Заужение диаметра трубы отопления: Заужение диаметра трубы отопления и водоснабжения

Содержание

какой выбрать, последствия заужения к квартире, подбор по таблице

Отопление дома или квартиры — не такая простая инженерная система, как может показаться на первый взгляд. При составлении проекта требуется провести много расчётов, в частности, нужного диаметра трубопровода.

Правильно подобрать диаметр — это залог надёжной, комфортной и эффективной системы обогрева помещений.

К примеру, отопление без насоса, где теплоноситель циркулирует самотёком, вообще может не заработать при слишком узких трубах, а схема с принудительной циркуляцией при занижении диаметра будет шуметь или не прогревать помещения до нужной температуры. Поэтому следует воспользоваться правилами расчёта, которые позволят привести теплопотери к минимуму.

Влияние диаметра труб на КПД для системы отопления в частном доме

Ошибочно полагаться на принцип «больше — лучше» при выборе сечения трубопровода. Слишком большое сечение трубы ведёт к снижению давления в ней, а значит и скорости теплоносителя и теплового потока.

Более того, если диаметр слишком велик, у насоса попросту может не хватить производительности для перемещения такого большого объёма теплоносителя.

Важно! Больший объём теплоносителя в системе подразумевает высокую суммарную теплоёмкость, а значит времени и энергии на его подогрев будет затрачиваться больше, что также влияет на КПД не в лучшую сторону.

Подбор сечения трубы: таблица

Оптимальное сечение трубы должно быть минимально возможным для данной конфигурации (см. таблицу) по следующим причинам:

  • маленький объём теплоносителя быстрее нагревается;
  • меньший просвет создаёт большее сопротивление движению теплоносителя, оно замедляется, что приводит к уменьшению шума;
  • трубопровод небольшого диаметра лучше впишется в интерьер и вызовет меньше трудностей при монтаже;
  • от размера трубы зависит её стоимость, поэтому тонкие трубы более выгодны по цене.

Однако, не стоит переусердствовать: помимо того, что маленький диаметр создаёт повышенную нагрузку на соединительную и запорную арматуру, он также не в состоянии перенести достаточно тепловой энергии.

Чтобы определить оптимальное сечение трубы, используется следующая таблица.

Фото 1. Таблица, в которой значения приведены для стандартной двухтрубной схемы системы отопления.

Какие нужны параметры

В описании характеристик на конкретную трубу могут встретиться следующие параметры:

  • Внутренний диаметр — основной фактор, влияющий на производительность системы и учитывающийся в расчёте.
  • Внешний — измеряется по внешней окружности трубопровода, влияет на то, какие отверстия потребуется сверлить в стенах и перекрытиях.
  • Номинальный, или условный — приблизительно совпадает с внутренним сечением трубы, выбирается из фиксированного ряда чисел по ГОСТу, обозначается как DN 100. Для распространённых значений иногда так же обозначается как диаметр резьбы в дюймах, например: 1/2″, 3/4″.

Процедура расчёта, чтобы подобрать размер

Рассмотрим пример типового расчёта сечения трубопровода для обогрева комнаты 40 м2.

  • Вычислим оптимальное количество энергии для прогрева помещения. Для средней полосы, утеплённого дома и потолков не выше 3 метров, на 10 м2 площади требуется 1 кВт тепла. Или для 40 м2 — 4 кВт.
  • Берём 20% запас (на случай непредвиденных теплопотерь в виде открытых окон и других факторов): 4*1,2 = 4,8 кВт, или 4800 Вт. Под каждым окном в помещении должен стоять радиатор отопления. Допустим, в нашей комнате 3 окна, тогда это 3 радиатора, каждый по ~1,6 кВт.

Внимание! Тепловая мощность указывается в техпаспорте на батарею отопления. Можно использовать более мощный радиатор, но не наоборот, иначе помещение не будет прогреваться достаточно эффективно.

  • Теперь обращаемся к таблице и находим в ячейках самое близкое значение мощности к расчётному, округляя в большую сторону.

Согласно таблице, это 5518 Вт и нужно использовать трубопровод с сечением равным 12 мм, а скорость движения теплоносителя составит 0,6 м/с.

Несмотря на присутствие в ячейках других близких значений, используют значения из ограниченной синим цветом зоны, которая заключает в себе приемлемые значения скорости жидкости в трубопроводе.

Подходящая скорость протока теплоносителя по трубам — от 0,3 до 0,7 м/с. Меньшая — приведёт к медленному обогреву помещения и неравномерному прогреву радиаторов, а при большей жидкость просто не будет успевать прогреваться до установленной температуры в теплообменнике котла и создавать ощутимый шум.

Вам также будет интересно:

Особенности выбора в частном доме

В случае наличия центральной отопительной магистрали, подбор диаметра проводится аналогично квартирным отопительным системам. Однако если вы проектируете автономное отопление в частном доме, то необходимо принять в расчёт тип циркуляции теплоносителя: естественный или принудительный.

Принудительная циркуляция жидкости не так привередлива к выбору сечения трубопровода, а вот работа самотёчной системы с естественной циркуляцией очень сильно зависит от диаметра труб на различных участках.

Здесь больший размер трубы означает меньшее сопротивление и лучшую производительность системы, а некоторые участки контура должны обладать меньшим диаметром. Например, при установке байпаса (замыкающего участка) его диаметр рекомендуется на один условный размер меньше, чем основного трубопровода.

Фото 2. Применение байпаса в отопительной системе, в этом случае диаметр труб должен быть меньше, чем у трубопровода.

Последствия заужения стояка в многоквартирном доме

Весь контур системы отопления в идеале должен быть выполнен трубами одного размера. Отдельные узкие участки приводят к локальным повышениям давления и снижению расхода жидкости, что может пагубно отразиться на эффективности отопления.

При переделке системы отопления в квартире и замене стальных труб на пластиковые, можно по невнимательности сделать заужение диаметра на данном участке. Происходит это потому, что толщина стенок трубопровода из полиэтилена гораздо больше толщины у стального. Так при одинаковом внешнем сечении, пластиковая труба будет обладать меньшим внутренним просветом.

Зачастую такое делается только ради экономии времени и усилий, ведь старые отверстия в стенах под стальные трубы придётся расширять, причём немало: с 25 до 32 мм. Гораздо проще сэкономить и поставить трубу с меньшим внутренним сечением.

Однако делать такое категорически нельзя из-за серьезных последствий: в многоквартирном доме у соседей по стояку вы таким образом украдёте 40% тепла и воды, проходящей по трубам.

Как выбрать диаметр подачи и обратки в квартире

В двухтрубной схеме отопления может использоваться различное расположение труб подачи (с горячим теплоносителем) и обратки (с остывшим после передачи части энергии помещению). Если подача и обратка проходят рядом параллельно и каждый радиатор имеет индивидуальное подключение, то их диаметр можно выбрать одинаковым.

Справка! Однако если трубы разнесены, и подача заведена на чердак дома, откуда уже идут ответвления на комнаты, диаметр подающего трубопровода нужен больше обратного, для обеспечения достаточной производительности системы.

Трубопровод как ключ к эффективной работе

Сечение труб, из которых монтируется система отопления, имеет большое значение в эффективности её работы.

Неправильно произведённый расчёт диаметров может не проявить себя до поры до времени.

Например, пока вы не измените температуру теплоносителя или не попытаетесь запустить систему в холодном доме.

Если отопление и так работало «на грани», то изменение температурного режима может понизить давление до таких уровней, что система просто не будет работать.

Полезное видео

Из видео можно узнать некоторые советы специалиста по выбору диаметра труб отопительной системы.

Заключение

Помимо традиционного отопления на базе котла, сегодня набирает популярность геотермальное отопление, использующее тепловую энергию, запасённую в грунте от солнца. Специальное оборудование (тепловой насос) преобразует

небольшую температуру +5–8 °C на глубине земли в тепло для обогрева помещений.

К преимуществам данного способа отопления является повсеместная доступность, возобновляемость энергии, экологичность и низкие расходы на эксплуатацию. Но пока такие установки слишком дороги и окупаются через 5–8 лет. К тому же, для питания насоса требуется электричество, что делает такое отопление полностью энергозависимым.

Балансировка отопления, теплоснабжения многоквартирных и многоэтажных домов в Уфе и Башкирии

Услуги гидравлической балансировки стояков, системы центрального отопления в МКД, ТСЖ в Уфе и республике Башкортостан.

Комплексное решение вопросов в ЖКХ

 

Балансировка стояков системы отопления — гидравлическая настройка перепада давления и регулирующей арматуры с целью обеспечения равномерного распределения тепла по отопительным приборам.

Если в вашей квартире холодно, а у соседа — жарко, значит система отопления в вашем доме не сбалансирована. Недостаточная циркуляция теплоносителя через батареи приводит к снижению температуры в комнате, а слишком большой расход воды — к чрезмерному перегреву и появлению шума в радиаторах.

Признаки разбалансировки системы отопления многоэтажного дома:

  • Температура в одной части многоквартирного дома завышена, а в другой части занижена.
  • Квартиры с завышенной температурой – скидывают лишнее тепло на улицу.
  • Квартиры с заниженной температурой – включают электрообогреватели.
  • Холодно в доме
  • Холодные батареи
  • Плохая циркуляция в системе отопления
  • Духота в помещении
  • Переплата за отопление

Зачем балансировать систему отопления в МКД?

  • Избавиться от сквозняков из-за перегрева комнаты
  • Выравнивание температуры помещений по зданию, позволит автоматике проводить более качественное регулирование.
  • Уйдут в прошлое жалобы жильцов на недогрев и духоту в квартирах.
  • Установить на этажах, одинаковое температурное значение на всех радиаторах.

 

Ресурсоснабжающие организации ответственные за отопление в Уфе и Башкортостане:

МУП «УИС» г. Уфа

ООО «БГК» г. Уфа

ООО «МЕЧЕЛ- ЭНЕРГО» г. Белорецк

ООО «Кумертауские Тепловые сети» г. Кумертау

ООО «Башкирская генерирующая компания» г. Салават

ООО «БашРТС» г. Салават

ООО «БГК» г. Стерлитамак

ООО «Башкирские распределительные тепловые сети» г. Стерлитамак

ОАО «Октябрьсктеплоэнерго» г. Октябрьский

 

Как происходит балансировка системы отопления многоквартирного дома?

Производим аудит системы отопления с последующим восстановлением параметров теплоснабжения.

Одной из основных проблем при балансировке является отсутствие точных расходов по стоякам, известны только данные общего расхода на весь многоквартирный дом. Т.к. дома  были построены давно, не исключается факт замены жильцами радиаторов отопления и внесение существенных изменений в схему теплоснабжения МКД, что влияет на расход.

Результатом балансировки должна быть температура одного значения в контрольных точках. Контрольными точками следует выбирать обратный трубопровод каждого стояка. По температуре обратного стояка можно понять, какая температура батареи у последнего потребителя.

Выставить необходимый расход по каждому стояку отопления, так чтоб температура обратного теплоносителя лежала в диапазоне +/-2 С. 

Температура на радиаторах разная в следствии

  • Медленной циркуляции теплоносителя по стояку.
  • Большого теплосъёма с теплообменных приборов.

Причины, влияющие на замедление циркуляции в стояке системы отопления:

  • Изменение диаметра трубы на стояке к меньшему значению (заужение диаметра трубопровода). Установка полипропиленовых (ПП) и  металлопластиковых труб вместо металлической трубы.
  • Применение трубопроводной арматуры с большим гидравлическим сопротивлением. Фитинги металлопластиковых труб имеют большой коэффициент гидравлического сопротивления из-за малого внутреннего диаметра.
  • Демонтированный байпас у батарей. После демонтажа байпаса, расчётный суммарный диаметр уменьшается (вода протекает не через две трубы, а через одну), соответственно увеличивается гидравлическое сопротивление участка трубопровода.     

Причины увеличенного теплосъёма теплообменными приборами:

  • Подключение нестандартного теплообменного оборудования. Использование теплоносителя для обогрева теплового пола.
  • Увеличение количества теплообменного оборудования. Монтаж дополнительных радиаторов и увеличение количества секций батареи. Установка отопительных приборов в помещениях, которые не рассчитанный проектом, для обогрева от общедомовой системы теплоснабжения – балконы и лоджии.

Почему остывают батареи?

Существуют две схемы отопления – однотрубная и двухтрубная.

Двухтрубная система отопления.

Особенность — наличии двух трубопроводных веток (подачи и обратки). Для работы такой схемы  необходимо два трубопровода – подающий трубопровод и обратный трубопровод.  Оба трубопровода подключаются к радиатору отопления. По трубе подачи горячий теплоноситель поступает в батарею, по трубе обратки остывшая вода возвращается в систему теплоснабжения.  

В отличие от однотрубной схемы тепло подается во все радиаторы отопления с равной температурой, не теряя характеристики теплоносителя на последних батареях по ветке.

 

Однотрубная система отопления.

Особенность — температура на радиаторах расположенных ближе подающему трубопроводу выше, чем у радиаторов расположенных в конце стояка отопления. Однако этот эффект нивелируется количеством секций радиатора. Радиаторы, которые ближе к подаче – секций меньше. Радиаторы, которые ближе к обратке – секций больше.

В однотрубной схеме, теплоноситель подается по стояку отопления, расположенному вертикально, между двумя трубопроводами (лежанками) теплоснабжения (подачи и обратки). Лежанки трубопровода обычно находятся на чердаке и в подвале здания. К трубе  стояка последовательно подключены отопительные радиаторы.

 

Теплоноситель протекая от подающего трубопровода к обратному, постепенно теряет  свою первоначальную рабочую температуру.

В домах ранней постройки обычно используется именно такая схема отопления. Раньше  строителей это очень устраивало, т.к. в схеме используется всего лишь с один трубопровод, монтаж стояка прост в исполнении, экономия на расходе материалов (отсутствуют дополнительные фитинги, трубы, лежанки, перемычки и обратные стояки) и простата в сервисном обслуживании.

Особенностью однотрубной системы в многоквартирных домах, является наличие байпаса. После демонтажа байпаса, теплоноситель циркулирует только через радиатор отопления. В случае перекрытия запорной арматуры (крана) на батарее – циркуляция теплоносителя прекратится, и весь стояк отопления встанет.- Радиаторы отопления у остальных  жителей — остынут

Решим проблемы с отоплением раз и навсегда! Звоните!


Получите консультацию по телефону:
+7 (347) 266-00-86

Или напишите вопрос нашим специалистам:

Расчёт диаметра трубы отопления.

| Школа ремонта. Ремонт своими рукамиВ системе водяного отопления особенно часто у многих встает вопрос: Как вычислить диаметр трубопровода, по которому будет бежать теплоноситель (вода).Данный материал предназначен понять, что такое диаметр, расход и скорость течения. И какие связи между ними. В других материалах будет подробный расчет диаметра для отопления.Для того чтобы вычислить диаметр необходимо знать:
  1. Расход теплоносителя (воды) в трубе.
  2. Сопротивление движению теплоносителя (воды) в трубе определенной длины.
Вот необходимые формулы, которые нужно знать:
  • S-Площадь сечения м2 внутреннего просвета трубы
  • π-3,14-константа — отношение длины окружности к ее диаметру.
  • r-Радиус окружности, равный половине диаметра, м
  • Q-расход воды м3/с
  • D-Внутренний диаметр трубы, м
  • V-скорость течения теплоносителя, м/с
 Сопротивление движению теплоносителя.Любой движущийся внутри трубы теплоноситель, стремиться к тому, чтобы прекратить свое движение. Та сила, которая приложена к тому, чтобы остановить движение теплоносителя — является силой сопротивления.Это сопротивление, называют — потерей напора. То есть движущийся теплоноситель по трубе определенной длины теряет напор.Напор измеряется в метрах или в давлениях (Па). Для удобства в расчетах необходимо использовать метры.Извиняйте, но я привык указывать потерю напора в метрах. 10 метров водного столба создают 0,1 МПа.Для того, чтобы глубже понять смысл данного материла, рекомендую проследить за решением задачи.Задача 1.В трубе с внутренним диаметром 12 мм течет вода, со скоростью 1м/с. Найти расход.Решение: Необходимо воспользоваться вышеуказанными формулами:
  1. Находим сечение
  2. Находим расход
 Дано: S=3.14•0,0122/4=0,000113 м2Q=0,000113•1=0,000113 м3/с = 0,4 м3/ч.Ответ: 0,4 м3/ч.Задача 2.  Имеется насос, создающий постоянный расход 40 литров в минуту. К насосу подключена труба протяженностью 1 метр. Найти внутренний диаметр трубы при скорости движения воды 6 м/с.Конечно, в реальности насосы не выдают постоянный расход и не выдают бесконечно большой напор. Поэтому по условию задачи мы условно приняли, что насос качает строго 40 литров в минуту, а напор насоса бесконечно большой. Ниже я поясню все нюансы подбора диаметра.Решение.Дано:Q=40л/мин=0,000666666 м3/сИз выше указанных формул получил такую формулу.  Ответ: 12ммК сожалению, по такой формуле находить диаметр трубы не разумно и вот почему!Каждый насос имеет вот такую расходно-сопротивляемую характеристику:  Это означает, что наш расход в конце трубы будет зависеть от потери напора, которое создается самой трубой.Чем длиннее труба, тем больше потеря напора.Чем меньше диаметр, тем больше потеря напора.Чем выше скорость теплоносителя в трубе, тем больше потеря напора.Углы, повороты, тройники, заужения и расширение трубы, тоже увеличивают потерю напора.Такой характеристикой обладают на самом деле не насосы, а жидкости, которые подчиняются гидравлическим законам. Эти законы распространяются не только на насосы, но и на все трубы по которым течет жидкость. Даже если вода будет истекать из наполненного бака, там тоже будет присутствовать такая вот расходно-сопротивляемая характеристика.Более детально потеря напора по длине трубопровода рассматривается в этой статье:Потеря напора по длине трубопровода.А теперь рассмотрим задачу из реального примера.Хочу сразу Вас уведомить, что для следующей задачи были использованы эти материалы:Профессиональный расчет диаметра трубы для водоснабжения.Задача 2:  Стальная (железная) труба проложена длиной 376 метров с внутренним диаметром 100 мм, по длине трубы имеются 21 отводов (угловых поворотов 90°С). Труба проложена с перепадом 17м. То есть труба относительно горизонта идет вверх на высоту 17 метров. Характеристики насоса: Максимальный напор 50 метров (0,5МПа), максимальный расход 90м3/ч. Температура воды 16°С. Найти максимально возможный расход в конце трубы.Дано:
  • D=100 мм = 0,1м
  • L=376м
  • Геометрическая высота=17м
  • Отводов 21 шт
  • Напор насоса= 0,5 МПа (50 метров водного столба)
  • Максимальный расход=90м3/ч
  • Температура воды 16°С.
  • Труба стальная железная
Найти максимальный расход = ?Решение:Для решения необходимо знать график насосов: Зависимость расхода от напора.Я выбрал визуально похожий график всех насосов, от реального может отличаться на 10-20%. Для более точного расчета необходим график насоса, который указан в паспорте насоса. В нашем случае будет такой график:  Смотрите, прерывистой линией по горизонту обозначил 17 метров и на пересечение по кривой получаю максимально возможный расход: Qmax.По графику я могу смело утверждать, что на перепаде высоты, мы теряем примерно: 14 м3/час. (90-Qmax=14 м3/ч).Не существует прямой формулы, которая дает прямой расчет нахождения расхода, а если и существует, то она имеет ступенчатый характер и некоторую логику, которая способна Вас запутать — окончательно.Ступенчатый расчет получается потому, что в формуле существует квадратичная особенность потерь напора в динамике (движение).Поэтому решаем задачу ступенчато.Поскольку мы имеем интервал расходов от 0 до 76 м3/час, то мне хочется проверить потерю напора при расходе равным: 45 м3/ч. Находим скорость движения воды Q=45 м3/ч = 0,0125 м3/сек. V = (4•0,0125)/(3,14•0,1•0,1)=1,59 м/с Находим число рейнольдса  ν=1,16•10-6=0,00000116. Взято из таблици. Для воды при температуре 16°С.Re=(V•D)/ν=(1,59•0,1)/0,00000116=137069Δэ=0,1мм=0,0001м. Взято из таблицы, для стальной (железной) трубы.Далее сверяемся по таблице, где находим формулу по нахождению коэффициента гидравлического трения.У меня попадает на вторую область при условии10•D/Δэ    λ=0,11( Δэ/D + 68/Re )0.25=0,11•( 0,0001/0,1 + 68/137069)0,25=0,0216Далее завершаем формулой:h=λ•(L•V2)/(D•2•g)= 0,0216•(376•1,59•1,59)/(0,1•2•9,81)=10,46 м.Как видите, потеря составляет 10 метров. Далее определяем Q1, смотри график:   Теперь делаем оригинальный расчет при расходе равный 64м3/часQ=64 м3/ч = 0,018 м3/сек.V = (4•0,018)/(3,14•0,1•0,1)=2,29 м/сRe=(V•D)/ν=(2,29•0,1)/0,00000116=197414λ=0,11( Δэ/D + 68/Re )0.25=0,11•( 0,0001/0,1 + 68/197414)0,25=0,021h=λ•(L•V2)/(D•2•g)= 0,021•(376•2,29 •2,29)/(0,1•2•9,81)=21,1 м. Отмечаем на графике:Qmax находится на пересечении кривой между Q1 и Q2 (Ровно середина кривой).   Ответ: Максимальный расход равен 54 м3/ч. Но это мы решили без сопротивления на поворотах.Для проверки проверим:Q=54 м3/ч = 0,015 м3/сек.V = (4•0,015)/(3,14•0,1•0,1)=1,91 м/сRe=(V•D)/ν=(1,91•0,1)/0,00000116=164655λ=0,11( Δэ/D + 68/Re )0.25=0,11•( 0,0001/0,1 + 68/164655)0,25=0,0213h=λ•(L•V2)/(D•2•g)= 0,0213•(376•1,91•1,91)/(0,1•2•9,81)=14,89 м.Итог: Мы попали на Нпот=14,89=15м.А теперь посчитаем сопротивление на поворотах:Формула по нахождению напора на местном гидравлическом сопротивление: 
  • h-потеря напора здесь она измеряется в метрах.
  • ζ-Это коэффициент сопротивления. Для колена он равен примерно одному, если диаметр меньше 30мм.
  • V-скорость потока жидкости. Измеряется [Метр/секунда].
  • g-ускорение свободного падения равен 9,81 м/с2
ζ-Это коэффициент сопротивления. Для колена он равен примерно одному, если диаметр меньше 30мм. Для больших диаметров он уменьшается. Это связано с тем, что влияние скорости движения воды по отношению к повороту уменьшается.Смотрел в разных книгах по местным сопротивлениям для поворота трубы и отводов. И приходил часто к расчетам, что один сильный резкий поворот равен коэффициенту единице. Резким поворотом считается, если радиус поворота по значению не превышает диаметр. Если радиус превышает диаметр в 2-3 раза, то значение коэффициента значительно уменьшается.Возьмем ζ = 1.Скорость 1,91 м/сh=ζ•(V2)/2•9,81=(1•1,912)/( 2•9,81)=0,18 м.Это значение умножаем на количество отводов и получаем 0,18•21=3,78 м.Ответ: при скорости движения 1,91 м/с, получаем потерю напора 3,78 метров.Давайте теперь решим целиком задачку с отводами.При расходе 45 м3/час получили потерю напора по длине: 10,46 м. Смотри выше.При этой скорости (2,29 м/с) находим сопротивление на поворотах:h=ζ•(V2)/2•9,81=(1•2,292)/(2•9,81)=0,27 м. умножаем на 21 = 5,67 м. Складываем потери напора: 10,46+5,67=16,13м.Отмечаем на графике:   Решаем тоже самое только для расхода в 55 м3/ч Q=55 м3/ч = 0,015 м3/сек. V = (4•0,015)/(3,14•0,1•0,1)=1,91 м/с Re=(V*D)/ν=(1,91 •0,1)/0,00000116=164655 λ=0,11( Δэ/D + 68/Re )0.25=0,11•( 0,0001/0,1 + 68/164655)0,25=0,0213 h=λ•(L•V2)/(D•2•g)= 0,0213•(376•1,91•1,91)/(0,1•2•9,81)=14,89 м. h=ζ•(V2)/2•9,81=(1•1,912)/( 2•9,81)=0,18 м. умножаем на 21 = 3,78 м. Складываем потери: 14,89+3,78=18,67 м Рисуем на графике:  Ответ: Максимальный расход=52 м3/час. Без отводов Qmax=54 м3/час.Чтобы в ручную не считать всю математику я приготовил специальную программу:Теперь я думаю вам понятно как происходит сопротивление движению потока. Если не понятно, то я готов услышать ваши коментарии по данной статье. Пишите коментарии.В итоге, на размер диаметра влияют:1. Сопротивление, создаваемое трубой с поворотами2. Необходимый расход3. Влияние насоса его расходно-напрной характеристикойЕсли расход в конце трубы меньше, то необходимо: Либо увеличить диаметр, либо увеличить мощность насоса. Увеличивать мощность насоса не экономично.

Правильный выбор диаметров труб для магистрали отопления Волкано

Диаметр трубопровода волкано


Диаметр подающего трубопровода при подключении нескольких тепловентиляторов должен быть подобран таким образом, чтобы скорость потока воды не превышала 2,5 м/с.



Данное требование является следствием компромисса между инвестиционными расходами, связанными с применением трубопроводов определенного диаметра, и эксплуатационными расходами (текущими затратами), связанными с гидравлическим сопротивлением трубопроводов.

Возможно применение трубопроводов с последовательным заужением трассы, для снижения нагрузки на насосные группы и уменьшения затрат на создание системы отопления в целом.

Материал труб для системы отопления тепловентиляторов волкано – может быть любой: это могут быть стальные газосварные трубы, медные трубы, трубы из сшитого полиэтилена или полипропиленовые трубы.

Рекомендуется подбирать оптимальные диаметры трубопроводов в зависимости от количества и типа тепловентиляторов, подключаемых к магистральному трубопроводу, в соответствии со следующей таблицей:

Количество тепловентиляторов Volcano mini, подключаемых к магистральному водопроводу

 

Volcano VR Mini

Макс. расход воды,
м³/час

Диам. труб,
мет., 

дюйм

1

0,9

¾

2

1,8

1

3

2,8

4

3,7

1 ¼

5

4,6

1 ¼

6

5,5

1 ½

7

6,4

1 ½

8

7,4

1 ½

9

8,3

1 ¾

10

9,2

1 ¾

 

Количество тепловентиляторов Volcano VR1, подключаемых к магистральному водопроводу

 

Volcano VR1

Макс. расход воды,
м³/час

Диам. труб,
мет., 

дюйм

1

1,3

¾

2

2,7

1

3

4

1 ¼

4

5,3

1 ½

5

6,7

1 ½

6

8

1 ¾

7

9,3

1 ¾

8

10,6

2

9

12

2

10

13,3

2

 

Количество тепловентиляторов Volcano VR2, подключаемых к магистральному водопроводу

 

Volcano VR2

Макс. расход воды,
м³/час

Диаметр трубы,
металл, дюйм

1

2,2

1

2

4,4

1 ¼

3

6,6

1 ½

4

8,8

1 ¾

5

11,1

2

6

13,3

2

7

15,5

2

8

17,7

2 ¼

9

19,9

2 ½

10

22,1

2 ½

 

Количество тепловентиляторов Volcano VR3, подключаемых к магистральному водопроводу
  Volcano VR3
Макс. расход воды,
м³/час
Диаметр трубы,
металл, дюйм
1 3,3 1
2 6,6 1 ½
3 9,9 1 ¾
4 13,2 2
5 16,6 2 ¼
6 19,9 2 ½
7 23,2 2 ½
8 26,5 2 ¾
9 29,8 3
10 33,1 3

Данные по рекомендуемым диаметрам трубопровода, в таблице приведены при условии, что общая длина трубопровода в одну сторону не превышает 40 м. В случае крупных трубопроводных систем, т. е. при размещении тепловентиляторов на расстоянии более 40 м от источника теплоты, диаметры трубопроводов следует обязательно корректировать с учетом более низких скоростей движения потока воды, в сторону увеличения.

Для ПП труб размер больше на 1 значение по сравнению с металлом, например, металл 3/4” – ПП +1 диаметр 32 ПП

Очень часто, приходится экономмить буквально на всем. Данные, которые помогут Вам самостоятельно определить диаметры магистральных труб системы отопления VOLCANO:



Как сделать ремонт сантехники и не быть проклятым своими соседями? Управляющие компании Братска советуют

Случается это обычно так — в водопроводном кране начинают «гулять» напор и температура, без видимых причин вибрируют трубы в ванной, становится холодным полотенцесушитель (несмотря на то, что циркуляция запущена), вдруг пропадает отопление в одной из комнат. Собственники квартиры, а иногда и целого подъезда в таких случаях обращаются в управляющую компанию и начинаются поиски причин безобразия, которые часто приводят в одну из квартир дома, где недавно был ремонт, и поработали «опытные сантехники».

Надо сказать, что всё заканчивается хорошо только в том случае, если квартиру удаётся найти, и если собственник квартиры соглашается всё исправить. Нередко общий язык со своим соседом жителям дома приходится искать очень долго. Иногда он так и не находится.

Итак, на что следует обратить внимание в работе «опытных сантехников», чтобы жители подъезда не прокляли вас, и не пришлось делать часть ремонта заново?

1. Не должно быть заужения диаметра трубопровода нигде и никогда. Большинство домов в Братске сделано по советским проектам, и если в некоторые конструкции заложен двойной запас прочности, то сантехники это не касается точно. Допускается фабричная гибкая подводка (лучше российская) к смесителям и/или унитазу — и всё.

2. Вентили ни в коем случае не должны располагаться на общедомовых трубопроводах (стояках) – они могут стоять только на отходящих от стояка трубопроводах.  То есть, никто не имеет права из своей квартиры перекрывать воду всему подъезду или прекращать циркуляцию (в морозы это грозит серьёзной аварией с катастрофическими последствиями).

3. Лето — время менять радиаторы отопления. Собственник квартиры вправе выбрать любую организацию для выполнения этих работ. Но от правильной установки радиатора зависит, будет ли тепло в вашей квартире и в квартирах ваших соседей. Не надо слушать рассказы о том, что «мы тысячу раз так делали» и «сейчас так у всех радиаторы стоят» — необходимо придерживаться схемы монтажа радиатора отопления и обращать особое внимание на расположение запорных вентилей. В частности, очень важно, чтобы они стояли после перемычки (как на левом рисунке), которая пропускает теплоноситель параллельно запорно-регулирующей арматуре. В случае с однотрубной системой, если вентили будут стоять до перемычки, то вы, перекрывая свой радиатор, закроете отопление для всего стояка. Думайте, скажут вам соседи «спасибо» или найдут какое-нибудь другое слово.

Фото с сайта stroyday.ru 

Также обратите внимание на нормы – количество секций радиатора на площадь помещения. Надо сказать, что не все граждане могут преодолеть соблазн поставить на комнату сверхнормативное количество секций. Жар костей не ломит, конечно, но стоит помнить, что объём теплоносителя учитывается и стоит денег. Оплачивает жару в отдельно взятой квартире весь дом.

4. В случае, если вы самостоятельно решили заменить трубу общедомового стояка в своей квартире – требуйте от ремонтников установки оцинкованной трубы на горячем трубопроводе. Она прослужит в разы дольше.

5. Следует с осторожностью относиться к предложениям «сделать медь» (но выбор за жильцом, разумеется). Да, существует (без шуток) секта «сантехников-медянщиков», которые продвигают и проповедуют веру в медную подводку, как в единственно истинные трубы.

Тут надо учитывать, что, в первую очередь «сектанты» продвигают свои услуги. Дело в том, что сантехник домоуправления и многие другие организации в случае чего не возьмутся ремонтировать медные трубы — для этого нужны другие инструменты, как минимум. Скорее всего, вам потребуется человек, который их устанавливал. Кроме этого, хороших специалистов-«медянщиков» мало, и некоторые делают свою работу «на отвяжись». Специалистам доводилось видеть буквально медные трубочки диаметром с шариковую ручку и длиной в два метра в качестве подводки к сантехническим приборам, которые были поданы клиенту со словами: «это вам теперь на века».

А недавно в одной из квартир на улице Крупской довелось видеть работу по монтажу полотенцесушителя от «опытного сантехника», который врезал в общедомовой стояк трубопровода два шаровых крана, от них пустил медную подводку, заузив диаметр трубы (по которой приходит горячая вода в квартиры на всех девяти этажах), как минимум, в два раза. В итоге трубопровод стало регулярно бить гидроударами – «медь» в местах пайки дала течь. В качестве «бонуса» «опытный сантехник» оказался ещё и умелым плиточником, а потому оставил два лючка, через которые можно только «поручкаться» в вентилем на трубопроводе. И теперь не оторвать плитку и не сломать короб нельзя, поскольку жилец не может перекрыть давший течь трубопровод у себя в квартире, не оставив без воды весь дом.

Отсюда ещё один важный момент, о котором надо подумать перед тем, как делать ремонт стен около трубопроводов. А именно — необходимо всегда отдавать себе отчет в том, что, если вы закрыли трубы каким-либо коробом, то рано или поздно (завтра или через 20 лет) вам придётся его демонтировать. Даже если вы заменили трубы – никто не гарантирован от брака материалов или ошибок мастеров. Совет: делайте съемные короба, которые можно демонтировать в течение 10 минут. Как правило, это каркас из металлических направляющих, обшитый пластиковыми панелями на саморезах.

Система отопления в частном доме. Какую выбрать схему?

Системы отопления делятся на две большие группы – однотрубные и двухтрубные. Разница заключается в присоединении отопительных приборов. В однотрубной системе радиаторы подключаются последовательно, отсюда основной минус такой системы. По мере движения теплоносителя в отопительных приборах температура постепенно уменьшается, поэтому ближайшие к котлу радиаторы всегда более нагретые, чем отдалённые.

В двухтрубных системах батареи подключаются параллельно, поэтому все приборы нагреваются одинаково. Но такие системы более сложные при монтаже и требуют больше затрат на материалы. Давайте более подробно разберём каждую систему. Пойдём от простого к сложному.

Простейшая однотрубная система – самый дешёвый вариант.

Посмотрите на рисунок, система проще некуда. Теплоноситель, проходя последовательно через несколько радиаторов, возвращается в котёл, где опять нагревается.

В такой системе нельзя отключить или уменьшить мощность одного радиатора, так как закрыв его циркуляция в системе полностью прекратится. Вы спросите: «Зачем нужна такая система, где невозможно отключить радиатор, если стало жарко»?

Вы абсолютно правы!

Но в некоторых случаях такую систему стоит монтировать. Например, Вы имеете дачный домик с одной комнатой, где система состоит из трёх радиаторов и электрического котла. В этом случае, нет необходимости отключать радиаторы, а если стало жарко, можно просто уменьшить температуру на котле. Такую систему можно охарактеризовать так – просто, дешево и без заморочек.

Однотрубная система – «ленинградка»

Схема выглядит таким образом: понизу идёт труба розлива в которую с помощью тройников врезаются батареи отопления.

Эту систему делают очень часто. Люди рассуждают так: одна труба розлива всегда проще и дешевле, чем две. Но экономия на трубе при монтаже «ленинградки» имеет место только тогда, когда есть возможность сделать полный круг, то есть обойти кругом всё помещение. Если же полностью закольцевать розлив не получается, то приходится возвращать холостую трубу и вся экономия сходит на нет. Очень часто при монтаже «ленинградки» допускаются непоправимые ошибки, которые приводят к тому, что система совсем или частично не работает. Как известно, теплоноситель всегда циркулирует по пути наименьшего сопротивления, поэтому большая его часть идёт по нижней трубе помимо радиатора. А в батареи циркуляция очень слабая и чтобы её увеличить монтируется так называемая редукция. Делают её двумя способами — заужением участка трубопровода под радиатором или установкой на нём запорной арматуры.

Гравитационная система — она работает без насоса

По-другому такую систему отопления называют самотечной. В чем ее смысл? Из курса физики известно, что горячая жидкость, а в данном случае, нагретый теплоноситель имеет меньшую плотность, чем остывший. Поэтому, выходя из котла жидкость как бы всплывает, поднимаясь наверх, затем охлаждается в отопительных приборах и падает вниз, далее проходя по обратному трубопроводу поступает обратно в отопительный котел.

Процесс этот называют естественной циркуляцией. Таким образом, для работы такой системы отопления не нужен циркуляционный насос, все и так вертится под действием силы тяжести. Но движение теплоносителя при естественной циркуляции происходит медленно, поэтому циркуляционный насос на такую систему обычно всё равно ставят. Монтируется он на обводной линии, а на основную трубу устанавливается шаровой полнопроходной кран, который открывают при отключении электроэнергии. Гравитационная система монтируется из стальных труб достаточно большого диаметра. Горизонтальные участки розлива выполняются с уклоном — подача от котла, обратка к котлу. Величина уклона должна составлять не менее 5 мм на погонный метр трубы. Верхнюю трубу сделать с уклоном, как правило, не составляет труда, а с нижней возникают проблемы. Приходится устанавливать котел как можно ниже или поднимать обратный трубопровод вместе с радиаторами. Гравитационная система получается дорогой, громоздкой и некрасивой. Чтобы исключить закипание котла при отключении электричества можно пойти по другому пути — это установка источника бесперебойного питания на циркуляционный насос.

Коллекторная — система на любителя

Еще эту систему называют лучевой. Суть схемы такова. В отапливаемом помещении, обычно ближе к центру, располагается коллектор, от которого к каждому радиатору идут две трубы – подающая и обратная.

Трубы в ней, как правило, используются из металлопластика или сшитого полиэтилена. Прокладываются они чаще всего в конструкции пола (в стяжке), реже по потолку нижнего этажа. Лучи, подходящие к радиаторам, имеют разную длину, поэтому для правильной работы необходима тщательная балансировка. Преимуществами такой системы является отсутствие соединений труб, находящихся в стяжке, так как лучи делаются из цельных кусков и быстрота монтажа. При чём второе преимущество достаточно спорное. Самым главным минусом такой системы является дороговизна – большое количество трубы, коллекторы стоят денег.

Попутная система — «Петля Тихельмана»

В этой системе теплоноситель движется по кругу в одном направлении. Подача в ней большим диаметром начинается на первом радиаторе, далее уменьшаясь заканчивается на последнем. Розлив же обратного трубопровода начинается наоборот – большим диаметром на последнем радиаторе и меньшим на первом.

Таким образом, сумма труб подачи и обратки каждого отопительного прибора одинакова. На первом радиаторе — короткая подача, длинная обратка, на последнем наоборот — большая подача, маленькая обратка. Что это даёт? Все радиаторы в такой системе имеют одинаковое гидравлическое сопротивление, то есть находятся в одинаковых условиях. Сделали попутку, запустили, всё сразу работает – хлопаем в ладоши! Не нужно никакой регулировки! На самом деле, балансировочные вентиля в попутной системе ставить рекомендуется, так как ещё есть человеческий фактор. При монтаже, сварке или пайке возможны дефекты (заужение труб), поэтому минимальная балансировка всё же может потребоваться.

Тупиковая двухтрубная система

Петля Тихермана — это очень хорошо. Но не всегда есть возможность закольцевать систему. Входные двери, лестничные марши мешают прохождению труб отопления. В таких случаях монтируется двухтрубная тупиковая система.

Розлив в ней состоит из двух труб — прямой и обратной. Уменьшение диметра трубы происходит от первого радиатора к последнему. Приборы отопления присоединяются параллельно. Система прекрасно работает, когда количество радиаторов на каждой ветке розлива не очень большое, так как чем больше приборов находится на каждом контуре, тем сложнее сбалансировать систему. Для регулировки системы необходимо прикрывать балансировочные клапаны на ближних радиаторах.

Какую схему выбрать?

Выводы: