом в отечественных установках тепловой поток направлен сверху вниз (нагревательная зона расположена в верхней части прибора), следовательно, образец необходимо помещать внешней образующей. Данное обстоятельство является критичным, поскольку, в зависимости от расположения образца, можно получить различные значения для одного и того же материала с заданными характеристиками (эта особенность применима для ряда производителей). Правильное расположение должно быть — внутренней поверхностью образца к направлению теплового потока.

АО «НИИСТ», принимая во внимание сложившуюся ситуацию в НТД, начала разрабатывать стандарт организации для обеспечения единства измерений трубчатых теплоизоляционных материалов по методике ГОСТ 7076.

ЛТИ проводила испытания теплопроводности теплоизоляционных материалов из вспененного полиэтилена в форме трубок методом пластин согласно ГОСТ 7076 на оборудовании ИТП-МГ4 «Поток» (как указывалось выше). Для проведения испытания были подготовлены образцы в виде прямоугольного параллелепипеда (рис. 2–6). Теплопроводность определялась при средней температуре 27,5°C, поскольку данный режим является оптимальным в соответствии с рекомендациями к прибору [6] для обеспечения максимальной точности измерений.

В табл. 2 приведены результаты проведённых испытаний теплопроводности.

Общие выводы

1. На территории России большинство испытательных лабораторий оснащены отечественным оборудованием, которое не позволяет проводить качественные (с высокой точностью) измерения теплопроводности трубчатых теплоизоляционных материалов в диапазоне эксплуатационных, рабочих температур, в отличие от установок зарубежного производства.

2. Основной ГОСТ Р 56729–2015 не содержит необходимых минимальных требований к испытаниям теплопроводности теплоизоляционных материалов, выполненных в форме трубок. А ГОСТ 7076 не соответствует достаточному уровню качества и требований для определения теплопроводности трубчатых ТИМ из вспененного полиэтилена.

3. В ГОСТ Р 56729–2015 следует внести дополнительное требование, заключающееся в унификации температуры, при которой определяются значения теплопроводности производимых теплоизоляционных материалов.

В настоящий момент производители декларируют коэффициент теплопроводности своих изделий при разных температурах, что приводит к сложностям или даже практической невозможности (из-за отсутствия единой формулы температурной зависимости теплопроводности вспененного полиэтилена) сравнить теплопроводность производимых изделий и провести качественное их соответствие истинным показателям.

4. Исходя из пп. 1 и 2, теплопроводность является самым «фальсифицируемым» показателем среди производителей рассмотриваемой продукции. Заводы-изготовители указывают недостоверные значения теплопроводности своих материалов, зная, что истинные показатели данной характеристики невозможно проконтролировать (а также доказать их несоответствие декларируемым) в связи с несовершенством нормативной регуляторной базы и отсутствием точных измерительных приборов в России.

5. В ходе проведённых испытаний выявлено, что из 11-ти исследуемых образцов только два (П7 и П8) соответствуют заявленным значениям теплопроводности, а значит, их производители выдерживают на высоком уровне качество своей продукции и не фальсифицируют её показатели. Все остальные материалы показали значения теплопроводности существенно более низкие (≥ 10%), чем декларируемые производителями. 

Пенополиэтилен, его свойства и применение в строительстве

Дорогие покупатели! В нашем интернет-магазине открылся новый раздел «Освещение»-это люстры, бра, торшеры и т.д. по доступным ценам!       

  

 

 

 

Главная \ Продукция \ Теплошумоизоляционные материалы \ ВСПЕНЕННЫЙ ПЕНОПОЛИЭТИЛЕН \ Пенополиэтилен, его свойства и применение в строительстве

Материалы, изготавливаемые на основе вспененного полиэтилена, заслужено получили свое признание у строителей уже достаточно давно. Существует несколько основных видов вспененного полиэтилена: радиационно или химически сшитый, физически сшитый и газонаполненный (несшитый). Так как последний вид получил наибольшее распространение в строительстве благодаря своим физическим свойствам и небольшой стоимости, рассмотрим газонаполненный полиэтилен более подробно. Газонаполненный пенополиэтилен изготавливается из полиэтилена высокого давления, различных красителей, а также антипиренов.

Антипирены – огнегасящие добавки, вспененные физическими газобразователями. В качестве газообразователя используется пропан — бутановая смесь, которая впоследствии вытесняется из пор пенополиэтилена окружающим воздухом. Материалы, изготавливаемые из вспененного полиэтилена, применяются при широком диапазоне температур от – 60 до + 80 °C и относительной влажности 100 %. Температура воспламенения вспененного полиэтилена составляет 360 °C а самовоспламенения равна 417 °C.

Вспененный полиэтилен имеет низкую теплопроводность равную 0,38 Вт/(м С). Вспененный полиэтилен толщеной 10 мм по своей теплопроводности равен 140 мм кирпичной кладки или 70 мм соснового бруса вдоль волокон. Поскольку вспененный полиэтилен с закрытыми порами он является и отличным пароизолятором с водопоглощением не более 0,6 % от объема. Пенополиэтилен имеет широкий спектр применения. Вспененный полиэтилен используется в качестве подложки для различных видов «плавающих» полов (ламинат), как теплоизолятор водопроводных и канализационных труб, а также как вспомогательный упаковочный материал.

Особо стоит отметить еще один вариант применения пенополиэтилена – комбинированный теплоотражающий утеплитель на основе физически сшитого вспененного полиэтилена и алюминиевой фольги. Комбинация алюминиевой фольги, отражающей до 97 % тепловой энергии и вспененного полиэтилена, имеющего низкую теплопроводность, позволяет получить утеплитель с рядом уникальных свойств. Благодаря такой комбинации данный теплоотражающий материал обладает отличными теплоизоляционными свойствами при малой толщине и небольшой стоимости. Фольгированный вспененный полиэтилен получил основное применение в качестве теплоизоляционного материала при строительстве жилых и промышленных зданий и сооружений, систем водоснабжения и воздуховодов, систем кондиционирования и вентиляции, холодильных и морозильных камер, различных резервуаров и емкостей. Фольгированный вспененный полиэтилен также выпускается и с клеевым слоем.

Данный вид может применяться на любых очищенных от грязи и пыли поверхностях, имеет отличную адгезию. Целесообразно применять на любых поверхностях имеющих множество перепадов, углов, изгибов, а также непрямолинейных поверхностей. Самоклеющийся фольгированный вспененный полиэтилен применяется в качестве утеплителя и звукоизоляции рефрижераторов, судов, фургонов, автомобилей, различных металлоконструкций, а также кондиционерных вентиляционных и вытяжных коробов

Вспененный полиэтилен

Контакты

 

Тел./факс 8 (495) 229-30-48

моб. 8 (915)138-15-87

Эл.почта ast@2293048. ru

Звукоизоляция для квартир и стен, продажа и доставка в Москве.

 

Пенопласт с открытыми или закрытыми порами

У многих клиентов возникает вопрос, какой тип пенопласта выбрать.

Пытаетесь решить, какой тип изоляции из напыляемой пены следует использовать для ваших работ? Это сложнее, чем кажется — хотя пенопласт с закрытыми порами и пенопласт с открытыми порами изолируют дом, они делают это по-разному. В этом руководстве мы рассмотрим пенопласт с открытыми и закрытыми порами и поможем вам выбрать лучший продукт для вашего проекта.

В чем разница между пенопластовой изоляцией с открытыми и закрытыми порами?
Пена с открытыми и закрытыми порами — это два разных типа изоляции из напыляемой пены. У них разные сильные и слабые стороны, и один не обязательно лучше другого. Все сводится к пониманию преимуществ пенопласта с открытыми порами по сравнению с пенопластом с закрытыми порами и выбору типа, который соответствует вашим потребностям.

Начнем с различий между пенами с открытыми и закрытыми порами.

Ячейки
Напыляемая изоляция относится к открытой или закрытой ячейке из-за разницы между маленькими пузырьками (ячейками), из которых состоит пена.

Пена с открытыми порами полна ячеек, которые не полностью инкапсулированы. Другими словами, клетки преднамеренно оставляют открытыми. Это делает пену более мягким и гибким материалом.

Пена с закрытыми порами состоит из ячеек, которые, как следует из названия, полностью закрыты. Ячейки прижаты друг к другу, поэтому воздух и влага не могут попасть внутрь пенопласта. Из-за этого пена с закрытыми порами намного более жесткая и стабильная, чем пена с открытыми порами.

Плотность
Пена с закрытыми порами намного плотнее, чем пена с открытыми порами. Большинство пенопластов с открытыми порами имеет плотность около 8-14 кг/м3. Пена с закрытыми порами может быть в три раза больше, с плотностью 35-60 кг/м3 и более.

Теплопроводность

Теплопроводность (λ) — это особое свойство материала. Он представляет собой тепловой поток в ваттах (Вт) через поверхность площадью 1 м² и плоский слой материала толщиной 1 м, когда разница температур между двумя поверхностями в направлении теплового потока составляет 1 кельвин (К). Единицей измерения теплопроводности (λ) является Вт/(м·K). Теплопроводность наиболее часто используемого пенопласта с закрытыми порами составляет около ≤ 0,026 Вт/(м·К). а для открытых ячеек ≤ 0,036 Вт/(м·К). Пенопласты с открытыми порами имеют теплопроводность ≤ 0,036. Это значительно выше, чем у пенопластов с закрытыми порами, которые могут ограничивать полезность изоляции с открытыми порами в экстремальных температурных условиях.

Расширение
Это одно из наиболее важных отличий с точки зрения приложения. Пена с закрытыми порами предназначена для расширения до толщины около 2,5 см при распылении. Пена с открытыми порами рассчитана на расширение до 18 см в толщину, что означает, что в большинстве стандартных стен возможно только одно применение.

Что на самом деле означают все эти термины и рейтинги?
На данный момент вы, возможно, все еще пытаетесь понять, какой тип пеноизоляции подходит для вашего проекта. Вот краткий обзор прочности пенопласта с открытыми и закрытыми порами и лучших приложений для каждого из них:

Преимущества пенопласта с закрытыми порами
Пенопласты с закрытыми порами — лучший выбор для надежной изоляции в условиях ограниченного пространства, поскольку он может обеспечить двукратное значение R по сравнению с открытыми порами внутри стандартной стены. Его жесткая природа также повышает структурную целостность здания, и доступны версии с классом огнестойкости E84. Закрытая ячейка также действует как пароизоляция, поэтому вода и влага с меньшей вероятностью попадут внутрь дома, а сама пена не пострадает от повреждения водой.

Преимущества пенопласта с открытыми порами
Одним из самых больших преимуществ пены с открытыми порами является то, что она расширяется после нанесения, что означает, что она может изолировать труднодоступные уголки и закоулки в доме. Эти типы областей трудно изолировать пенопластом с закрытыми порами. Пена с открытыми порами отлично подходит для звукоизоляции, когда одно нанесение может полностью заполнить пространство между стойками.

Пенопласт с открытыми порами также гораздо более доступен по цене, чем пенопласт с закрытыми порами, однако этот пенопласт не изолирует дом так же хорошо, как пенопласт с закрытыми порами, поэтому он не идеален для мест с экстремальными погодными температурами.

Итак, какую изоляцию следует использовать?
В конечном счете, это зависит от того, где находится дом, каковы цели изоляции и, конечно же, насколько велик бюджет. Нужна дополнительная помощь в выборе пенопласта с открытыми или закрытыми порами? Позвоните нам!

Dow Ethafoam Часто задаваемые вопросы

  1. Какова термостойкость продуктов ETHAFOAM™?
  2. Какова максимальная температура использования продуктов марки ETHAFOAM™?
  3. Какова температура воспламенения продуктов ETHAFOAM™?
  4. Что такое пенообразователь?
  5. Что такое RapidRelease?
  6. Что означает LFL в отношении остаточного пенообразователя?
  7. Имеют ли заводы Dow ETHAFOAM™ сертификаты ISO или QS?
  8. Продукты какой торговой марки ETHAFOAM™ одобрены для использования во флотационных устройствах?
  9. Каков срок годности продуктов из антистатической олефиновой пены ETHAFOAM™?

 

 

1.

Каково термическое сопротивление продуктов ETHAFOAM™?

Компания Dow публикует значения теплопроводности продуктов из вспененного полиэтилена ETHAFOAM в технических описаниях. Чтобы определить тепловое сопротивление (или «значение R») для любого данного продукта, разделите толщину пенопласта в метрах (или дюймах) на теплопроводность в Вт/м·К (или БТЕ-дюйм/ч-фут2-°F).

Для стандартных продуктов ETHAFOAM с теплопроводностью около 0,06 Вт/м·К (0,4 БТЕ-дюйм/час-фут2-°F) тепловое сопротивление (или «коэффициент R») составляет примерно 1,0 R на сантиметр толщины (2,5 R на дюйм толщины), (R = час-фут2-°F/BTU). Для более точного расчета см. технический паспорт интересующего вас продукта.
[наверх]

 

2. Какова максимальная температура использования продуктов марки ETHAFOAM™?

Вспененные материалы, такие как вспененный полиэтилен марки ETHAFOAM, имеют тенденцию размягчаться при более высоких температурах, поскольку это характерно для термопластичных смол, из которых они изготовлены. Поэтому при повышении температуры пена может стать слишком мягкой для некоторых применений.

К сожалению, не существует единого отраслевого определения «максимальной рабочей температуры». Один стандартный лабораторный тест, обычно проводимый с пенополиэтиленом, подвергает образцы пенопласта 24 часам в печи при 70°C (158°F). Затем образцы возвращают к комнатной температуре и измеряют линейное изменение размеров во всех трех направлениях. В ходе этого испытания продукты ETHAFOAM постоянно демонстрируют линейное изменение менее 1%. Результаты этого теста иногда используются для определения «максимальной рабочей температуры». Обратите внимание, что это испытание проводится без нагрузки на пену. Если ожидается, что пена сохранит свои функции и размеры под нагрузкой, может потребоваться соответствующее снижение максимальной температуры использования. Специальные испытания при ожидаемых нагрузках и условиях использования рекомендуются, когда нагрузки должны применяться при температурах выше 49°С. °С (120°F).
[наверх]

 

3. Какова температура воспламенения продуктов ETHAFOAM™?

Температура воспламенения определяется как «самая низкая температура, при которой материал будет выделять достаточно легковоспламеняющихся паров на своей поверхности или вблизи нее, так что в тесной смеси с воздухом и искрой или пламенем он воспламеняется». (из «Опасные свойства промышленных материалов», 4-е издание, Н. Ирвинг Сакс, 1975 г.).

Для продуктов ETHAFOAM температура воспламенения намного превышает температуру плавления полиолефиновых полимеров, используемых для изготовления пеноматериалов, и достигается только тогда, когда пенопласт нагревается значительно выше точки, при которой он плавится в жидкий полимер. Таким образом, температура вспышки, как правило, не является проблемой при нормальных условиях использования и хранения.

Температура воспламенения продуктов ETHAFOAM выше 600°F / 315°C или около того, в зависимости от конкретного используемого полимера.
[наверх]

 

4. Что такое пенообразователь?

Вспениватель – это вещество, используемое для создания пузырьков или «ячеек» в пене. Без введения пенообразователя в производственный процесс вместо пенопласта мы бы получили твердый пластик. Вспенивающий агент, чаще всего используемый в продуктах ETHAFOAM™, представляет собой легковоспламеняющийся газ, называемый изобутаном.
[наверх]

 

5. Что такое RapidRelease?

RapidRelease — это запатентованная компанией Dow технология процесса для снижения уровня остаточного пенообразователя, остающегося в продуктах ETHAFOAM™, SYNERGY™, до следовых количеств негорючих материалов (ниже НПВ). В продуктах, изготовленных по технологии RapidRelease, остается так мало пенообразователя, что они не способны производить воспламеняющуюся концентрацию пенообразователя. В результате, эта уникальная технология производства компании Dow предлагает производителям беспрецедентные стандарты безопасности и удобства, устраняя необходимость в особых условиях транспортировки, обработки, хранения и изготовления.
[наверх]

 

6. Что подразумевается под LFL в терминах остаточного пенообразователя?

Некоторое количество легковоспламеняющегося газообразного пенообразователя может оставаться в пене в течение длительного времени. Как правило, это не проблема воспламеняемости, пока он остается внутри пены. Остаточный вспенивающий агент, выходящий из пены, может потенциально оставаться вблизи пены, где возможно его накопление до воспламеняющейся концентрации. Это вызывает особую озабоченность, когда пена помещается в герметичные контейнеры.

Концентрация этого газа, окружающего пену, представляет интерес в сравнении с нижним пределом воспламеняемости (НПВ; также известен как НПВ, нижний предел взрываемости) для этого газа. LFL — это самая низкая концентрация в воздухе, при которой будет гореть определенная газовая смесь. Если концентрация определенного горючего газа в воздухе ниже НПВ, газовоздушная смесь не может воспламениться, и эта смесь не воспламеняется. Если же концентрация горючего газа в воздухе превышает НПВ, газовоздушная смесь может воспламениться от искры или пламени. Существует также верхний предел воспламеняемости (UFL, также известный как UEL, верхний предел взрываемости), выше которого газовоздушная смесь становится слишком богатой для воспламенения.

Наилучший способ предотвратить возможность создания легковоспламеняющейся атмосферы вблизи пены – это снизить концентрацию вспенивателя, оставшегося в пене, до уровней ниже НПВ, которые не могут поддерживать горение. Если оставшийся вспениватель затем выйдет из пены, он будет только разбавляться оттуда до еще более низких концентраций.
[наверх]

 

7. Имеют ли заводы Dow ETHAFOAM™ сертификаты ISO или QS?

Приверженность Dow системам качества и производству качественной продукции всегда была высокой. Не менее важна наша приверженность охране окружающей среды благодаря глобальному внедрению Responsible Care®. Наше стремление к совершенству в продуктах и ​​услугах обеспечило нам первое место среди производителей пенопласта на протяжении десятилетий.

Мы официально не подавали заявку на сертификацию ISO 9000 или QS 9000 для наших производственных помещений. Тем не менее, мы можем положительно реагировать на запросы клиентов в отношении контроля качества продукции и процессов, связанных с этими стандартами.

За дополнительной информацией обращайтесь к местному торговому представителю.
[наверх]

 

8. Какие продукты торговой марки ETHAFOAM™ одобрены для использования во флотационных устройствах?

UL 1191:
Береговая охрана США и Канады одобряет плавучие материалы для использования в персональных плавучих средствах (PFD) в рамках программ распознавания компонентов Лабораторий андеррайтеров и Лабораторий андеррайтеров Канады в соответствии с UL 119.1.

Хотя большинство вспененных продуктов марки ETHAFOAM™ соответствуют требованиям UL 1191, единственным продуктом в линейке продуктов ETHAFOAM, для которого в настоящее время поддерживается эта сертификация, является листовой вспененный полиэтилен ETHAFOAM 221.

Это означает, что продукты ETHAFOAM соответствуют требованиям этой строгой процедуры испытаний и что продукты ETHAFOAM 220 и ETHAFOAM 50 являются подходящими плавучими материалами для использования в плавучих ошейниках и спасательных жилетах.
[наверх]

 

9. Каков срок годности продуктов из антистатической олефиновой пены ETHAFOAM™?

Антистатические версии продукта доступны в ассортименте пенополиолефинов ETHAFOAM. Эти антистатические пены содержат аминовую добавку для улучшения электростатических характеристик. Эта добавка «расцветает» на поверхности пенопласта, где она притягивает слой молекул воды из окружающего воздуха, тем самым обеспечивая путь электропроводности для контроля накопления и рассеивания статического электричества.

Образцы, оставленные в нетронутом состоянии при хранении на срок до трех лет, не показали ухудшения статических характеристик. Если аминовый слой потревожить, например, потереть или смыть, он быстро регенерируется из резервуара добавки, содержащейся в пене, и восстанавливает антистатические свойства. При многократном воздействии можно истощить запас добавки до такой степени, что это повлияет на статические характеристики. Таким образом, полученный срок годности будет зависеть от условий хранения и использования.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *