Экструдированный пенополистирол теплопроводность: Сравнение пенопласта и экструдированного пенополистирола — «ИзолМаркет»

Теплопроводность и плотность пеноплэкса, сравнение с пенополистиролом ПСБ

Представлена сравнительная таблица значений коэффициента теплопроводности, плотности пеноплэкса и пенополистирола ПСБ различных марок в сухом состоянии при температуре 20…30°С. Указан также диапазон их рабочей температуры.

Теплоизоляцию пеноплэкс, в отличие от беспрессового пенополистирола ПСБ, производят при повышенных температуре и давлении с добавлением пенообразователя и выдавливают через экструдер. Такая технология производства обеспечивает пеноплэксу закрытую микропористую структуру.

Пеноплэкс, по сравнению с пенополистиролом ПСБ, обладает более низким значением коэффициента теплопроводности λ, который составляет 0,03…0,036 Вт/(м·град). Теплопроводность пеноплэкса приблизительно на 30% ниже этого показателя у такого традиционного утеплителя, как минеральная вата. Следует отметить, что коэффициент теплопроводности пенополистирола ПСБ в зависимости от марки находится в пределах 0,037…0,043 Вт/(м·град).

Плотность пеноплэкса ρ по данным производителя находится в диапазоне от 22 до 47 кг/м3 в зависимости от марки. Показатели плотности пенополистирола ПСБ ниже — плотность самых легких марок ПСБ-15 и ПСБ-25 может составлять от 6 до 25 кг/м3, соответственно.

Максимальная температура применения пенополистирола пеноплэкс составляет 75°С. У пенопласта ПСБ она несколько выше и может достигать 80°С. При нагревании выше 75°С пеноплэкс не плавится, однако ухудшаются его прочностные характеристики. Насколько при таких условиях увеличивается коэффициент теплопроводности этого теплоизоляционного материала, производителем не сообщается.

Теплопроводность и плотность пеноплэкса и пенополистирола ПСБ
Марка пенополистиролаλ, Вт/(м·К)ρ, кг/м3
tраб, °С
Пеноплэкс
Плиты Пеноплэкс комфорт0,0325…35-100…+75
Пеноплэкс Фундамент0,0329…33-100…+75
Пеноплэкс Кровля0,0326…34-100…+75
Сегменты Пеноплэкс марки 350,0333…38-60…+75
Сегменты Пеноплэкс марки 450,0338…45-60…+75
Пеноплэкс Блок0,036от 25-100…+75
Пеноплэкс 450,0340…47-100…+75
Пеноплэкс Уклон0,03от 22-100…+75
Пеноплэкс Фасад0,0325…33-100…+75
Пеноплэкс Стена0,0325…32-70…+75
Пеноплэкс Гео0,0328…36-100…+75
Пеноплэкс Основа0,03от 22-100…+75
Пенополистирол ПСБ (пенопласт)
ПСБ-150,042…0,043до 15до 80
ПСБ-250,039…0,04115…25до 80
ПСБ-350,037…0,03825…35до 80
ПСБ-500,04…0,04135…50до 80

Следует отметить, что теплоизоляция пеноплэкс благодаря своей закрытой микропористой структуре практически не впитывает влагу, не подвергается воздействию плесени, грибков и других микроорганизмов, является экологичным и безопасным для человека утеплителем.

Кроме того, экструдированный пенополистирол пеноплэкс обладает достаточно высокой химической стойкостью ко многим используемым в строительстве материалам. Однако некоторые органические вещества и растворители, приведенные в таблице ниже, могут привести к размягчению, усадке и даже растворению теплоизоляционных плит.

Химическая стойкость теплоизоляции пеноплэкс
Высокая хим. стойкостьНизкая хим. стойкость
Кислоты (органические и неорганические)Ароматические углеводороды (бензол, толуол, ксилол)
Растворы солейАльдегиды (формальдегид, формалин)
Едкие щелочиКетоны (ацетон, метилэтилкетон)
Хлорная известьЭфиры (диэтиловый эфир, этилацетат, метилацетат)
Спирт и спиртовые красителиБензин, керосин, дизельное топливо
Вода и краски на водной основеКаменноугольная смола
Аммиак, фреоны, парафины, маслаПолиэфирные смолы (отвердители эпоксидных смол)
Цементы, строительные растворы и бетоныМасляные краски

Источники:

  1. ООО «Пеноплэкс СПб».
  2. ГОСТ 15588-86 Плиты пенополистирольные. Технические условия.

от чего зависит, сравнение с минватой и Пеноплексом, цены

Одна из самых важных характеристик при выборе любого утеплителя – теплопроводность. Ее коэффициент показывает, сколько тепла проходит через материал (пенопласт, Penoplex, кирпич, минвату) за определенное время. Чем дольше длится процесс такого теплообмена, тем ниже будет его значение и, соответственно, тем больше тепла останется внутри помещения.

Оглавление:

  1. От чего зависит теплопроводность?
  2. Сравнение с Пеноплексом и минватой
  3. Цена пенополистирола

Что влияет на теплопередачу?

Существует несколько факторов, которые значительно влияют на ее величину:

  • наличие пор и их структура;
  • плотность, толщина;
  • влагопоглощаемость.

Благодаря наличию пор в материале, как, например, в пенопласте и Пеноплексе, они имеют низкую теплопередачу. Внутри гранул нет ничего, кроме воздуха, а он имеет самую малую величину коэффициента – 0,022 Вт/м·К. Закрытые и маленького размера поры также затрудняют передачу тепловой энергии, а если они открытые и соединены между собой, то появляется конвекция, из-за которой повышается теплопроводность.

Чем плотнее материал, тем быстрее он пропускает тепло, как, например, металл или графит. Для сравнения, плотность пенопласта составляет 18 кг/м3, а у сплошного силикатного кирпича – около 1800 кг/м3, следовательно, у первого теплопередача будет очень низкая, а у второго – весьма высокая. Ко всему этому немаловажное значение имеет способность утеплителя поглощать воду, так как при попадании влаги внутрь она вытесняет сухой воздух, тем самым повышая передачу тепловой энергии.

Таблица с величинами коэффициентов теплопроводности:

Наименование теплоизоляцииПлотность, кг/м3Теплопроводность, Вт/м·К
Минвата2000,08
1250,07
ПенополистиролПСБ-С 15до 150,043
ПСБ-С 2515,1-250,041
ПСБ-С 3515,1-350,038
ПСБ-С 5015,1-500,041
Пеноплекс33-450,03-0,032
Пустотелый керамический кирпич12000,52
Сплошной силикатный кирпич 18000,47
Стекловата75-1750,032-0,041

Значение величины теплопроводности гранул пенопласта в зависимости от толщины:

Толщина, ммКоэффициент теплопередачи, Вт/м·К
300,04
500,03-0,037
1000,03-0,046
1500,02

Сравнение с другими утеплителями

Пенопласт получается в результате вспенивания полистирола, благодаря чему появляются наполненные газом поры, а Пеноплекс – экструдированный пенополистирол, произведенный методом экструзии, поэтому его гранулы имеют меньший размер. К тому же из-за равномерного и упорядоченного расположения ячеек в экструзионном, он является более прочным утеплителем, что позволяет ему сильнее изгибаться и меньше продавливаться под нагрузкой. Оба материала имеют наивысшие степени пожароопасности, поэтому обязательно следует учитывать это во время монтажа.

Сравнительная таблица Пеноплекса и пенополистирола:

ПенопластПеноплекс
Плотность, кг/м31825-32
Влагопоглощаемость, %0,8-1,20,4
Паропроницаемость, мг/(м·ч·Па)0,050,02
Теплопроводность, Вт/м·К0,031-0,0410,03

По величине теплопроводности пенопласт проигрывает Пеноплексу, и по другим показателям также. Но даже если утеплять дом обычным вспененным полистиролом, то теплопотери могут сократиться практически на 40%. Главное – провести все работы по монтажу согласно всем требования производителя, в том числе не допустить попадания влаги между стеной и теплоизоляцией и ограничить доступ для грызунов.

По всем свойствам пенопласт и в сравнении с минватой весьма различается:

Минвата
Плотность, кг/м310-300
Влагопоглощаемость, %более 1%
Паропроницаемость, мг/(м·ч·Па)0,4-0,5
Теплопередача, Вт/м·К0,045 (при 35 кг/м3) -0,7

По коэффициенту теплопередачи пенопласт имеет наилучшее значение, но по паропроницаемости показатель у минваты намного лучше, в итоге ее свободно можно использовать внутри жилых помещений, к тому же она огнеустойчива, в отличие от вспененного полистирола. Также благодаря производству из минерального сырья она не выделяет во время горения опасных веществ, и, разлагаясь, не загрязняет окружающую среду. Но минвата по сравнению со вспененным полистиролом имеет намного больший вес, поэтому для ее монтажа, особенно на стены, требуется крепкая конструкция.

Стоимость

Таблица цен, по которым можно купить пенопласт:

Наименование марки пенополистиролаРазмеры, мм (длина/ширина/толщина)Плотность, кг/м3Стоимость за м2, рубли
KnaufTherm Compack1000x600x5010-15150
Therm Wall Light1000x1200x10010-12190
1000х1200х5010-12100
1000х1200х2010-1240
Therm Facade1000x1200x10015,1-17,2390
Therm Wall2000х1200х5010-12150
ПСБ-С 151000х1000х201550
1000х1000х3060
1000х1000х4080
1000х1000х5090
1000х1000х100170
ПСБ-С 251000х1000х202080
1000х1000х30120
1000х1000х40140
1000х1000х50150
1000х1000х100300
ПСБ-С 351000х1000х2035100
1000х1000х30140
1000х1000х40180
1000х1000х50200
1000х1000х100400

Выбирая утеплитель, следует помнить, что чем выше коэффициент теплопередачи, тем большее количество слоев придется монтировать. Так, например, базальтовая минвата толщиной в 100 мм имеет практически такую же проводимость тепла – 0,042 Вт/м·К, как у пенополистирола размером 50 мм – 0,046 Вт/м·К, а теплопроводность Пеноплекса с 50 мм и 100 мм – 0,03 Вт/м·К. Каждый из них имеет свои плюсы и минусы, так минеральную вату рекомендуется использовать там, где требуется повышенная паропроницаемость и устойчивость к большим температурам, стекловату следует применять для гаражей или любых других мест, где высока вероятность возгорания.

Пенопласт и экструдированный пенополистирол все же лучше располагать снаружи здания, а не внутри, так меньше шансов для образования конденсата между стеной и утеплителем.

Дата: 5 июля 2016

Экструдированный полистирол — XPS — Теплоизоляция

Как правило, полистирол представляет собой синтетический ароматический полимер, изготовленный из мономера стирола, полученного из бензола и этилена, нефтепродуктов. Полистирол может быть твердым или вспененным. Полистирол представляет собой бесцветный прозрачный термопласт, который обычно используется для изготовления изоляции из пенопласта или картона, а также типа насыпной изоляции, состоящей из небольших шариков полистирола. Пенополистирол 95-98% воздуха. Пенополистирольные пенопласты являются хорошими теплоизоляционными материалами и часто используются в качестве строительных изоляционных материалов, таких как изоляционные бетонные опалубки и конструкционно-изолированные панельные строительные системы. Пенополистирол и экструдированный полистирол изготовлены из полистирола. Тем не менее, EPS состоит из маленьких пластиковых шариков, сплавленных вместе, а XPS начинается как расплавленный материал, который выдавливается из формы в листы. XPS чаще всего используется в качестве пенопластовой изоляции.

Экструдированный полистирол (XPS) также является термопластичным полимером. Экструдированный полистирол имеет структуру с закрытыми ячейками и часто более прочный, с более высокими механическими характеристиками и, в принципе, часто дороже, чем пенополистирол. Диапазон его плотности составляет около 28–45 кг/м 3 . XPS производится из тех же основных материалов, что и EPS, и имеет в своей основе сырую нефть. Процесс производства экструдированного полистирола e лишь немного отличается от пенополистирола.

Подобно EPS, XPS имеет множество применений. Его можно использовать для изоляции зданий, крыш и бетонных полов. Экструдированный пенополистирол также можно использовать в ремеслах и моделировании, особенно в архитектурных моделях.

Хотя как вспененный, так и экструдированный полистирол имеют структуру с закрытыми порами, они проницаемы для молекул воды и не могут считаться пароизоляцией. Между вспененными гранулами с закрытыми порами в пенополистироле имеются промежуточные зазоры, которые образуют открытую сеть каналов между склеенными гранулами. Если вода замерзнет и превратится в лед, она расширится и может привести к отрыву гранул полистирола от пенопласта.

 

Классификация изоляционных материалов

Для изоляционных материалов можно определить три общие категории. Эти категории основаны на химическом составе основного материала, из которого производится изоляционный материал.

Далее дается краткое описание этих типов изоляционных материалов.

Неорганические изоляционные материалы

Как видно из рисунка, неорганические материалы можно классифицировать соответственно:

  • Фиброзные материалы
    • Стеклянная шерсть
    • Скальная шерсть
  • Клеточные материалы
    • Кальциевый силикат
    • Клеточное стекло

Органические материалы. Секретарный. из нефтехимического или возобновляемого сырья (на биологической основе). Почти все нефтехимические изоляционные материалы представляют собой полимеры. Как видно из рисунка, все нефтехимические изоляционные материалы являются ячеистыми, а материал ячеистым, когда структура материала состоит из пор или ячеек. С другой стороны, многие растения содержат волокна для прочности. Поэтому почти все изоляционные материалы на биологической основе являются волокнистыми (кроме вспененной пробки, которая является ячеистой).

Органические изоляционные материалы могут быть классифицированы соответственно:

  • Нефтехимические материалы (производство масла/угля)
    • Расширенный полистирол (EPS)
    • Эквергированный полистирол (XPS)
    • Polyurethane (PUR)
    • Phenololic FOALIS
    • Polyurethane (PUR)
    • Phenolic FOALIS
    • . PIR)
  • Возобновляемые материалы (растительного/животного происхождения)
    • Целлюлоза
    • Пробка
    • Древесное волокно
    • Конопляное волокно
    • Льняная шерсть
    • Sheeps Wool
    • Изоляция хлопка

Другие изоляционные материалы

  • Клеточное стекло
  • Airgel
  • Vacuum Panels

Термопроизводство.

Обычная рамка. Полиста -вуралка. ватт), передаваемой через квадрат материала заданной толщины (в метрах) из-за разницы температур. Чем ниже теплопроводность материала, тем больше способность материала сопротивляться теплопередаче и, следовательно, выше эффективность изоляции. Типичные значения теплопроводности для экструдированного полистирола находятся между 0,025 и 0,040 Вт/м∙K .

Теплоизоляция в основном основана на очень низкой теплопроводности газов. Газы обладают плохими свойствами теплопроводности по сравнению с жидкостями и твердыми телами и, таким образом, являются хорошим изоляционным материалом, если их можно уловить (например, в пенообразной структуре). Воздух и другие газы обычно являются хорошими изоляторами. Но главная польза в отсутствии конвекции. Поэтому многие изоляционные материалы (например, экструдированный полистирол ) функционируют просто за счет наличия большого количества газонаполненных карманов , которые предотвращают крупномасштабную конвекцию .

Чередование газового кармана и твердого материала приводит к тому, что тепло должно передаваться через множество поверхностей, что приводит к быстрому снижению коэффициента теплопередачи.

Пример – Изоляция из экструдированного полистирола

Основным источником потерь тепла дома являются стены. Рассчитайте скорость теплового потока через стену 3 м х 10 м на площади (А = 30 м 2 ). Стена имеет толщину 15 см (L 1 ) и выполнена из кирпича с теплопроводностью k 1 = 1,0 Вт/м.К (плохой теплоизолятор). Предположим, что температура внутри и снаружи помещения составляет 22°C и -8°C, а коэффициенты конвективной теплопередачи на внутренней и внешней сторонах равны h 1 = 10 Вт/м 2 K и h 2 = 30 Вт/м 2 К соответственно. Обратите внимание, что эти коэффициенты конвекции сильно зависят от внешних и внутренних условий (ветер, влажность и т. д.).

  1. Рассчитайте тепловой поток ( потери тепла ) через эту неизолированную стену.
  2. Теперь предположим теплоизоляцию на внешней стороне этой стены. Используйте изоляцию из экструдированного полистирола толщиной 10 см (L 2 ) с теплопроводностью k 2 = 0,028 Вт/м·К и рассчитайте тепловой поток ( потери тепла ) через эту композитную стену.

Решение:

Как уже было сказано, многие процессы теплопередачи включают составные системы и даже включают комбинацию теплопроводности и конвекции. Часто удобно работать с общий коэффициент теплопередачи, известный как U-фактор с этими композитными системами. U-фактор определяется выражением, аналогичным закону охлаждения Ньютона :

Общий коэффициент теплопередачи связан с общим тепловым сопротивлением и зависит от геометрии задачи.

  1. голая стена

В предположении одномерного теплообмена через плоскую стенку и без учета излучения общий коэффициент теплопередачи можно рассчитать как:

Тогда общий коэффициент теплопередачи равен:

U = 1 / (1/10 + 0,15/1 + 1/30) = 3,53 Вт/м 2 K

Тепловой поток можно рассчитать следующим образом:

q = 3,53 [Вт/м 2 K] x 30 [K] = 105,9 Вт/м стена будет:

q потери = q . A = 105,9 [Вт/м 2 ] x 30 [м 2 ] = 3177W

  1. композитная стена с теплоизоляцией

Предполагая одномерную теплопередачу через плоскую композитную стену, отсутствие теплового контактного сопротивления и пренебрегая излучением, можно рассчитать общий коэффициент теплопередачи как:

Тогда общий коэффициент теплопередачи равен:

U = 1 / (1/10 + 0,15/1 + 0,1/0,028 + 1/30) = 0,259 Вт/м 2 K

Тогда тепловой поток можно рассчитать следующим образом:

q = 0,259 [Вт/м 2 К] x 30 [К] = 7,78 Вт/м 2

Общие потери тепла через эту стену будут:

q потеря = q . A = 7,78 [Вт/м 2 ] x 30 [м 2 ] = 233 Вт

Как видно, добавление теплоизолятора приводит к значительному снижению тепловых потерь. Необходимо добавить, что добавление очередного слоя теплоизолятора не дает столь высокой экономии. Это лучше видно из метода термического сопротивления, который можно использовать для расчета теплопередачи через композитные стены . Скорость устойчивого теплообмена между двумя поверхностями равна разности температур, деленной на общее тепловое сопротивление между этими двумя поверхностями.

 

Ссылки:

Теплопередача:

  1. Основы тепломассообмена, 7-е издание. Теодор Л. Бергман, Эдриенн С. Лавин, Фрэнк П. Инкропера. John Wiley & Sons, Incorporated, 2011. ISBN: 9781118137253.
  2. Тепломассообмен. Юнус А. Ценгель. McGraw-Hill Education, 2011. ISBN: 9780071077866.
  3. Министерство энергетики США, термодинамика, теплопередача и поток жидкости. Справочник по основам Министерства энергетики, том 2 из 3, май 2016 г.

Ядерная и реакторная физика:

  1. Дж. Р. Ламарш, Введение в теорию ядерных реакторов, 2-е изд. , Аддисон-Уэсли, Рединг, Массачусетс (1983).
  2. Дж. Р. Ламарш, А. Дж. Баратта, Введение в ядерную технику, 3-е изд., Prentice-Hall, 2001, ISBN: 0-201-82498-1.
  3. WM Стейси, Физика ядерных реакторов, John Wiley & Sons, 2001, ISBN: 0-471-39127-1.
  4. Гласстоун, Сесонске. Разработка ядерных реакторов: разработка реакторных систем, Springer; 4-е издание, 1994 г., ISBN: 978-0412985317
  5. WSC. Уильямс. Ядерная физика и физика элементарных частиц. Кларендон Пресс; 1 издание, 1991 г., ISBN: 978-0198520467
  6. Г. Р. Кипин. Физика ядерной кинетики. Паб Эддисон-Уэсли. Ко; 1-е издание, 1965 г.
  7. Роберт Рид Берн, Введение в работу ядерных реакторов, 1988 г.
  8. Министерство энергетики, ядерной физики и теории реакторов США. Справочник по основам Министерства энергетики, том 1 и 2. 19 января.93.
  9. Пол Ройсс, Нейтронная физика. EDP ​​Sciences, 2008. ISBN: 978-2759800414.

Advanced Reactor Physics:

  1. К. О. Отт, В. А. Безелла, Введение в статистику ядерных реакторов, Американское ядерное общество, исправленное издание (1989 г.), 1989 г., ISBN: 0-894-48033-2.
  2. К. О. Отт, Р. Дж. Нойхольд, Введение в динамику ядерных реакторов, Американское ядерное общество, 1985, ISBN: 0-894-48029-4.
  3. Д. Л. Хетрик, Динамика ядерных реакторов, Американское ядерное общество, 1993, ISBN: 0-894-48453-2.
  4. Э. Э. Льюис, В. Ф. Миллер, Вычислительные методы переноса нейтронов, Американское ядерное общество, 1993, ISBN: 0-894-48452-4.

См. выше:

Изоляционные материалы

Теплопроводность экструдированного полистирола

Теплопроводность определяется как количество тепла (в ваттах), передаваемое через квадратный участок материала заданной толщины (в метрах) из-за разница в температуре. Чем ниже теплопроводность материала, тем больше способность материала сопротивляться теплопередаче и, следовательно, выше эффективность изоляции. Типичные значения теплопроводности для экструдированного полистирола находятся между 0,025 и 0,040 Вт/м∙K .

Теплоизоляция в основном основана на очень низкой теплопроводности газов. Газы обладают плохими свойствами теплопроводности по сравнению с жидкостями и твердыми телами и, таким образом, являются хорошим изоляционным материалом, если их можно уловить (например, в пенообразной структуре). Воздух и другие газы обычно являются хорошими изоляторами. Но главная польза в отсутствии конвекции. Поэтому многие изоляционные материалы (например, экструдированный полистирол ) функционируют просто за счет наличия большого количества газонаполненных карманов , которые предотвращают крупномасштабную конвекцию .

Чередование газового кармана и твердого материала приводит к тому, что тепло должно передаваться через множество поверхностей, что приводит к быстрому снижению коэффициента теплопередачи.

 

Ссылки:

Теплопередача:

  1. Основы тепломассообмена, 7-е издание. Теодор Л. Бергман, Эдриенн С. Лавин, Фрэнк П. Инкропера. John Wiley & Sons, Incorporated, 2011. ISBN: 9781118137253.
  2. Тепломассообмен. Юнус А. Ценгель. McGraw-Hill Education, 2011. ISBN: 9780071077866.
  3. Министерство энергетики, термодинамики, теплопередачи и потока жидкости США. Справочник по основам Министерства энергетики, том 2 из 3, май 2016 г.

Ядерная и реакторная физика:

  1. Дж. Р. Ламарш, Введение в теорию ядерных реакторов, 2-е изд., Аддисон-Уэсли, Рединг, Массачусетс (1983).
  2. Дж. Р. Ламарш, А. Дж. Баратта, Введение в ядерную технику, 3-е изд., Prentice-Hall, 2001, ISBN: 0-201-82498-1.
  3. WM Стейси, Физика ядерных реакторов, John Wiley & Sons, 2001, ISBN: 0-471-39127-1.
  4. Гласстоун, Сесонске. Разработка ядерных реакторов: разработка реакторных систем, Springer; 4-е издание, 1994 г., ISBN: 978-0412985317
  5. WSC. Уильямс. Ядерная физика и физика элементарных частиц. Кларендон Пресс; 1 издание, 1991 г.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *