- Коллектор для отопления. Принципы работы, правила монтажа и подключения
- схема изготовления, чертеж, особенности использования и отзывы
- Гидравлическая стрелка своими руками чертежи
- Учебник по физике: Диаграммы лучей — Вогнутые зеркала
- 404 | Водяное отопление с рекуперацией тепла
- Механизмы потери или передачи тепла
Коллектор для отопления. Принципы работы, правила монтажа и подключения
Одним из действенных вариантов модернизации системы отопления, позволяющих сделать ее более производительной и надежной, является установка коллекторного блока. Устройство, пришедшее на смену традиционным конструкциям линейной структуры, призвано повышать удобство эксплуатирования и ремонтопригодность системы.
Как функционирует коллектор для отопления и какие особенности монтажа следует учитывать, рассмотрим подробнее.
Основное предназначение распределительного коллектора – равномерно раздавать тепловые потоки, поступающие из основной магистрали, по контурам системы и за счет циркуляционного оборота возвращать остывшую жидкость к котлу.
При этом отдельные ветки системы, подключенные к коллектору, становятся независимыми друг от друга. Прибор являет собой промежуточный распределительный узел, ключевыми элементами которого выступают две взаимосвязанные части:
Вместе они образуют коллекторную группу.
Каждый вывод устройства может быть оснащен выпускными вентилями и отсекающим либо регулировочным краном. Их наличие дает возможность регулировать давление внутри каждого контура и в случае надобности отсоединения ветки для ремонта, например, перекрывать поток теплоносителя.
Чтобы повысить производительность системы и получить возможность контролировать все отопительные процессы в каждой комнате обогреваемого дома, корпус распределительной гребенки задействуют также в качестве платформы под установку:
Принцип работы коллекторной системы довольно простой. Нагретый теплоноситель от, например твердотопливного котла, поступает в распределительный коллектор.
Внутри промежуточного сборного узла скорость движения жидкости замедляется благодаря увеличенному внутреннему диаметру устройства, она перераспределяется между всеми отводами.
Зная расход теплоносителя, равный мощности котла, и скорость движения воды, несложно найти необходимую площадь сечения. Только предварительно следует перевести литры в удобную для расчетов единицу м3.
Через соединительные патрубки, сечение которых меньше диаметра трубы коллекторного узла, теплоноситель поступает в отдельно проложенные контуры и двигается к радиаторам или к сеткам теплого пола.
Благодаря такому распределению должным образом прогревается каждый элемент, снабжаемый теплоносителем равной температуры.
Достигнув батареи и отдав полученное при нагреве тепло, жидкость направляется по другой трубе в противоположном направлении к распределительному блоку. Там она поступает на обратную гребенку, откуда перенаправляется к твердотопливному котлу.
Для загородного коттеджа система с использованием коллектора по праву считается самой эффективной и надежной
Единственное, что может останавливать рачительного хозяина– стоимость. Ведь обустройство такой системы обойдется дороже, чем устройство обычной системы тройникового типа.
Такое конструктивное решение, предполагающее обустройство отдельных подающих труб, создает условия для равномерного разогрева радиаторов
Коллекторные установки, применяемые при проектировании закрытых циркуляционных отопительных систем, бывают трех разновидностей. В зависимости от назначения конструкции на рынке представлены: радиаторные и солнечные системы, а также устройства, оснащенные гидрострелкой.
Какой бы тип отопления не был запроектирован в доме, радиаторы в нем присутствуют всегда. А потому коллекторы, распределяющие потоки теплоносителя непосредственно к установленным в комнатах батареям, являются самым востребованным типом.
Распределительный узел состоит из двух взаимосвязанных гребенок: первая направляет теплоноситель к установленным в комнатах приборам, вторая – отводит его обратно к котлу
Коллекторы, применяемые при радиаторном отоплении, в зависимости от архитектурных и интерьерных особенностей помещения можно подключать различными способами. По способу подключения радиаторная система отопления может быть выполнена в любом из перечисленных ниже вариантах исполнения:
Наибольшее распространение получил все же нижний способ соединения. При такой разводке контуры, скрытые под поверхностью плинтуса или пола, не так бросаются в глаза. Да и расчеты подтверждают, что при нижнем присоединении все преимущества частного отопления проявляются в полной мере.
Коллектором для радиаторов оснащают каждый этаж дома. Устанавливают его в центре, маскируя устройство в нише или в устроенном специально для него шкафчике на стене. Место для установки должно быть выбрано так, чтобы по возможности ко всем приборам подводились ветки равной длины.
Если невозможно достичь равенства подключенных к коллектору колец, то каждый отвод снабжается собственным циркуляционным насосом. По сути, все подключенные к распределительному узлу ветки представляют собой самостоятельный контур с собственной запорной арматурой, а иногда и автоматикой.
Ярким примером коллекторной схемы отопления являются водяные теплые полы.
Коллекторная схема разводки обеспечивает равномерную поставку тепла во все кольца системы водяных “Теплых полов”
Трубопроводы теплых полов собирают из медных труб или их пластиковых аналогов, для соединений используют неразъемные фитинги.
В отопительные кольца монтируют вентили, с помощью которых регулируют подачу теплоносителя, а в случае необходимости отключают «теплые полы» от общедомовой отопительной сети.Такие системы всегда оснащают циркуляционным насосом. Его располагают в промежуточный коллекторный узел на входе в трубу обратного направления.
Число патрубков на распределительном узле зависит от количества помещений, зацикленных на одной гребенке. Количество коллекторных групп определяют, ориентируясь на длину контуров. За основу расчетов берут соотношение, при котором на одну коллекторную группу отводится 120 метров трубопровода.
При обустройстве мощных и разветвленных систем отопления, которые проектируют в жилых постройках большой площадью, применяют распределительные коллекторы, оборудованные термогидравлическим распределителем или гидрострелкой.
При монтаже связующего звена с одной стороны к нему подключают контур отопительного котла, а с другой – радиаторное отопление или «теплые полы».
Гидравлическая стрелка представляет собой вертикальную полную трубу, оснащенная по торцам эллиптическими заглушками, основное предназначение которой – выравнивать оказываемое на теплоноситель давление
Наличие распределительной гидравлической стрелки позволяет решить сразу несколько задач:
Поддержание температурного баланса достигается за счет того, что устройство позволяет отделить гидравлический контур котла от вторичной цепи.
Оптимальную работу системы, оснащенной гидрострелкой, можно обеспечить при условии, если каждый контур оборудован собственным циркуляционным насосом.
Сегодня на рынке отоптельного оборудования представлено множество разновидностей коллекторов для отопительных систем.
Производители предлагают как связующие звенья самого простого исполнения, конструкция которых не предусматривает наличие вспомогательной арматуры для регулирования оборудования, так и коллекторные блоки с полным комплектом вмонтированных элементов.
Коллекторный блок, включающий все необходимые функциональные элементы для создания условий бесперебойной и высокопроизводительной работы отопительной системы
Простые в исполнении устройства являют собой латунные модели с дюймовым проходом ответвлений, оснащенных двумя соединительными отверстиями по бокам. На обратном коллекторе такие устройства имеют заглушки, вместо которых в случае «наращивания» системы всегда можно установить дополнительные приборы.
Более сложные в конструктивном решении промежуточные сборные узлы оснащены шаровыми кранами. Под каждый отвод в них предусмотрена установка запорной регулировочной арматуры. Некоторые модели могут быть оснащены такими дополнительными элементами:
Количество контуров в зависимости от подсоединяемых потребителей может варьироваться в пределах от 2 до 10 штук.
Независимо от сложности и многофункциональности оборудования при изготовлении гребенок коллекторных блоков используют материалы, устойчивые к внешним факторам
Если за основу брать материал изготовления, то промежуточные сборные коллекторы бывают:
Модели, выполненные из металла, для продления срока службы и повышения эксплуатационных параметров обрабатывают антикоррозионными составами и покрывают теплоизоляцией.
Разделительные конструкции, выполненные из полимеров, применяют при обустройстве систем, отапливаемых котлами мощностью от 13 до 35 кВт
Детали устройства могут быть литого исполнения либо же оснащены цанговыми зажимами, позволяющих осуществлять соединение с металлопластиковыми трубами.
Но специалисты не советуют выбирать гребенки с цанговыми зажимами, поскольку те часто «грешат» подтеканием теплоносителя в местах соединения вентиля. Это возникает вследствие быстрого выхода из строя уплотнителя. И заменить его не всегда представляется возможным.
Основная сложность заключается не только в самом монтаже коллектора, но и в правильном выборе оборудования.
Для обустройства поэтажных независимых обогревательных контуров, оснащенных автономным управлением, гребенки необходимо монтировать на каждом этаже дома.
При выборе и установке поэтажных распределителей ориентируются на параметры «подсистемы», которую они призваны обслуживать.
Благодаря поэтажному размещению гребенок в случае надобности всегда можно отключать отопление как нескольких отдельных приборов, так и всего этажа
Это значительно упрощает обслуживание отопительной системы и ее ремонт. Поскольку коллекторный блок – недешевое удовольствие, чтобы обезопасить себя от разочарований при быстром выходе системы из строе при выборе модели стоит ориентироваться на продукцию проверенных производителей.
Если предполагается подключать от коллектора водяной теплый пол, дополнительно потребуется установить кран для подпитки.
Для фиксации коллектора к стене потребуются также хомуты, «посаженные» на пластиковые дюбеля. При монтаже конструкции допустимо также применять специальные кронштейны.
Такие конструкции удобны тем, что верхний коллектор в них выдвинут вперед, благодаря чему трубы узла не мешают подводу трубопровода к нижнему коллектору.
Выбирать и устанавливать коллектор лучше всего еще на этапе проектирования и монтажа отопительной системы.
Устанавливают такие промежуточные конструкции в помещениях, защищенных от избыточной влажности. Чаще всего для этих целей отводят место в коридоре, кладовой или гардеробной.
Коллекторный блок желательно размещать в специально предназначенном для этого металлическом шкафу, оснащенным в боковых стенках отверстиями под выведение труб
В продаже встречаются накладные и встраиваемые модели металлических шкафов. Каждая модель оснащена дверцей и выштамповкой по боковым сторонам.
За неимением возможности установить металлический шкафчик, поступают проще, фиксируя устройство прямо на стену. Нишу под обустройство коллекторного блока размещают на небольшой высоте относительно пола.
Общепринятой инструкции по монтажу коллекторных распределительных схем по сути нет. Но есть ряд основных моментов, относительно которых специалисты пришли к единому знаменателю:
Перед циркуляционным насосом на магистрали обратной подачи размещают расширительный бак. Благодаря этому он становится менее уязвимым к турбулентности потоков воды, часто возникающих в этом месте.
Если же используется гидрострелка – бак монтируют перед основным насосом, основная задача которого состоит в том, чтобы обеспечивать циркуляцию на малом контуре.
Место расположения циркуляционного насоса не принципиально. Но, как показывает практика, ресурс устройства несколько выше именно на «обратке».
Главное при монтаже – расположить вал строго горизонтально. При несоблюдении этого условия первый же пузырь скопившегося воздуха оставит агрегат без охлаждения и смазки.
Грамотно выбранная и смонтированная коллекторная разводка гарантирует эффективность и надежность системы отопления.
Благодаря малому количеству соединений и тройников вероятность протечек таких конструкций сводится к минимуму. Ну а возможность регулировать температуру нагрева каждого отопительного радиатора делает эксплуатацию отопительной системой особенно комфортной.
Для оптимизации накопления и расходования тепла, получаемого от твердотопливного котла на практике применяют различные теплотехнические приемы, используя дополнительное оборудование. Установив систему отопления с аккумулирующим баком, вы повышаете ее эффективность, включая в схему обвязки автоматический трехходовой смесительный узел.
Термостатический узел, обеспечивает увеличение эффективности системы за счет сглаживания нагрева теплоносителя в системе и упорядочивает подачу нагретой воды в накопительную ёмкость. Примером наиболее применяемого устройства для накопления тепла в аккумуляционный бак твердотопливной системы отопления, совмещенного с бойлером является Laddomat.
Що досягається | За рахунок чого |
Збільшення терміну служби котла та всієї системи опалення | Згладжування нагріву теплоносія в системі, запобігаючи надлишкову конденсацію на металеві поверхені елементів котла, сповільнюється корозія металу |
Повний автоматичний контроль за процесом нагріву води | Оснащений трьома термодатчиками |
Підвищення ККД системи | Оптимальний нагрів теплоносія |
Зменшення витрат палива на 25-30% | Оптимізація витат отриманого тепла |
Назалежність від електропостачання, автономна циркуляція та завантаження теплоакумулятора без електроенергії | Конструктивних особливостей клапана |
Эффективность применения Ладдомата в связке с аккумулирующим баком обеспечивается физическими принципами жидкостей, имеющих различную температуру. Здесь мы, не углубляясь в физику жидкостей, отметим, применение трехходового клапана за счет автоматического регулирования скорости подачи воды в накопительный бак обеспечивает сепарацию или стратификацию (резкую границу) в нем между слоями горячей и холодной воды.
При установке ладдомата с котлом и баком нужно помнить следующие правила:
Рекомендуем посмотреть коллекторы, гидрострелки и смесительные узлы для отопления
схема изготовления, чертеж, особенности использования и отзывы
Очень многие современные люди задаются вопросами о том, каким образом ставится гидрострелка с коллектором (схема изготовления ниже). При этом даже многие профессионалы с течением времени начинают понимать, что использование специализированных гидравлических разделителей для подключения котлов является довольно эффективным средством, которое позволяет значительно поднять эффективность установленной системы отопления.
Проблемы старых технологий
Многие знают, что котлы без подключенных насосов часто напрямую подключаются к коллектору, и именно вместо такого варианта чаще всего используется такая гидрострелка с коллектором (схема изготовления ниже). Из котлов с насосами эти устройства просто-напросто вынимались, вследствие чего устанавливались на каждый отдельный отопительный контур, но на самом деле такой вариант можно использовать далеко не в любых ситуациях, так как, если на данный момент на котел пока еще остается гарантия, то в таком случае из него нельзя будет удалять насосы, а если же речь идет о чугунном котле, то в случае такого демонтажа его комплектующих при первом включении отопления могут лопнуть даже отдельные секции котла, не выдержав такой разницы температур.
Что дает эта технология
Чтобы избавиться от всего этого, сегодня используется специализированная гидрострелка с коллектором (схема изготовления представлена в статье). Данное устройство предназначается для разделения гидравлики, а если говорить более точно, разделяет котел непосредственно с остальной системой отопления. Таким образом, к примеру, гидрострелка с коллектором (схема изготовления проиллюстрирована) может предусматривать единственный насос в котле, в то время как в системе устанавливается еще несколько таких агрегатов разной мощности.
Как она работает
Устройство такого оборудования является предельно простым. На данный момент мы не будем разбирать какие-то высокотехнологичные устройства, а рассмотрим только основные варианты реализации такой технологии.
В принципе, достаточно использовать стандартный кусок трубы, из которого изготавливается гидрострелка (гидроразделитель). Расчет гидрострелки позволит вам понять, какие основные характеристики должно иметь такое устройство и какие лучше всего использовать материалы для его изготовления.
В чем ее назначение
В первую очередь проектировщики стараются исходить из того, что стрелка предназначается именно для разделения гидравлики. В преимущественном большинстве случаев производители на сегодняшний день стараются выпускать котлы, оснащенные собственными насосами, причем такие устройства являются достаточно мощными.
К примеру, есть котлы с закрытой камерой сгорания, в которых устанавливаются встроенные насосы. Мощность таких устройств может составлять примерно 300 ватт, но на самом деле ее не хватит для того, чтобы полностью продавливать систему отопления, если требуется обеспечение объекта на 1000 м2, а именно на такую среднюю площадь отопления приблизительно рассчитано такое оборудование.
В связи с этим нужно монтировать дополнительные насосы, а также использовать комбинированные системы. Именно в такой ситуации вместо помощи тот насос, который изначально используется в котле, будет просто-напросто мешать, и именно в таких случаях может использоваться гидрострелка (назначение, расчет, изготовление — об этом дальше в статье). При этом стоит отметить тот факт, что такое высокомощное оборудование в преимущественном большинстве случаев изначально поставляется с заводской гидрострелкой в комплекте или хотя бы есть довольно точная инструкция того, как нужно ее подключать.
Если брать котлы поменьше, то с ними в основном обстоит точно такая же история, но в данном случае уже придется самостоятельно изготавливать.
Куда ее устанавливают
Гидрострелка устанавливается на напольные котлы без встроенного насоса для обеспечения эффективной защиты котла от большой разницы в температурах во время первого старта отопительной системы. К примеру, при помощи данного оборудования стандартные стальные котлы могут защититься от создаваемого конденсата, в то время как чугунные устройства можно обезопасить от возможности выхода из строя отдельных секций.
Чтобы исключить такие неприятные ситуации, используется специализированная гидрострелка. Чертеж и схема котельной в данном случае играют немаловажную роль, так как в зависимости от особенностей отапливаемого объекта нужно выбирать и соответствующее оборудование. Единственное, что стоит отметить – нужно использовать также дополнительный насос для различных напольных котлов.
Пример
Изначально человек в своем доме хочет получить практически идеальную систему отопления, потратив на нее при этом разумные деньги, и в данном случае начинается все именно с котла. Для небольшого частного дома можно выбрать стандартный двухконтурный котел с закрытой камерой, который будет крепиться на стену. При этом нужно правильно понимать, что в преимущественном большинстве случаев для обеспечения нормального распределения теплоносителя в данной системе может потребоваться индивидуальное изготовление коллектора отопления гидрострелки. В такой ситуации возникает вполне стандартный вопрос: будут ли использоваться свои насосы и что нужно сделать с устройством в котле?
Вполне естественно, что многие люди в таких ситуациях предпочитают просто-напросто демонтировать насос из котла, чтобы он не портил установленную гидравлику системы, но на самом деле конструкция некоторых устройств сделана таким образом, что проделать эту процедуру вряд ли получится. Именно в таких ситуациях идеальным решением становится соединение котла гидрострелки и коллектора.
Как в такой ситуации осуществляется монтаж
Первоначально рисуется схема распределительного коллектора. В качестве примера рассмотрим следующую ситуацию:
- Два контура теплых полов.
- В системе будет использоваться контур бойлера косвенного нагрева, два запасных контура для теплового насоса или отдельного электрического котла, а также контур гидрострелки, то есть 5 контуров.
В данном случае нет ничего сложного в том, как нарисовать схему коллектора – достаточно иметь хоть какое-то понимание того, как осуществляется работа такой системы.
Изготовление и расчет
Стоит отметить тот факт, что можно самостоятельно регулировать мощность, которую будет иметь ваша гидравлическая стрелка. Как расчитать мощность, нужно уже исходить непосредственно из особенностей вашего помещения и используемых устройств.
Если мощность приобретенного вами устройства вам не нужна, то в таком случае можно будет сократить резьбы в диаметре, но при этом сделать более длинную стрелку. В некоторых ситуациях общую мощность купленного оборудования целесообразно уменьшить в мощности до двух раз, так как, к примеру, устройства на 80 кВт нужны далеко не в каждом доме, и в подобных случаях вполне оптимально будет оставить оборудование с мощностью от 40 кВт.
Как ее расположить
Некоторые, кем используется схема изготовления гидрострелки своими руками, предпочитают устанавливать ее в непосредственной близости возле котла, но многие специалисты говорят о том, что неплохим вариантом является также монтаж данного устройства на коллектор, что в конечном итоге позволяет добиться законченной и гармоничной конструкции, которая будет в дальнейшем легко использоваться, проверяться и обслуживаться.
Котел при этом может монтироваться приблизительно за три метра до места монтажа стрелки, в то время как магистрали подачи и обратки котла могут монтироваться через пол, если в доме присутствует пирог напольного отопления. В остальном нет никаких принципиальных отличий того, где будет монтироваться ваша стрелка, и главное в этом случае – это установка оборудования с подходящей мощностью и обязательно в вертикальном состоянии. Если вами изготавливается гидрострелка для системы отопления (схема/расчет выше), в которой установлен котел без предохранительного клапана, то в таком случае рекомендуется приварить к верхней части устройства дюймовую резьбу для монтажа специальной группы безопасности.
В нижней части также рекомендуется приварить небольшую резьбу, чтобы обеспечить нормальный слив и заполнение стрелки. Обязательным практическим условием является врезка в систему «котел, гидрострелка и коллектор» специализированных муфт для монтажа термометров. В процессе дальнейшей эксплуатации это сможет облегчить вам жизнь, так как позволит безо всякого труда мониторить состояние системы отопления.
Как ее сделать
Если у вас есть стандартный сварочный аппарат и опыт работы с таким оборудованием, то в таком случае нет ничего сложного в том, чтобы самостоятельно сварить полноценную гидрострелку. Однако при этом нужно правильно понимать тот факт, что в процессе выполнения данной работы нужно учитывать большое количество тонкостей.
В наше время нет ничего сложного в том, чтобы найти чертеж гидрострелки, но при этом нужно правильно понимать, что все такие чертежи разные, и какого-то определенного шаблона не существует. Строение гидрострелки каждый специалист видит по-разному, но есть определенные правила, которые соблюдаются абсолютно всеми.
Сама по себе стрелка представляет собой определенную металлическую емкость, к которой привариваются патрубки, предназначенные для подключения к котлу и обеспечения подачи и обратки. Также в систему встраиваются патрубки потребителей.
Опционально можно использовать патрубки, предназначенные для автоматического воздухоотводчика в верхней части установленной стрелки. В нижней же части устанавливается патрубок для крана, чтобы обеспечить отвод различного шлама и грязи. Помимо всего прочего, в каком-нибудь месте также можно поставить патрубок для подпитки воды в систему.
Первое правило
Наиболее важное правило, которое нужно всегда соблюдать – это так называемое «правило трех диаметров», то есть диаметр установленной вами гидрострелки должен быть в три раза больше по сравнению с данным параметром у патрубков. Если вы хотите, чтобы гидроразделитель мог полноценно выполнять свои основные функции, то есть:
- отделять из системы шлам;
- выводить газы;
- выравнивать гидравлическую разницу;
- подавать подогретую воду котлу, чтобы обеспечить его большую долговечность.
Многие предпочитают экономить и изготавливать гидрострелки самостоятельно из полипропилена, но на самом деле это абсолютно неверное решение, принимаемое в основном людьми, мало понимающими особенности работы такого оборудования.
Именно по этой причине стоит использовать только полноценные металлические трубы, которые позволяют полностью реализовать потенциал такой технологии и будут действительно эффективно себя показывать на протяжении всего срока эксплуатации такой системы.
Гидравлическая стрелка своими руками чертежи
Содержание
- Для чего нужна гидрострелка
- Схема обвязки с котлом
- Схема изготовления гидрострелки с коллектором
- Расчет гидрострелки
- Заключение
- Назначение гидрострелки
- Как работает гидрострелка
О гидравлических разделителях для отопления на просторах интернета в буквальном смысле ходят легенды. Им приписывают множество «чудодейственных» свойств и функций. Но цель данной статьи – не развенчание мифов, а пояснение истинного назначения этого отопительного элемента и принципа его работы. Также любителям систем из ППР мы расскажем, как рассчитывается и устанавливается гидрострелка из полипропилена и можно ли ее сделать своими руками.
Для чего нужна гидрострелка
Если у вас в доме планируется монтаж простой системы отопления закрытого типа, где задействовано не более 2 циркуляционных насосов, то гидравлический разделитель вам точно не понадобится.
Когда контуров и насосов – три, при этом один из них предназначен для работы с бойлером косвенного нагрева, то и здесь можно обойтись без гидрострелки. Задуматься о разделении отопительных контуров надо в ситуации, когда схема выглядит следующим образом:
Примечание. Здесь показаны 2 котла, работающих в каскаде. Но это не принципиально, котел может быть и один.
В представленной схеме гидрострелки нет, но без ее монтажа тут явно не обойтись. Есть 4 контура, в которых действует столько же насосов разной производительности. Самый мощный из них создаст в подающем коллекторе разрежение, а в обратном – повышенное давление. При одновременной работе насосу меньшей производительности просто не хватит сил на преодоление этого разрежения и он не сможет отобрать теплоноситель на свой контур. По итогу ветвь не будет функционировать, поскольку насосы мешают друг другу.
Важно. Даже если паспортная производительность насосных агрегатов одинакова, то гидравлическое сопротивление ветвей всегда будет разным. Соответственно, реальный расход теплоносителя в каждом контуре все равно отличается, идеально выверить систему невозможно.
Чтобы устранить перепад давления ΔР, возникающий между коллекторами и дать возможность всем насосам спокойно отбирать нужное количество теплоносителя, в схему включается гидрострелка. Она представляет собой полую трубу расчетного сечения, чьей задачей является создание зоны нулевого давления между теплогенератором и несколькими потребителями. Как действует этот элемент в схеме обвязки котла, описано в следующем разделе.
Схема обвязки с котлом
Чтобы понять, как работает гидрострелка в системе отопления с несколькими контурами, мы предлагаем изучить схему ее обвязки с котлом, представленную ниже:
Теперь оба коллектора связаны между собой перемычкой, уравнивающей давление в подающей и обратной магистрали. Благодаря этому в каждый контур поступит столько теплоносителя, сколько нужно. При этом важно обеспечить такой же расход теплоносителя со стороны теплогенератора, иначе его температура на стороне потребителей может стать недопустимо низкой.
В интернете очень популярна схема гидрострелки (показана выше), изображающая 3 рабочих режима:
- суммарный расход теплоносителя в контурах потребителей и со стороны котла одинаков;
- отопительные ветви отбирают большее количество воды, чем ее обращается в котловом контуре;
- расход в кольце со стороны теплогенератора больше.
В действительности у гидрострелки режим работы один-единственный, он изображен на схеме под номером 3. Добиться идеального режима (№1) невозможно, так как гидравлическое сопротивление ветвей потребителей все время меняется из-за работы термостатов, да и подобрать так точно насосы нереально. По схеме №2 действовать нельзя, потому что тогда большая часть теплоносителя станет обращаться по кругу со стороны потребителей.
Это приведет к понижению температуры в системе отопления, ведь со стороны котла в гидрострелке будет подмешиваться мало горячей воды. Чтобы поднять эту температуру, придется выводить теплогенератор на максимальный режим, что не способствует стабильной работе системы в целом. Остается вариант №3, при котором в коллекторы идет достаточное количество воды требуемой температуры. А уж понизить ее в контурах – задача трехходовых клапанов.
Функция гидрострелки в системе отопления лишь одна – создание зоны с нулевым давлением, откуда смогут отбирать теплоноситель любое число потребителей. Главное, — обеспечить необходимый расход со стороны источника тепла. Для этого реальная производительность котлового насоса должна быть немного больше суммы расходов на всех ветвях потребителей. Подробнее обо всех нюансах рассказано и показано на видео:
Схема изготовления гидрострелки с коллектором
Прежде чем купить гидрострелку или приступить к ее изготовлению своими руками, не помешает изучить устройство данного элемента. Оно очень простое: полая труба круглого или прямоугольного сечения снабжена несколькими патрубками с разных сторон для присоединения к отопительной сети. Причем патрубки для подключения подачи расположены, как правило, в верхней части трубы, а обратки – в нижней.
Примечание. Указанный способ подключения актуален при вертикальном монтаже гидрострелки. В то же время ее можно устанавливать и в горизонтальном положении.
Чаще всего для отопления применяется гидравлический разделитель, чье устройство предусматривает установку коллектора. Они даже продаются одним комплектом, а изготавливаются из таких материалов:
- низкоуглеродистая сталь;
- нержавеющая сталь;
- из полипропилена.
Существуют и более сложные модели, оборудованные не только воздухоотводчиком и сливным штуцером, но и гильзами для присоединения контрольных приборов и датчиков, а также различными сеточками и пластинами. Они служат для очистки теплоносителя и разделения потоков. Подобная гидрострелка, чье устройство изображено на чертеже, имеет приличную стоимость и требует периодического обслуживания:
Среди домашних мастеров принято делать гидрострелку из металлической трубы, но в силу немалой популярности и дешевизны полипропилена эта тенденция меняется. Ведь даже изготовленный из ППР элемент вместе с коллектором стоит немалых денег. Поэтому все чаще люди предпочитают сделать разделитель из полипропилена в домашних условиях, чем покупать его в магазине. Для этого нужна ППР труба соответствующего диаметра, тройники по числу будущих патрубков и 2 заглушки.
Поскольку диаметр трубы для изготовления гидрострелки довольно велик, то потребуется приобрести к сварочному аппарату соответствующую насадку, а при пайке выдержать достаточный промежуток времени. В принципе, сложного ничего нет, тройники соединяются между собой отрезками труб, а с торцов ставятся заглушки. Другое дело, что подобный разделитель может выглядеть не очень эстетично, да и не во всякой системе его можно эксплуатировать.
Дело в том, что теплогенераторы на твердом топливе часто могут выходить на максимальный режим работы, при котором температура воды близка к 90—95 °С. Конечно, полипропилен ее выдержит, но в нештатной ситуации (например, когда отключат электричество) температура на подаче может резко подскочить и до 130 °С. Это случается из-за инертности твердотопливных котлов, поэтому вся обвязка к ним, включая гидрострелку, должны быть металлическими. Иначе вас ждут плачевные последствия, как на фото:
Расчет гидрострелки
Разделитель для любой отопительной системы подбирается либо изготавливается по 2 параметрам:
- число патрубков для подключения всех контуров;
- диаметр либо площадь поперечного сечения корпуса.
Если количество патрубков подсчитать нетрудно, то для определения диаметра необходимо произвести расчет гидрострелки. Он производится через вычисление площади поперечного сечения по следующей формуле:
S = G / 3600 ʋ, где:
- S – площадь сечения трубы, м2;
- G – расход теплоносителя, м3/ч;
- ʋ — скорость потока, принимается равной 0.1 м/с.
Для справки. Столь невысокая скорость течения воды внутри гидравлического разделителя обусловлена необходимостью обеспечить зону практически нулевого давления. Если скорость увеличить, то возрастет и давление.
Значение расхода теплоносителя определяется ранее, исходя из потребной тепловой мощности отопительной системы. Если вы решили подобрать или купить элемент круглого сечения, то произвести расчет диаметра гидрострелки по площади сечения достаточно просто. Берем школьную формулу площади круга и определяем размер трубы:
Выполняя сборку самодельной гидрострелки, надо расположить патрубки на определенном расстоянии друг от друга, а не как попало. Ориентируясь на диаметр подключаемых труб, вычисляют расстояние между врезками, пользуясь одной из схем:
Заключение
Планируя установить гидравлический разделитель, важно понимать, когда он нужен, а когда нет. Ведь подобное оборудование значительно повысит стоимость монтажа вашей системы. Что касается идеи поставить либо сделать гидрострелку из полипропилена, надо уяснить, что ее совместное использование с твердотопливным котлом невозможно. Спаять же ее из трубы и тройников ППР для специалиста не составит труда.
Чертеж Гидрострелки довольно прост.
Если есть сварочный аппарат и есть опыт сварки то самому сварить гидрострелку довольно просто. Но, есть много подвохов.
Чертеж Гидрострелки можно найти в интернете, но они все разные, нет одного шаблона. Все чертежи гидрострелок отличаются. Строение Гидрострелки каждый видит по-своему, но есть одно правило, которое соблюдают все.
Гидрострелка это емкость из металла (т.е. профильная или круглая труба), к которой приварены патрубки подключения к котлу (подача и обратка) и патрубки потребителей (подача и обратка).
Так же опционально могут быть патрубки для автоматического воздухоотводчика (или группы безопасности) на 1/2″ в верхней части гидрострелки.
В нижней части патрубок на 1/2″ для крана для отвода шлама и грязи.
Также где-нибудь может располагаться патрубок 1/2″ для подпитки воды в систему.
Основное правило которое нужно соблюсти это правило 3-х диаметров. Т.е. диаметр гидрострелки должен быть равен 3-м диаметрам патрубков. Чтобы гидрострелка несла основные функции которые для нее предназначены:
1. Отделяет шлам из системы.
2. Выводит газы из системы.
3. Выравнивает гидравлическую разницу в системе.
4. Подает котлу подогретую воду, тем самым продлевая жизнь котлу.
Некоторые пытаются сэкономить и изготовить гидрострелку из полипроиплена своими руками. Это мнение дилетантов которые, ничего не знают о работе и назначении гидрострелки подробнее тут.
Большинство гидрострелки и коллекторы выглядят по разному так как подстраивают эти изделия под определенные проекты в котельных.
Размеры котельных обычно малы и им мало место уделяют. Котлы выбирают тоже разные в котельных тоже разные Buderus, Baxi, Rinnai и т. д.
Размеры и строения коттеджей тоже разные 2-х, 3-х этажные, с бассейном и без. С теплым полом и без. С баней и другими постройками.
Поэтому чертеж гидрострелки выглядит везде по разному. И чертеж делают сразу с коллекторами отопления.
На данной схеме котельной видно расположение всех составляющих в котельной.
Помимо Гидрострелки вам так же понадобится коллектор распределительный. В этом плане мы можем предложить уже готовое изделие: Это совмещенная Гидрострелка с коллектором в одном изделии, а так же гидрострелка с коллектором из нержавеющей стали.
Схема котельной вместе с Бойлером косвенного нагрева в разрезе
Во время проектирования системы отопления для помещения, которое вы собираетесь прогреть, чтобы в нём было уютно, тепло и сухо, необходимо решить, при помощи какого устройства вода будет равномерно распределяться по всем трубам и радиаторам. Для небольшого дачного домика или гаража этот вопрос не стоит. Отопительные системы там практически всегда делаются одноконтурные, не требующие вспомогательных приспособлений. Однако если поставлена задача обогрева многокомнатного коттеджа, имеющего два, а то и три этажа, с тёплыми полами и несколькими контурами, то гидрострелка, своими руками собранная и вмонтированная в систему отопления, необходима.
Назначение гидрострелки
Предназначение гидрострелки, или гидрораспределителя, делится на основную функцию и вспомогательные. Зависит это от конструкции прибора. Основная заключается в том, чтобы корректно распределять потоки теплоносителя. Необходимость в этом может возникнуть при следующих ситуациях:
- В отопительной системе, работающей от одного нагревательного прибора, и имеющей два или больше контуров, требующих разного расхода теплоносителя. Особенно, если второй контур больше основного. Увеличивать интенсивность работы котла в этом случае абсолютно нерентабельно. Это приведёт не только к необоснованному расходу топлива, но и значительно снизит срок службы нагревательного прибора. Не говоря уже о том, что в помещениях, отапливаемых основным контуром, будет попросту слишком жарко.
- В отопительной системе несколько разных контуров. Радиаторы, тёплые полы и так далее. Гидрострелка позволит работать им всем, не оказывая негативного влияния друг на друга, а при отключении одного из них, остальные продолжат свою работу без излишних нагрузок и термических ударов.
- В отопительной системе несколько контуров, каждый из которых работает при помощи циркуляционного насоса. Гидрораспределитель обеспечит их работу, независимо друг от друга.
- В отопительной системе несколько нагревательных котлов.
- Так же гидрострелка даёт возможность отключения одного контура, независимо от остальных. Например, чтобы провести какие-то ремонтные работы.
- Гидрораспределитель сглаживает теплоудары при запуске системы и аварийном отключении. Необходимое условие, если в системе есть чугунные элементы, которые из-за резких перепадов температуры могут прийти в негодность.
Вспомогательных функций всего две, но и они играют очень важную роль:
- Гидрострелка даёт возможность стравливать воздух из отопительной системы, через специально установленный клапан.
- Так же она служит накопителем для ржавчины, накипи и других видов отложений, которые благодаря ей же легко удаляются.
Как работает гидрострелка
Читайте так же: Электрическая схема подключения трехходового клапана
Дальше, как уже и говорилось, пляшем от полученного размера диаметра. Длина трубы под гидрострелку должна быть равной не меньше шести диаметров, а между патрубками 2-3 диаметра. Получив все эти цифры можно смело рисовать схемы и чертежи, по которым и будем собирать прибор.
Осталось вмонтировать гидрострелку в систему отопления, ещё раз проверить все стыки и соединения, залить внутрь воду и запустить нагревательный котёл.
Описанный в предыдущем разделе вариант прибора не единственный. Гидрораспределитель сделанный своими руками может быть не только вертикальный, но и горизонтальный и даже установленный под углом. Всё зависит от места, куда вы его планируете установить и от размеров самого прибора. Единственное неизменное правило для всех вариантов – это воздушный клапан должен быть в самой верхней точке, а сливной кран в самой нижней. Больше никаких принципиальных нюансов нет.
Как заявляют производители, полипропиленовые трубы по долговечности не уступают, а порой и превосходят трубы металлические. Что ж, поспорить с этим трудно, а значит использовать этот материал для изготовления гидрострелки, начали практически одновременно с его появлением. Сделать это не сложнее, а если судить по весу материала, то и легче.
Алгоритм сборки гидрострелки из полипропилена, мало чем отличается от сборки металлического. Основные элементы все те же самые, поменялся только материал. Однако следует учитывать, что не во всякую систему отопления можно вставить подобный гидрораспределитель. Полипропилен способен выдержать довольно высокие температуры, но при использовании твёрдотопливного котла, может возникнуть ситуация, когда температура воды повысится до таких показателей, которые просто-напросто расплавят полипропилен. Случаи эти в большинстве своём связаны с аварийной ситуацией, но рисковать, всё-таки не стоит.
Можно нарисовать красочную схему с множеством стрелочек и красивых символов, но это настолько просто, что и нескольких слов будет достаточно. Распределитель подсоединяется к котлу при помощи патрубка, через который поступает нагретая вода. В гидрострелке она поднимается вверх и через верхнее отверстие уходит к радиаторам. Оттуда по обратному контуру поступает к нижнему патрубку распределителя и перемешивается с котловым контуром. Таким образом, осуществляется постоянная циркуляция воды.
Коллектор необходим в системе, где предусмотрены несколько разных отопительных контуров. В этом случае гидрострелка изготавливается по упрощённому варианту, а все патрубки, распределяющие воду по контурам, монтируются к коллектору. Подающие сверху, обратки – снизу. Тот же принцип соединения коллектора и гидрострелки. Горячая вода из котла идёт через верхний патрубок. Холодная в котёл – через нижний. Схема и в этом случае вполне понятна и сборка её не представляет никаких трудностей, хотя времени потребуется значительно больше.
Любые работы строительного направления, в которые входит и установка системы отопления, требуют тщательной планировки. Про то, как просчитывать уклон стены или высоту потолков, распространяться как-то не к месту, а вот повторить основные принципы установки гидрострелки для отопления, весьма полезно.
Первое, что надо продумать – а нужна ли напрягаться самому? Если вы в состоянии смастерить её не привлекая специалистов со стороны, то дело стоит свеч. В противном случае, необходимо просчитать, во сколько она вам обойдётся. Порой будет проще купить уже готовую от заводского производителя, чем вызывать одного, а то и нескольких мастеров, покупать необходимые материалы и оплачивать это всё по отдельности. Тем более что подобрать гидрострелку в магазине, соответствующую вашим потребностям, ничего не стоит.
Второе и последнее. Если вы всё-таки решили делать этот нужный прибор самостоятельно, внимательно изучите, как правильно и качественно это сделать. И только после этого приступайте к работе с соблюдением всех правил техники безопасности.
Учебник по физике: Диаграммы лучей — Вогнутые зеркала
Темой этого раздела было то, что мы видим объект, потому что свет от объекта попадает в наши глаза, когда мы смотрим на объект вдоль линии. Точно так же мы видим изображение объекта, потому что свет от объекта отражается от зеркала и попадает в наши глаза, когда мы смотрим на изображение объекта. Исходя из этих двух основных предпосылок, мы определили положение изображения как место в пространстве, от которого исходит свет. Лучевые диаграммы были ценным инструментом для определения пути света от объекта к зеркалу и к нашим глазам. В этом разделе урока 3 мы исследуем метод рисования диаграмм лучей для объектов, расположенных в разных местах перед вогнутым зеркалом.
Чтобы нарисовать эти диаграммы, нам придется вспомнить два правила отражения для вогнутых зеркал:
- Любой падающий луч, идущий параллельно главной оси на пути к зеркалу, при отражении пройдет через точку фокуса.
- Любой падающий луч, проходящий через фокальную точку на пути к зеркалу, после отражения будет двигаться параллельно главной оси.
Ранее в этом уроке была показана следующая диаграмма, иллюстрирующая путь света от объекта к зеркалу и к глазу.
На этой диаграмме изображены пять падающих лучей и соответствующие им отраженные лучи. Каждый луч пересекается в месте изображения, а затем расходится к глазу наблюдателя. Каждый наблюдатель будет наблюдать одно и то же место на изображении, и каждый световой луч будет подчиняться закону отражения. Тем не менее, для определения местоположения изображения потребуются только два из этих лучей, поскольку для нахождения точки пересечения требуется только два луча. Из пяти нарисованных падающих лучей два соответствуют падающим лучам, описанным нашими двумя правилами отражения для вогнутых зеркал. Поскольку это самая простая и предсказуемая пара лучей для рисования, именно эти два луча будут использоваться в оставшейся части этого урока.
Пошаговый метод построения лучевых диаграмм
Ниже описан метод построения лучевых диаграмм для вогнутого зеркала. Метод применяется к задаче рисования диаграммы луча для объекта, расположенного на за центром кривизны (С) вогнутого зеркала. Тем не менее, тот же метод работает для рисования диаграммы лучей для любого местоположения объекта.
1. Выберите точку в верхней части объекта и нарисуйте два падающих луча, идущих к зеркалу.
Используя линейку, точно нарисуйте один луч так, чтобы он проходил точно через точку фокуса на пути к зеркалу. Нарисуйте второй луч так, чтобы он шел точно параллельно главной оси. Поместите наконечники стрел на лучи, чтобы указать направление их движения.
2. Как только эти падающие лучи попадут на зеркало, отразите их в соответствии с двумя правилами отражения для вогнутых зеркал.
Луч, проходящий через фокальную точку на пути к зеркалу, отразится и пойдет параллельно главной оси. Используйте линейку, чтобы точно нарисовать его путь. Луч, который шел параллельно главной оси на пути к зеркалу, отразится и пройдет через фокальную точку. Поместите наконечники стрел на лучи, чтобы указать направление их движения. Продлите лучи за точку их пересечения.
3. Отметьте изображение верхней части объекта.
Точка изображения верхней части объекта — это точка пересечения двух отраженных лучей. Если бы вы провели третью пару падающих и отраженных лучей, то через эту точку прошел бы и третий отраженный луч. Это просто точка, в которой весь свет от вершины объекта будет пересекаться при отражении от зеркала. Конечно, остальная часть объекта тоже имеет изображение, и его можно найти, применив те же три шага к другой выбранной точке. (См. примечание ниже.)
4. Повторите процесс для нижней части объекта.
Целью лучевой диаграммы является определение местоположения, размера, ориентации и типа изображения, формируемого вогнутым зеркалом. Как правило, для этого требуется определить, где находится изображение верхнего и нижнего пределов объекта, а затем отследить все изображение. После выполнения первых трех шагов было найдено только положение изображения верхнего экстремума объекта. Таким образом, процесс необходимо повторить для точки на дне объекта. Если низ предмета лежит на главной оси (как в этом примере), то изображение этой точки также будет лежать на главной оси и находиться на том же расстоянии от зеркала, что и изображение верха предмета. . На этом этапе можно заполнить все изображение.
Некоторым учащимся трудно понять, как можно вывести все изображение объекта после определения одной точки на изображении. Если объект выровнен по вертикали (например, объект со стрелкой, используемый в приведенном ниже примере), то процесс прост. Изображение представляет собой просто вертикальную линию. Теоретически необходимо выбрать каждую точку на объекте и нарисовать отдельную лучевую диаграмму, чтобы определить положение изображения этой точки. Для этого потребуется много диаграмм лучей, как показано ниже.
К счастью, ярлык существует. Если объект представляет собой вертикальную линию, то изображение также является вертикальной линией. Для наших целей мы будем иметь дело только с более простыми ситуациями, в которых объект представляет собой вертикальную линию, нижняя часть которой расположена на главной оси. Для таких упрощенных ситуаций изображение представляет собой вертикальную линию с нижним концом, расположенным на главной оси.
Приведенная выше лучевая диаграмма показывает, что когда объект находится в позиции за центром кривизны, изображение расположено в положении между центром кривизны и фокальной точкой. Кроме того, изображение перевернуто, уменьшено в размере (меньше объекта) и реально. Это тип информации, которую мы хотим получить из лучевой диаграммы. Эти характеристики изображения будут более подробно обсуждаться в следующем разделе Урока 3.
После того, как метод рисования диаграмм лучей будет отработан пару раз, он станет таким же естественным, как дыхание. Каждая диаграмма дает определенную информацию об изображении. На двух приведенных ниже диаграммах показано, как определить местоположение, размер, ориентацию и тип изображения для ситуаций, когда объект расположен в центре кривизны и когда объект расположен между центром кривизны и фокальной точкой.
Следует отметить, что процесс построения лучевой диаграммы одинаков вне зависимости от того, где находится объект. Хотя результат диаграммы лучей (расположение изображения, размер, ориентация и тип) отличается, одни и те же два луча всегда рисуются . Два правила отражения применяются для определения места, где все отраженные лучи расходятся (что для реальных изображений также является местом пересечения отраженных лучей).
В трех описанных выше случаях — объект находится за пределами С, объект находится в точке С и случай, когда объект находится между С и F — световые лучи сходятся в точку после отражаясь от зеркала. В таких случаях формируется реальное изображение . Как обсуждалось ранее, реальное изображение формируется всякий раз, когда отраженный свет проходит через место изображения. В то время как плоские зеркала всегда создают мнимые изображения, вогнутые зеркала способны создавать как реальные, так и мнимые изображения. Как показано выше, реальные изображения получаются, когда объект находится на расстоянии, превышающем одно фокусное расстояние от зеркала. А мнимое изображение формируется, если объект расположен менее чем на одно фокусное расстояние от вогнутого зеркала. Чтобы понять, почему это так, можно использовать лучевую диаграмму.
Смотри! Преподаватель физики обсуждает природу реального изображения, используя демонстрацию физики phun. Лучевая диаграмма для формирования виртуального изображения
Лучевая диаграмма для случая, в котором находится объект перед фокус показан на диаграмме справа. Обратите внимание, что в этом случае световые лучи после отражения от зеркала расходятся. Когда световые лучи расходятся после отражения, формируется мнимое изображение. Как и в случае с плоскими зеркалами, местоположение изображения можно найти, проследив все отраженные лучи назад, пока они не пересекутся. Каждому наблюдателю казалось бы, что отраженные лучи расходятся от этой точки. Таким образом, точка пересечения протяженных отраженных лучей является точкой изображения. Поскольку свет на самом деле не проходит через эту точку (свет никогда не проходит за зеркалом), изображение называется виртуальным изображением. Обратите внимание, что когда объект находится в положении перед фокальной точкой , его изображение прямое и увеличенное, расположенное по другую сторону зеркала. Фактически, одно обобщение, которое можно сделать обо всех виртуальных изображениях, создаваемых зеркалами (как плоскими, так и криволинейными), состоит в том, что они всегда вертикальны и всегда расположены по другую сторону зеркала.
До сих пор мы видели на диаграммах лучей, что реальное изображение создается, когда объект расположен на расстоянии более одного фокусного расстояния от вогнутого зеркала; а мнимое изображение формируется, когда объект находится на расстоянии менее одного фокусного расстояния от вогнутого зеркала (т. е. перед F ). Но что происходит, когда объект находится в точке F? То есть какой тип изображения образуется, когда предмет находится ровно в одном фокусном расстоянии от вогнутого зеркала? Конечно, лучевая диаграмма всегда является одним из инструментов, помогающих найти ответ на такой вопрос. Однако, когда для этого случая используется лучевая диаграмма, возникает немедленная трудность. Падающий луч, начинающийся с верхнего края объекта и проходящий через фокальную точку, не достигает зеркала. Таким образом, для определения точки пересечения всех отраженных лучей необходимо использовать другой падающий луч. Любой падающий луч света будет работать, пока он встречается с зеркалом. Вспомним, что единственная причина, по которой мы использовали две имеющиеся у нас, заключается в том, что их удобно и легко рисовать. На приведенной ниже диаграмме показаны два падающих луча и соответствующие им отраженные лучи.
В случае объекта, находящегося в фокусе (F), световые лучи не сходятся и не расходятся после отражения от зеркала. Как показано на диаграмме выше, отраженные лучи движутся параллельно друг другу. Впоследствии световые лучи не будут сходиться на стороне зеркала объекта, чтобы сформировать реальное изображение; они также не могут быть расширены назад на противоположной стороне зеркала, чтобы пересечься и сформировать мнимое изображение. Так как же следует интерпретировать результаты лучевой диаграммы? Ответ: изображения нет!! Удивительно, но когда объект находится в фокусе, в пространстве нет точки, в которой наблюдатель мог бы видеть, из которой все отраженные лучи кажутся расходящимися. Изображение не формируется, когда предмет находится в фокусе вогнутого зеркала.
Мы хотели бы предложить …
Зачем просто читать об этом и когда вы могли бы взаимодействовать с ним? Взаимодействие — это именно то, что вы делаете, когда используете один из интерактивов The Physics Classroom. Мы хотели бы предложить вам совместить чтение этой страницы с использованием нашего интерактивного приложения Optics Bench или нашего интерактивного приложения Name That Image. Вы можете найти это в разделе Physics Interactives на нашем сайте. Интерактивная скамья Optics Bench предоставляет учащимся интерактивную среду для изучения формирования изображений линзами и зеркалами. Интерактивное приложение Name That Image Interactive предлагает учащимся интенсивную умственную тренировку по распознаванию характеристик изображения для любого заданного местоположения объекта перед изогнутым зеркалом.
Посетите: Интерактивная скамья Optics Bench || Назовите это изображение Interactive
На приведенном ниже рисунке показаны два световых луча, исходящих из верхней части объекта и падающих на зеркало. Опишите, как можно нарисовать отраженные лучи для этих световых лучей, фактически не используя транспортир и закон отражения.
Следующий раздел:
Перейти к следующему уроку:
404 | Водяное отопление с рекуперацией тепла
404 | Нагрев воды с рекуперацией тепла | ООО «ХотСпот Энерджи»
|
Механизмы потери или передачи тепла
Утечка (или передача) тепла изнутри наружу (с высокой температуры на низкую) посредством трех механизмов (по отдельности или в комбинации) из дома:
- Проводка
- Конвекция
- Радиация
Примеры теплопередачи путем теплопроводности, конвекции и излучения
Щелкните здесь, чтобы открыть текстовое описание примеров теплопередачи путем теплопроводности, конвекции и излучения
- Теплопроводность : высокая температура внутри к низкой температуре снаружи.
- Конвекция : тепло, циркулирующее в комнатах дома.
- Излучение : Солнечное тепло, проникающее в дом.
Теплопроводность
Теплопроводность – это процесс, при котором тепло передается от горячей области твердого тела к холодной области твердого тела за счет столкновений частиц.
Другими словами, в твердых телах атомы или молекулы не имеют свободы движения, как жидкости или газы, поэтому энергия сохраняется в вибрации атомов. Атом или молекула с большей энергией передает энергию соседнему атому или молекуле посредством физического контакта или столкновения.
На изображении ниже тепло (энергия) передается от конца стержня в пламени свечи вниз к более холодному концу стержня по мере того, как колебания одной молекулы передаются следующей; однако движения энергичных атомов или молекул нет.
Нажмите кнопку воспроизведения, чтобы начать анимацию.
Анимация «Свеча проводимости»
Щелкните здесь, чтобы открыть текстовое описание анимации «Свеча проводимости»
Пример проведения
Рука держит металлический стержень над зажженной свечой. Молекулы быстро нагреваются в месте, где пламя касается стержня. Затем тепло распространяется по всему металлическому стержню, и его можно почувствовать рукой.
При отоплении жилых помещений тепло передается за счет теплопроводности через твердые тела, такие как стены, полы и крыша.
Пример теплопроводности для отопления жилых помещений
Щелкните здесь, чтобы открыть текстовое описание примера теплопроводности для жилых помещений
Пример теплопроводности для отопления жилых помещений
Изобразите поперечное сечение стены в дом. Внутри дома 65°F, а снаружи 30°F. Две стрелки указывают изнутри дома наружу, чтобы показать, как тепло передается изнутри дома наружу через стену посредством теплопроводности.
Потери тепла через твердую стенку за счет теплопроводности
Конвекция
Конвекция – это процесс, при котором тепло передается от одной части жидкости (жидкости или газа) к другой за счет объемного движения самой жидкости. Горячие области жидкости или газа имеют меньшую плотность, чем более холодные области, поэтому они имеют тенденцию подниматься. По мере того, как более теплые жидкости поднимаются, они замещаются более холодными жидкостями или газами сверху.
В приведенном ниже примере тепло (энергия), исходящее от пламени свечи, поднимается вверх и заменяется окружающим его холодным воздухом.
Пример передачи тепла конвекцией
Нажмите здесь, чтобы открыть текстовое описание анимации конвекции свечи
Пример конвекции
Рука держится над зажженной свечой. Когда свеча нагревает воздух, тепло поднимается к руке. В конце концов становится слишком жарко, и рука отрывается от свечи.
В бытовом отоплении конвекция представляет собой механизм потери тепла за счет утечки теплого воздуха наружу при открывании дверей или просачивания холодного воздуха в дом через щели или отверстия в стенах, окнах или дверях. Когда холодный воздух соприкасается с обогревателем в помещении, он поглощает тепло и поднимается вверх. Холодный воздух, будучи тяжелым, опускается на пол и нагревается, таким образом медленно нагревая весь воздух в помещении.
Инструкции : Нажмите кнопку воспроизведения ниже и наблюдайте, что происходит с холодным воздухом (синие стрелки), когда он входит в дом и сталкивается с теплым воздухом (красные стрелки), выходящим из вентиляционного отверстия:
Конвекция в Комнатная анимация
Нажмите здесь, чтобы открыть текстовое описание анимации «Конвекция в комнате»
Пример конвекции при отоплении жилых помещений
Представьте себе комнату с открытой дверью, впускающей холодный воздух слева, и радиатором, создающим тепло на право. Поскольку радиатор нагревает воздух вокруг себя, воздух поднимается вверх и заменяется холодным воздухом. Как только теплый воздух попадает на потолок, он движется влево к открытой двери, охлаждаясь по мере движения. Прохладный воздух из открытой двери движется вправо по полу к радиатору, который нужно нагреть. Общий эффект представляет собой круговой конвекционный поток воздуха в помещении.
Излучение
Излучение — это перенос тепла посредством электромагнитных волн в пространстве. В отличие от конвекции или проводимости, когда энергия от газов, жидкостей и твердых тел передается молекулами с их физическим движением или без него, излучение не нуждается в какой-либо среде (молекулах или атомах). Энергия может передаваться излучением даже в вакууме.
На изображении ниже солнечный свет падает на землю через пространство, где нет ни газов, ни твердых тел, ни жидкостей.
Пример анимации излучения
Щелкните здесь, чтобы открыть текстовое описание примера анимации излучения
Пример изображения излучения
Представьте себе Солнце и Землю со стрелками, движущимися от Солнца к Земле через пространство. Стрелки представляют энергию, которая передается на Землю через излучение, для которого не требуется никакой среды (атомов или молекул).
Проверьте себя
Во-первых, определите тип потери тепла в доме, изображенный на изображениях A-J: теплопроводность, конвекция или излучение. Затем нажмите и перетащите каждое изображение в нужную категорию в нижней части экрана.
Упражнение «Проверь себя»
Щелкните здесь, чтобы открыть текстовое описание задания «Проверь себя»
Проверь себя: виды тепловых потерь
Определите тип тепловых потерь (теплопроводность, конвекция или излучение) для каждого из следующих примеров :
- Теплоотвод через крышу дома
- Горелка для горячей плиты
- Кипяток
- Галогенная лампа-факел, излучающая свет и тепло
- Широко распахнутая дверь, впускающая холодный воздух
- Огонь, создающий тепло
- Выход тепла через стену
- Зеркало, отражающее солнечный свет
- Выход тепла через окно
- Выход тепла через дымоход
Ответы:
A.