Схема движения воды в радиаторе отопления: Направление движения воды в системе отопления

Содержание

как рассчитать, сколько в секции, в системе, усредненные данные, способы

В процессе проектирования системы отопления приходится обращаться к разным сведениям. Например, о вместимости батарей, объеме воды в радиаторе отопления с учетом воздушной подушки и без нее.

В отличие от любых других емкостей, на корпусе батареи нет клеймения или информации о внутреннем объеме. Тем более что многие производители слегка экономят на толщине стенок корпуса. Приходится обращаться к документации и даже взвешивать секции.

Для чего нужно знать количество воды в батарее

Содержание статьи

  • 1 Для чего нужно знать количество воды в батарее
    • 1.1 Как влияет объем воды в радиаторе на работоспособность котла отопления
    • 1.2 Вода – транспортировщик тепла
  • 2 Работаем с документацией
  • 3 Усредненные данные
  • 4 Способы расчета объема

Данная величина используется для теплотехнических расчетов. Причем преимущественно для схем с алюминиевыми радиаторами. Для чугунных моделей внутренний объем батареи отопления не так важен. Потому что вес радиатора из чугуна и аналогичного по размеру из алюминия может отличаться вдвое-втрое.

Чем больше масса батареи, тем выше ее тепловая инертность и мощность. Соответственно объем радиатора отопления влияет на три характеристики:

  1. Мощность батареи. Больше емкость – больше габариты и теплоотдающая наружная поверхность.
  2. Планируемая скорость движения потока и количество перекачиваемой через радиатор горячей воды.
  3. Общее количество воды в системе отопления.

Последние две являются базовыми для расчета мощности котла. По сути, определить мощность и эффективность нагрева помещения можно, зная, сколько воды в алюминиевом радиаторе отопления.

Как влияет объем воды в радиаторе на работоспособность котла отопления

Любой котельный агрегат рассчитан на прокачку горячей воды с определенной скоростью, и главное – на определенное количество теплоносителя в системе. Популярные настенные газовые котлы индивидуального отопления не могут работать с малогабаритными алюминиевыми радиаторами, так как объем воды в системе получается меньше, чем предусмотрено безопасным минимумом.

Кроме того, алюминиевые секции из-за небольшой тепловой инерции не накапливают энергию, как чугунные. Это означает, что скорость водяного потока внутри контура будет выше, а сам котел станет включаться/выключаться чаще, чем на чугунных регистрах или радиаторах с большим объемом. Соответственно ресурс оборудования вырабатывается быстрее, автоматика ломается.

Для гравитационных (самоточных) систем отопления использование алюминиевых радиаторов с малым внутренним объемом может быть также неэффективным из-за низкой скорости движения воды. Это значит, что какая-то часть помещений дома будет отапливаться полноценно, а часть останется с холодными батареями.

Вода – транспортировщик тепла

Нельзя сказать, что радиаторы с большим емкостью идеально подойдут для системы отопления, а с малым – лучше не использовать. Рассеивание тепла в доме должно планироваться исходя из скорости движения теплоносителя, внутреннего объема и температуры воды.

Например, котел в состоянии выдать определенное количество горячей воды, которая будет прокачиваться через контур отопления всюду с одинаковой скоростью.

В помещениях, где требуется повышенная теплоотдача, устанавливают радиаторы отопления с большим объемом. В тех местах, где нужно слегка подогреть воздух в комнате (прихожая, коридор), достаточно секции с малым объемом. Кроме того, алюминиевые радиаторы с увеличенным внутренним объемом, равно как и чугунные батареи, намного медленнее нагреваются и медленнее остывают.

Работаем с документацией

Размер элементов системы отопления, количество батарей, их размеры, форма, внутренний объем жидкости – все эти параметры были давно рассчитаны и многократно проверены на практике. От того, сколько воды в одной секции алюминиевого радиатора, зависит греющая способность прибора, и она должна быть определенной величины.

Радиаторы должны быть однотипными. Они устанавливаются в квартирах и жилых помещениях, офисах, балансируются по расходу и объему воды, тепловой мощности, и только после этого подключаются к котельной установке или системе центрального отопления. Поэтому все водяные радиаторы однотипны по конструкции и стандартизированы по размерам.

Исключение – самодельные трубные регистры, сваренные хозяевами для самотечного (безнасосного) водяного отопления. Но их эффективность ниже, так как теплоноситель остывает неравномерно, и скорость потока в трубах невысокая. В этом случае объем подбирается экспериментально В процессе эксплуатации хозяева могут дополнительно приваривать горизонтальные регистры или убирать лишние трубы.

Все сведения о радиаторах, необходимые предприятию-производителю, собраны в ГОСТах на определенный тип отопительных приборов:

  • общий ГОСТ 31311-2005 на приборы отопления;
  • ГОСТ 8690-94 на чугунные батареи;
  • ГОСТ 20335-74 на стальные панельные приборы;
  • ГОСТ Р RU. 9001.5.1.9009.

Сведения о внутреннем объеме по воде указываются в паспорте и сертификате соответствия. Поэтому, покупая алюминиевый прибор (секцию), есть возможность сравнить, сколько литров в одной секции алюминиевого радиатора, с аналогичными моделями в интернет-магазинах или на сайте компании-производителя.

Помимо ГОСТов, в планировании отопления квартир массово используются СНиПы (строительные нормы и правила). Именно они зачастую устанавливают ограничения по параметрам системы отопления.

Например, жидкость в трубе отопительного контура (в стояке или горизонтальной разводке) всегда имеет более высокую температуру, чем наружная металлическая поверхность. СНиП 41-01-2003 допускает нагрев теплоносителя до 95 ℃, но при этом ограничивает скорость движения жидкости не более 2 м/с. Более высокие скорости допускаются для нежилых помещений.

Другой нормативный документ – СП 31-106-2002 (п. 7.2.4) – ограничивает температуру поверхности батареи. Она не может быть более 70 ℃. Вот и получается, что, с одной стороны, котел может нагреть жидкость даже до 95 ℃, но подавать ее в контур отопления можно со скоростью до 2 м/с.

С другой стороны, радиатор должен быть с достаточно большого объема, чтобы иметь развитую поверхность нагрева, обеспечивающую охлаждение до 70 ℃.

Усредненные данные

В целом величина внутреннего пространства у разных моделей радиаторов и батарей может отличаться как в пределах погрешности геометрии (из-за технологии изготовления), так и из-за желания компании-производителя сэкономить на металле. Усредненные данные по объему воды в радиаторе отопления приведены в таблице.

В среднем в одну алюминиевую секцию помещается 450-500 мл воды, в биметалл – 300-350 мл.

Кроме того, производители чугунных батарей заведомо делают внутренний объем больше заявленного. Это связано с тем, что внутри чугунных отопительных приборов обязательно должна быть воздушная подушка.

Сама конфигурация секций, размещение соединительных муфт и геометрия ребер выполнены так, что верхняя часть внутреннего пространства остается заполненной воздухом. Это делается намеренно, для того чтобы компенсировать негативные последствия термического расширения теплоносителя или гидравлического удара. Батареи из алюминия легко выдерживают удар, тогда как чугунные могут просто расколоться.

Способы расчета объема

Зачастую просто нет возможности получить сведения о радиаторе из-за отсутствия паспорта и маркировки. В таком случае измерить внутренний объем можно с помощью заливки воды, предварительно заглушив три из четырех отверстий штатными торцевыми пробками.

Поместившуюся жидкость можно будет слить из секции в литровую банку и взвесить на весах. Если вычесть вес тары, получим величину внутреннего объема. Это будет наиболее достоверная информация.

Определить величину внутреннего пространства можно по описанию секции. Для этого необходимо определить тип конструкции, измерить межосевое расстояние и взвесить секцию. Далее по приведенной выше таблице можно найти свой вариант и определить объем радиатора в литрах для отопления.

Погрешность будет в пределах 3-5%, что вполне приемлемо для любых теплотехнических расчетов.

Объем воды в радиаторе отопления используется для планирования отопительного контура и подбора котельного оборудования. Измерять его приходится относительно редко, но зачастую процесс вычисления реальной величины сопровождается техническими трудностями, особенно для старых моделей.

Чистка квартирного радиатора: видео.

Расскажите о своем опыте расчета или измерения внутреннего пространства батарей – насколько точными получились результаты? Сохраните материал в закладках, чтобы не потерять его.

Схемы отопления | Отопление водопровод канализация Белгород СантехМастер

Схема отопления с попутным движением теплоносителя

В системе с попутным движением теплоносителя циркуляционные контуры равны. Проще говоря, сумма длин «подачи» и «обратки» к каждому радиатору одинакова, следовательно, гидравлика радиаторов не зависит от его удаления от котельной. Теплоноситель чувствует себя в этой системе более уверенно. Радиаторы прогреваются равномерно, разбалансировать такую систему, при правильном монтаже и эксплуатации,  достаточно сложно.

Недостатки: высокая трудоемкость, чуть больший расход труб, по сравнению с тупиковой, не всегда удается выполнить технически, особенно, когда в доме много разных уровней.

 

Тупиковая схема отопления

В тупиковых системах отопления  движение горячей воды в подающей магистрали  противоположно движению остывшей воды в обратной магистрали.  Длина циркуляционных колец здесь не одинакова:  чем дальше от котла расположен нагревательный прибор, тем больше протяженность циркуляционного кольца, и, наоборот, чем ближе отопительный прибор расположен к котлу, тем меньше протяженность циркуляционного кольца. Циркуляционные контуры в такой системе не равны, настраивается система долго и легко может быть разбалансирована. Для того, чтобы расширить применение тупиковых систем, как наиболее экономичных, сокращают протяженность магистралей и вместо одной системы большой протяженности делают несколько.

В таких случаях обеспечивается лучшая горизонтальная регулировка системы.

 

Однотрубная схема отопления «ленинградка»

Однотрубную систему еще называют «ленинградкой». Она далеко не идеальна, но популярна из-за своей простоты. «Ленинградка» представляет собой такую систему, при которой все радиаторы отопления подключены последовательно к одной трубе, которая выполняет  роль подачи, и роль обратки. Получается, что магистраль закольцована на котел, а к ней в нужных местах подсоединены радиаторы. Теплоноситель по направлению движения последовательно поступает в каждый из отопительных приборов. В этом и заключается основной недостаток. В первый радиатор поступает самый горячий теплоноситель. Часть тепла отбирается на его нагрев. Теплоноситель становится холоднее,  подмешивается в магистраль, снижая  общую температуру. После чего, уже с чуть более холодный, он поступает на второй радиатор, где снова немного остывает и, добавляясь к основному потоку, еще больше охлаждает его.

По мере продвижения все более холодный теплоноситель поступает в каждый последующий элемент отопления. При достаточно длинной цепочке и большом количестве приборов последний радиатор бывает совершенно неэффективным.

Чтобы обойти это свойство и добиться примерно равной отдачи от каждого прибора, можно увеличивать количество секций радиатора по мере их удаления от котла. Таким образом, можно компенсировать систему, выровнять теплоотдачу каждого прибора.

Так же нужно устанавливать регуляторы и краны, которыми можно регулировать интенсивность потока теплоносителя в каждом отопительном приборе, выравнивая при необходимости температуру. Это позволяет добиться более-менее равной теплоотдачи от каждого из них.

 

Коллекторная (лучевая) схема отопления

Лучевой она называется, потому что при ее монтаже предусматривается на каждом уровне установка распределительного коллектора. От этого коллектора, как лучи, расходятся трубы к радиаторам отопления.  Особенностью лучевой системы является независимое подключение каждого радиатора или контура, а соответственно равномерное распределение теплоносителя по всем приборам. Такая система отопления позволяет регулировать потребление каждого радиатора или контура отдельно, добиваясь правильного распределения температурных зон в помещениях.

Основным недостатком лучевой разводки является большая материалоемкость. Эта система требует большого количества материалов. Причем не только труб, но и запорной арматуры, поскольку к каждому радиатору придется подводить сразу две магистрали — подачу теплоносителя и обратку. И каждую магистраль нужно укомплектовать вентилями — как на входе, так и на выходе.

Но, несмотря на большой расход комплектующих, подобная система дает возможность в случае возникновения аварийной ситуации оперативно отключить любой радиатор, группу, отдельную комнату или целый этаж. Отопительная система может продолжать в это время работать и обогревать помещения. Кроме этого, при лучевой разводке, трубы прокладываются без стыков. Труба, изготовленная из сшитого полиэтилена и  проложенная под полом, исключает риск протечек, а весь ремонт, если требуется, проводится непосредственно в местах подсоединения радиаторов или в коллекторе.

 

Гравитационная (самотечная) схема отопления

Систему отопления с естественной циркуляцией теплоносителя называют самотечной или гравитационной. Ее работа основана на разнице в плотности холодной и горячей воды и разнице по высоте в расположении отопительных приборов и котла. У горячей воды плотность гораздо ниже, поэтому более холодный теплоноситель, поступающий из радиаторов, вытесняет ее из котла и направляет вверх по стояку. После того, как тепло отдано радиаторам, остывшая вода перемещается по направлению к котлу под воздействием гравитационных сил, на ее место поступает более горячая вода от котла.

На сегодня эта система считается устаревшей и редко применяемой в силу таких недостатков, как высокая стоимость, низкий КПД, отсутствие экономичности, так как требует больших затрат на материалы (большие диаметры труб) и на работы (сложна в соблюдении ряда жестких требований к выполнению). Эффективно работает на небольших объектах малой этажности. В двухэтажных домах эффективность ниже, затруднено достижение баланса верхнего и нижнего этажей.

В заключении стоит подчеркнуть два основных преимущества этой системы – высокий уровень инерционности и энергонезависимость, то есть отсутствие необходимости электричества в здании, которое планируется оснастить данной системой отопления.

В каком направлении течет охлаждающая жидкость?

69_340_ГТС
Известный член