Расчет отопления в доме: онлайн калькулятор, как рассчитать, инструкция

Содержание

Формула расчета отопления для радиаторов

Сколько энергии нужно для обогрева всего дома и отдельных помещений в нем? От этих параметров будет зависеть мощность вашей системы отопления. Ошибки в расчетах быть не должно — иначе придется либо мерзнуть зимой, либо переплачивать за ненужное тепло.

На фото:

Для чего нужен тепловой расчет?

Для определения мощности источника тепла. Рассчитать отопление — значит определить мощность отопительной системы, т.е. понять, какие тепловые затарты потребуются на обогрев вашего дома. Применительно к водяным системам отопления этот параметр означает эффективную мощность водогрейного устройства (котла), к электрическим — суммарную тепловую мощность конвекторов, к воздушному отоплению — мощность воздухонагревателя. В конечном итоге, от мощности нагревательного устройства будет зависеть и денежный расчет за отопление.

Исходные данные

Общая формула расчета отопления: знать площадь комнат и высоту потолков.

Считается, что для обогрева 10 кв. м площади хорошо утепленного дома с высотой потолков 250-270 см нужен 1 кВт энергии. Таким образом, для дома площадью 200 кв. м понадобится мощность 20 кВт. Но это лишь максимально упрощенная формула, дающая приблизительное представление о количестве необходимого тепла.

Помещения без радиаторов также включают в расчет. Воздух в таких помещениях (коридоры, подсобки) все равно будет прогреваться «пассивно», за счет отопления в комнатах с радиаторами.

Поправки к общей формуле

Климатические особенности. Их рекомендуют учитывать, если вы хотите сделать не приблизительный, а более точный расчет отопления. Например, в Подмосковье для отопления 10 кв. м площади требуется в среднем 1,2-1,5 кВт, в северных районах — 1,5-2 кВт, в южных — 0,7-0,8 кВт.

Что еще влияет на расчет тепловой мощности?

Различные факторы, которые нельзя игнорировать. Это, например, наличие чердака и подвала, количество окон (они увеличивают теплопотери), тип окон (у пластиковых стеклопакетов теплопотери минимальные), нестандартная высота потолка, количество наружных стен в помещении (чем их больше, тем больше нужно энергии на прогрев), материал, из которого сделан дом и т.

п. Каждый такой фактор добавляет к общей формуле расчета корректирующий коэффициент.

Примеры различных коэффициентов:

  • Коэффициент потери тепла через окна: 1,27 (обычное окно), 1,0 (окно с двойным стеклопакетом), 0,85 (окно с тройным стеклопакетом)
  • Теплоизоляция стен: плохая теплоизоляция 1,27, хорошая теплоизоляция 0,85.
  • Соотношение площади окон и площади пола: 30% — 1, 40% — 1,1, 50% — 1,2.
  • Количество наружных стен: 1,1 (одна стена), 1,2 (две стены), 1,3 (три стены), 1,4 (четыре стены).
  • Верхнее помещение: холодный чердак — 1, теплый чердак — 0,9, отапливаемая мансарда — 0,8.
  • Высота потолков: 3 метра — 1,05; 3,5 метра — 1,1; 4 метра — 1,15; 4,5 метра — 1,2.

Что делать с полученным результатом?

Добавить еще 20%. Или, что то же самое, умножить полученный результат на 1,2. Это нужно, чтобы у обогревательного устройства был запас и оно не работало на пределе своих возможностей.

На фото: радиатор Logatrend K-Profil от компании Buderus.

Как посчитать количество радиаторов обогрева?

Узнать количество энергии, необходимое для обогрева данной комнаты. Для этого пользуетесь формулой, которую мы разбирали выше. Затем делите результат на рабочую мощность одной секции выбранного вами радиатора (этот параметр указан в техпаспорте). Он зависит от материала, из которого сделан радиатор и температуры системы. В результате получаете количество секций радиатора, необходимых для обогрева данной комнаты.

Доверять ли собственным силам?

Лучше обратиться в специальную фирму. Наиболее точный расчет необходимой тепловой мощности для вашего дома сделают профессионалы. Можно воспользоваться онлайн калькуляторами, которые есть на сайтах многих компаний. Чем больше параметров запрашивает у вас калькулятор, тем точнее будет его расчет.


В статье использованы изображения: kermi.com, buderus. ru


Калькулятор отопления: расчет стоимости отопления для частного дома.

На чтение 3 мин. Просмотров 359k.

Калькулятор отопления

Калькулятор отопления является довольно полезной вещью для застройщика. Если вы желаете получить более детальную информацию о предстоящей работе по установке отопительной системы дома, то он вам здорово поможет. Наша компания предоставляет подобную услугу. Она отличается  от конкурирующих тем, что обеспечивает более точные подсчеты. Дело в том, что наши сотрудники предоставляют услугу калькулятор отопления,  дадут вам гарантии и конкретные сведения только после выезда одного из наших специалистов на объект. Он тщательно осмотрит помещение, где планируется установка отопительной системы. Учтет все возможные потери тепла здания и прочие нюансы, которые могут повлиять на стоимость установки или эффективность будущего обогрева вашего дома или квартиры. Причем, вы можете воспользоваться услугой

калькулятор отопления и произвести расчет стоимости отопления абсолютно бесплатно,   если объект находится в пределах 100 км. от МКАД.

Интерактивный калькулятор со сметой тут

[wpcc id=»4″]

Расчет стоимости отопления

Расчет стоимости отопления включает в себя следующие моменты:
  • ·         Определение потерь тепла. Любая квартира или частный дом отдают часть тепла окружающей среде. Данная услуга поможет выяснить какое именно соотношение энергии, идущей на обогрев помещения, и энергии, которой можно пренебречь при расчете мощности котла или радиаторов. Этот расчет важно применять для комнат, которые имеют одну или несколько наружных стен.
  • ·         Температурный режим. Исходя из разнообразных потерь тепла и прочих нюансов, наш эксперт предоставит вам несколько замысловатых цифр, которые скажут о возможностях отопительной системы дома. От этого параметра, иногда, зависит выбор котла. Но, чаще всего, именно он диктует нам температурный режим. В учет берутся степень нагрева теплоносителя при выходе из котла к трубам отопления, состояние теплоносителя (температура), который возвращается в котел и температура воздуха в помещении.
  • ·          Расчет мощности отопительного котла и радиаторов. На этот параметр влияет и объем вашего помещения, и потери тепла  здания. Наш сотрудник комплексно оценит все интересующие моменты и поможет определиться с выбором котла и радиаторов отопления.
  • ·         Непосредственный расчет системы отопления. Данная операция нужна для точного определения размера трубы для отопления, типа насоса, если он нужен, количества необходимого теплоносителя для эффективного обогрева помещения. Эти факторы играют огромную роль при расчете стоимости отопления.

Стоимость отопления является одним из решающих факторов при выборе и установке обогрева. Она часто балансирует с эффективностью системы.

На стоимость отопления влияют такие моменты как:

  • ·         Котел отопления. Здесь важны, как его мощность, та и его тип. То есть, какое топливо используется для обогрева. Довольно часто именно цена котла составляет значительную часть стоимости отопления.
  • ·         Отопительные радиаторы. От потерь тепла здания и объема помещения зависит количество ребер. Возможен также вариант установки нескольких батарей.
  • ·         Трубы системы отопления. От их качества зависит долговечность вашего обогрева. Необходимым параметром является диаметр труб для отопления.

Наша компания поможет вам сделать оптимальный выбор для вашей конкретной ситуации. Вы получите отличное качество наряду с низкой стоимостью отопления.

Расчет отопления частного дома

Компания Еврострой готова предложить вам весь спектр услуг по отоплению, горячему и холодному водоснабжению, канализации домов, квартир и других объектов.

Предварительный расчёт системы отопления частного дома или коттеджа выполняется бесплатно в течение 1-2 — ух дней. Для начала расчётных работ необходим или визуальный осмотр объекта, или же наличие поэтажных планов дома.

По этим данным наш специалист составит коммерческое предложение со стоимостью монтажных работ, ценой на оборудование и материалы.

Так же мы можем выполнить теплотехнический расчёт отопительной системы дома с составлением монтажной схемы и спецификации. Как показывает практика, данного расчёта вполне хватает для организации системы отопления в частном коттедже.

Так же наши специалисты осуществляют монтаж труб отопления и монтаж отопления дома под ключ.

Посмотреть наши цены на монтаж отопления

Очень часто наших клиентов интересует программа или методика теплотехнического расчёта отопления коттеджа. Мы решили написать небольшую статью, в которой будет приведён пример расчёта системы отопления и схема отопления загородного дома.

Методика расчёта систем отопления дома

Расчёт системы отопления частного дома и её цена будет зависеть от площади вашего дома, марки и типа отопительного оборудования, дополнительных факторов, таких как, наличие в проекте отопления тёплого пола, установка радиаторов отопления или дополнительных конвекторов.

Так же на расчёт системы отопления её стоимости будет влиять наличие на вашем загородном участке дополнительных строений (бани, гаража и т.д)

Итак, полный расчёт отопления загородного дома складывается из таких условий как: расчёт площади и требуемой мощности отопления помещения, расчёт количества и мощности батарей (радиаторов) отопления, расчёт труб отопления дома, расчет монтажа системы «теплого пола» и многое другое. На самом деле, конкретной формулы, по которой можно сделать расчёт отопления коттеджа не существует.

Отопление - виды, расчет теплопотерь и пр.

Какие виды отопления бывают? Какой их них лучше выбрать? Как рассчитать теплопотери?

На все эти вопросы Вы найдете ответы, прочитав статью.

Виды отопления

Существует несколько видов теплоносителей:

  •  воздух;
  •  вода;
  •  антифриз;
  •  газ.

Воздух обладает малой теплоемкостью. При использовании воздуха в отоплении дома необходима организация сложной системы теплопроводов и сильного конвекционного потока.

Вода является наиболее подходящим вариантом отопления жилого дома. Ее теплоемкость имеет наивысшие показатели среди других жидкостей, а вязкость невелика.

Антифриз — теплоноситель, который обладает незамерзающими свойствами. Антифризами являются этилен-, пропилен- и другие гликоли, а также растворы определенных органических солей.

Газовое отопление природным газом является наиболее экономически выгодным вариантом. Соотношение энергоемкости и доступной цены делает газ наиболее привлекательным для отопления дома.

Еще одним вариантом отопления в частном доме являются теплые полы. Данная система имеет меньшие потери тепла по сравнению с обычными радиаторами отопления. А основным ее недостатком является большая энергозависимость. Таким образом, теплые полы лучше использовать в помещениях, где теплопотери наиболее высоки.

Расчет системы отопления для частного дома

Расчет системы отопления происходит в несколько этапов:

  1. Создание проекта дома;
  2. Выделение зон комфортности;
  3. Расчет теплопотерь в каждом отдельно взятом помещении;
  4. Распределение источников отопления в помещениях;
  5. Определение тепловой мощности радиаторов отопления для каждой комнаты;
  6. Проектирование схемы системы отопления с разведением теплоносителя,
  7. определение коэффициентов для расчета мощности котла;
  8. Расчет мощности котла с использованием основного и дополнительного коэффициента.

Для окончательного расчета системы отопления необходимо определить спецификацию необходимого оборудования, труб, вентилей, фитингов.

Если вам необходим монтаж системы отопления и полный расчет — обращайтесь к нам!

Выделение зон комфортности

Разделение общей площади дома на зоны комфорта позволяет рассчитать наиболее оптимальную схему расходования тепла. Можно выделить следующие зоны:

  •  Зона полного комфорта: температура воздуха 20-24 градуса, комнаты, расположенные у одной или двух наружных стен. К данной зоне относят детские комнаты, ванные и санузлы, бассейны, домашние сауны.
  •  Спальная зона: температура 21-25 градусов тепла, комнаты, где проходит большая часть времени живущих в доме людей. Сюда относят спальни, комнаты для гостей и прислуги.
  •  Жилая зона: температура от 18 до 27 градусов. Гостиные, столовые и кухонные зоны, рабочие кабинеты.
  •  Хозяйственная зона: температура от 15-16 градусов. Это могут быть мастерские, летние кухни и т.д.
  •  Проходная зона — температура от 12 градусов, так как в данной зоне жильцы часто находятся в верхней одежде. Для отопление наиболее эффективными могут стать системы теплых полов или потолочных инфракрасных излучателей.
  •  Подсобная зона — температура в этой зоне не нормируется.

Планировка помещений, с учетом системы отопления

Наиболее эффективно рассчитывать систему отопления на этапе проектирования дома и планирования помещений.

Комнаты, расположенные у 1-2х наружных стен потеряют меньше тепла, так как будут иметь только один внешний угол, на котором происходят наибольшие теплопотери.

Котел лучше располагать в отдельном помещении. Согласно требованиям противопожарной безопасности, объем такого помещения должен составлять не менее 8 кубических метров, высота потолка не менее 2,4 метра. В комнате должно быть открывающееся окно и решетка с воздушным фильтром для свободного притока воздуха. Вместо воздушной решетки можно использовать щель под дверью 40-ка мм шириной.

Бросовое тепло, которое дает котел, можно использовать полнее, если в смежных помещениях располагать комнаты зоны полного комфорта и санузлы. Вход в котельную при таком размещении должен быть предусмотрен с улицы или нежилой зоны.

Наиболее холодные помещения с наличием углов следует использовать для организации хозяйственной или подсобной зоны.

Расчет теплопотерь

Для того чтобы рассчитать возможные теплопотери, необходимо учитывать следующие данные:

  1. конструктивные особенности дома;
  2. материал стен;
  3. их толщину;
  4. средняя температура самого холодного месяца;
  5. коэффициент использования мощности котла.

Рассчитывать теплопотери необходимо отдельно для каждого элемента конструкции (стены, пол, потолок, окна, двери).

Выбор радиаторов отопления

Радиаторы отопления по составу делятся на 4 вида:

  •  стальные;
  •  алюминиевые
  •  биметаллические;
  •  чугунные.

Биметаллические радиаторы состоят из тонких стальных сердечников, на которые нанизаны алюминиевые секции. В отличие от алюминиевых, такие радиаторы могут выдерживать гидроудары и повышенное давление, однако цена на них значительно выше. Самыми недорогими являются стальные радиаторы.

Схема раздачи тепла

Существует две схемы раздачи тепла: тупиковая и оборотная.

При тупиковой системе замыкание водного потока происходит через батареи, полотенцесушители, теплые полы.

В оборотной системе происходит частичный переток воды из подачи в отвод. При оборотных схемах требуется минимальное количество труб, возможно использование котлов без байпаса, так как остывающая обратка сама оттягивает горячую подачу.

Тупиковые системы раздачи делятся на однотрубные, двухтрубные и комбинированные.

При однотрубной схеме подача и отвод производится одной трубой, что позволяет сэкономить на материалах. Однако, в такой системе необходим циркуляционный насос, а последовательное соединение радиаторов приводит к неравномерности нагрева.

Двухтрубная система имеет свои достоинства и недостатки. Из-за большого количества используемых труб, она дороже. Основной плюс системы — возможность регулировать температуру радиаторов независимо друг от друга. Реже всего используется комбинированная система.

Выбор труб для системы отопления

Для систем отопления используются трубы из таких материалов, как сталь, полипропилен, медь, а так же наиболее современный материал — сшитый полиэтилен (PEX-трубы).

Благодаря своей прочности и устойчивости к скачкам давления и гидроударам, а также доступной цене, наиболее популярными являются стальные трубы и полипропиленовые.

Самым прочным и долговечным материалом для труб считается медь. Медные трубы легко устанавливать, но цены на них очень высоки.

Сшитый полиэтилен (PEX-трубы) — это современный материал, который подходит как для внутреннего, так и для наружного применения. Надежный, устойчивый к высоким температурам, не боится замерзания.

Выбор инфракрасного обогревателя

Можно выделить пленочные и светодиодные обогреватели.

Пленочные являются низкотемпературными, они неэкономичны, лучше всего подходят в качестве дополнительного источника отопления.

Светодиодные инфракрасные обогреватели или инфракрасные картины — это цифровые фоторамки, в которых каждый пиксель изображения является еще и инфракрасным излучателем. Светодиоды излучают направленное вперед тепло, их коэффициент полезного действия довольно высок, необходимая температура выбирается с помощью пульта. Главным недостатком таких приборов является высокая цена.

Смотрите также

Проектирование систем отопления: расчет и подбор

  • Устройство и схема
  • Проектирование
  • Сервис
  • Важность хорошего отопления для дома в условиях российских зим трудно переоценить. Если оно грамотно рассчитано, то станет залогом не только комфортного проживания, но и значительной экономии при оплате за энергоносители.

    • Компания «Канал» предлагает профессионально выполнить проект отопления частного дома любого размера, этажности и любых конструктивных особенностей. Сотни домов в Ленинградской области оборудованы коммуникациями, проектирование и монтаж которых выполнены нашими специалистами.

    Примеры проектов систем отопления
    Проект отопления №1
    Проект отопления №2
    Проект отопления №3

    Проектирование систем отопления дома связано с проведением ряда расчетов, которые берутся за основу при подборе оборудования. В состав проекта входит:

    • гидравлический и теплотехнический расчеты;
    • поэтажные планы расстановки оборудования;
    • трассировка стояков и трубной разводки;
    • пояснительная записка;
    • спецификация оборудования.

    Рабочее давление в системе отопления

    Правильное давление – один из ключевых факторов в проектировании, влияющий на эффективность отопления. Это особенно важно для объектов, имеющих несколько этажей и большую площадь. Для частных домов оптимальная величина давления должна находиться в пределах 1,5-2,0 атм. За поддержание параметра отвечают циркуляционные насосы, которые могут быть частью теплогенерирующего оборудования или устанавливаются отдельно.

    Гидравлический расчет системы отопления

    Задачей гидравлического расчета является определение общего расхода теплоносителя, подбор оптимальных диаметров и длины трубопроводов, определения сопротивления и потерь на отдельных участках. На его основе можно грамотно сбалансировать работу всех участков. Это достигается подбором диаметров трубопроводов и установкой радиаторных клапанов. Полученные цифры берутся за основу и при определении оптимальной производительности циркуляционного насоса.

    Расчет мощности котла отопления

    Котел – это сердце отопительной системы, поэтому первое с чего начинается расчёт отопления в частном доме – это подбор мощности отопительного прибора.

    Формула расчета:
    Wк = (S х Wуд.):10
    где Wк – тепловая мощность котла, S – общая отапливаемая площадь, Wуд. – удельная мощность на 10 м², учитывающая климатические условия региона (при проектировании домов в Санкт-Петербурге и Ленинградской области принимается из расчета 1,2 – 1,5 кВт).

    Пример расчета отопления по площади:
    Wк = (150 х 1,5) : 10 = 22,5 кВт
    В этом примере мощность котла для дома площадью до 150 м² должна быть не меньше 23 кВт.

    • Особый интерес у владельцев домов вызывают энергосберегающие технологии и автоматизация процессов. Проектирование систем с использованием такого оборудования значительно расширяют возможности по управлению затратами на коммунальные платежи. В некоторых случаях экономия может доходить до 30%.

    Проектирование и монтаж систем отопления компанией «Канал» осуществляется в строгом соответствии с действующими строительными нормами и правилами, ГОСТами и другими нормативными документами. Осуществление авторского надзора на этапе монтажа позволит избежать многих ошибок и неточностей, негативно влияющих на производительность всей системы.

    Закажите услугу on-line или
    позвоните по телефону: (812) 954-28-80

    схема определения и важные параметры комнат

    При длительном проживании в доме многие люди сталкиваются с необходимостью замены системы отопления. Некоторые владельцы квартир в определённый момент решают выполнить замену изношенного радиатора отопления. Чтобы после выполнения необходимых мероприятий в доме была обеспечена теплая атмосфера, необходимо правильно подойти к задаче расчета отопления для дома по площади помещения. От этого во многом зависит эффективность работы системы отопления. Чтобы обеспечить это, нужно правильно произвести расчет количества секций устанавливаемых радиаторов. В этом случае теплоотдача от них будет оптимальной.

    Если количество секций будет недостаточным, то необходимый прогрев комнаты никогда не произойдет. А по причине недостаточного количества секций в радиаторе возникнет большой расход тепла, что негативным образом отразится на бюджете владельца квартиры. Определить потребность конкретного помещения в отоплении можно, если произвести простые расчеты. А для того чтобы они казались точными, при их выполнении необходимо принимать во внимание целый ряд дополнительных параметров.

    Простые вычисления по площади

    Для того чтобы правильно рассчитать радиаторы отопления для определенного помещения, необходимо, прежде всего, принимать во внимание площадь комнаты. Самый простой способ — ориентироваться на сантехнические нормы, согласно которым для отопления 1 кв. м. требуется 100 Ватт мощности радиатора отопления. Следует не забывать и о том, что этот метод может использоваться для помещений, у которых высота потолков стандартная, то есть, варьируется от 2,5 до 2,7 метра. Выполнение расчетов с использованием этого метода позволяет получить несколько завышенные результаты. Помимо этого при его использовании во внимание не принимаются следующие особенности:

    • число окон и тип пакетов, установленных в помещении;
    • количество наружных стен, расположенных в помещении;
    • материалы изготовления стен и их толщина;
    • тип и толщина используемого утеплителя.

    Тепло, которое для создания комфортной атмосферы в помещении должны давать радиаторы: для получения оптимальных расчетов необходимо взять площадь помещения и умножить ее на тепловую мощность радиатора.

    Пример расчета радиатора

    Скажем, если комната имеет площадь 18 кв. м., то для неё потребуется батарея мощностью 1800 ватт.

    18 кв. м. х 100 Вт = 1800 Вт.

    Полученный результат необходимо разделить на количество тепла, которое в течение часа выделяет одна секция радиатора отопления. Если в паспорте изделия указывают, что этот показатель равен 170 Вт, то далее расчеты будут такими:

    1800 Вт / 170 Вт = 10,59.

    Полученный результат необходимо округлить до целого. В результате получаем 11. Это означает, что в помещение с такой площадью оптимальным решением будет установка радиатора отопления с одиннадцатью секциями.

    Следует сказать, что подобный метод отлично подходит только помещений, которые получают тепло от централизованной магистрали, где циркулирует теплоноситель с температурой 70 градусов Цельсия.

    Существует еще один способ, который по своей простоте превосходит предыдущие. Применять его можно для расчета количества отопления в квартирах панельных домов. При его использовании учитывается то, что одна секция в состоянии обогреть площадь 1,8 кв. м., то есть, при выполнении расчетов площадь помещения следует разделить на 1,8. Если комната имеет площадь 25 кв. м., то для обеспечения оптимального отопления потребуется 14 секций в радиаторе.

    25 кв. м. / 1,8 кв. м. = 13,89.

    Однако у такого метода расчета имеется один нюанс. Его нельзя использовать для приборов пониженной и повышенной мощности. То есть, для тех радиаторов, у которых отдача одной секции варьируется в диапазоне от 120 до 200 Вт.

    Метод расчета отопления для комнат с высокими потолками

    Если в помещении потолки имеют высоту более 3 метров, то применение перечисленных выше способов не дает возможности правильно рассчитать потребность в отоплении. В таких случаях необходимо использовать формулу, которая учитывает объем помещения. В соответствии с нормативами СНиП, для обогрева одного кубического метра объема помещения требуется 41 Ватт тепла.

    Пример расчета радиатора

    Отталкиваясь от этого, для обогрева помещения, площадь которого составляет 24 кв. м., а высота потолков не менее 3 метров, расчеты будут следующие:

    24 кв. м. х 3 м = 72 куб. м. В результате получаем общий объем помещения.

    72 куб. м. х 41 Вт = 2952 Вт. Полученный результат — суммарная мощность радиатора, который обеспечит оптимальный обогрев комнаты.

    Теперь необходимо рассчитать количество секций в батарее для комнаты такой площади. В том случае если в паспорте к изделию указано, что теплоотдача одной секции составляет 180 Вт, при расчетах необходимо общую мощность батареи разделить на это число.

    В итоге получаем 16,4. Потом результат нужно округлить. В результате имеем 17 секций. Батареи с таким количеством секций вполне хватит для создания теплой атмосферы в комнате площадью 72 м3. Выполнив несложные вычисления, получаем нужные нам данные.

    Дополнительные параметры

    Выполнив расчет, следует провести корректировку полученного результата, принимая во внимание особенности комнаты. Они должны учитываться следующим образом:

    • для комнаты, являющейся угловой, с одним окном при расчетах к полученной мощности батареи необходимо добавить 20% дополнительно;
    • если в помещении имеется два окна, то должна быть выполнена корректировка в сторону увеличения на 30%;
    • в случаях, когда монтаж радиатора выполняется в нише под окном, его теплоотдача несколько снижается. Поэтому необходимо добавить к его мощности 5%;
    • в комнате, в которой окна выходят на северную сторону, к мощности батареи необходимо дополнительно добавить 10%;
    • украшая батарею в своей комнате специальным экраном, следует знать, что он крадет у радиатора некоторое количество тепловой энергии. Поэтому дополнительно необходимо прибавить к радиатору 15%.

    Специфика и другие особенности

    В помещении, для которого производится расчет потребности в отоплении, может быть и другая специфика. Важными становятся следующие показатели:

    • температура циркулирующего в радиаторах отопления теплоносителя не должна быть ниже 70 градусов. Если уровень температуры меньше, то число секций в приборе отопления необходимо увеличить;
    • в том случае, если между двумя помещениями дверь отсутствует, следует выполнить расчет их общей площади, а потом рассчитать количество радиаторов, необходимых для оптимального обогрева;
    • в помещениях, в которых на окнах установлены стеклопакеты, потери тепла сведены к минимуму. Поэтому при выборе радиатора отопления можно устанавливать изделие с меньшим количеством секций.

    Климатические зоны

    Каждый знает, что каждая климатическая зона имеет свои потребности в обогреве. Поэтому при разработке проекта необходимо принимать во внимание эти показатели.

    У каждой климатической зоны имеются свои коэффициенты, которые необходимо использовать при расчетах.

    Для средней полосы России этот коэффициент равен 1. Поэтому он не используется при расчетах.

    В северных и восточных регионах страны коэффициент равен 1,6.

    В южной части страны этот показатель варьируется от 0,7 до 0,9.

    При выполнении расчетов необходимо на этот коэффициент умножить тепловую мощность. А потом на теплоотдачу одной секции разделить полученный результат.

    Заключение

    Расчет отопления в помещении очень важен для обеспечения теплой атмосферы в жилище в зимнее время. Больших сложностей с выполнением расчетов обычно не возникает. Поэтому каждый владелец может осуществить их самостоятельно, не прибегая к услугам специалистов. Достаточно найти формулы, которые используются для расчетов.

    В этом случае можно сэкономить на приобретении радиатора, так как вы будете избавлены от необходимости платить за ненужные секции. Установив их на кухне или в гостиной, в вашем жилище будет царить комфортная атмосфера. Если вы неуверены в точности своих расчетов, из-за которых вы не подберете оптимальный вариант, то следует обратиться к профессионалам. Они правильно произведут расчеты, а после качественно выполнят установку новых радиаторов отопления или грамотно проведут монтаж системы отопления.

    Оцените статью: Поделитесь с друзьями!

    Расчет тепловой мощности системы отопления

    При произведении строительства частных домов или же разноплановых реконструкций жилых объектов, которые подвергались эксплуатации на протяжении длительного периода времени, обязательным условием является наличие документа, демонстрирующего расчет объема системы отопления.

    Можно всерьёз и надолго забыть о хаотичном возведении и обслуживании строений, которые могли простоять недолго — теперь на дворе век, когда все официально оформляется, устанавливается и проверяется (ради блага самих же хозяев домов, разумеется). Документ расчетного характера непосредственным образом отображает практически всю информацию о количестве тепла, которое требуется для того, чтобы обогреть жилую часть здания.

    Чтобы понять, как рассчитывается отопление, необходимо принимать во внимание не только расчет отопительных приборов системы отопления, но и материал, который использовался при строительстве дома, пол, расположение окон по сторонам света, погодные условия в регионе и прочие неоспоримо важные вещи.

    Только после этого можно с полной уверенностью сказать, что нужно вспоминать о том, насколько важен расчет отопительных приборов системы отопления — если не все будет учтено, то и результат будет искривлен.

    Зачем, собственно, нужно делать расчеты?

    Вот об этом мы с Вами дальше и будем вести речь. Давайте поговорим о том, как рассчитывается отопление — рассмотрим вопрос детальнее. Если речь идет о правильном подборе параметров (а именно, диаметров и длин труб), то здесь обязательно понадобится произвести расчет воды в системе отопления.

    Многочисленные консультанты в строительных магазинах, будто сговорившись, твердят о том, что радиаторы надо выбирать последовательно, руководствуясь расчетами в 100 Вт на один квадратный метр. Мы не можем сказать, что это всегда так и что определенно нужно ориентироваться на предоставляемую наемными работниками информацию, поскольку везде имеются свои особенности — фактор индивидуальности нельзя ни в коем случае отбрасывать.

    Дело в том, что дома по своей толщине и составу стенок имеют свойство отличаться — у каждого материала имеется своя, уникальная теплопроводность. Владельцам домов требуется различное количество тепла, ведь у разных домов будут, соответственно, разные тепловые потери.

    Для того чтобы произвести расчет тепловой мощности системы отопления и рассчитать тепловые потери, существует действительно огромное множество подручных полезных инструментов, позволяющих это сделать с очень высокой для них точностью.

    Вам ни в коем случае не нужно волноваться, если речь будет идти о том, правилен ли расчет тепловой мощности системы отопления или нет — автоматизированная и хорошо настроенная техника попросту не способна ошибаться! Программ для совершения подобных действий существует уйма — поэтому, спокойствие и только спокойствие!

    Давайте поговорим о самих расчетах

    Чтобы Вы лучше понимали, о чем в данный момент идет речь в статье, мы приведем показательный пример расчета системы отопления. К примеру, чтобы рассчитать мощность определенного котла, можно воспользоваться следующей универсальной, по своему характеру, формулой: удельная мощность равняется площади отапливаемого помещения, которая умножается на мощность котла и делится на цифровое значение, равняющееся десяти.

    Так, скажем, если площадь частного дома составляет восемьдесят пять квадратных метров, а удельная мощность равняется полутора киловаттам, то мощность котла будет составлять 12,75 кВт соответственно. Теперь Вы знаете, как выглядит формула расчета отопления, и можете в любой момент рассчитать ее самостоятельно, без привлечения специалистов.

    Однако, имеются и свои тонкости в других вопросах — например, если надо сделать расчет гравитационной системы отопления, то лучше обратиться к грамотному специалисту, который в обязательном порядке должен учитывать все достоинства и недостатки, риски и преимущества.

    Давайте вместе подведем итоги и попробуем вывести общее, понятное резюме.

    В данной статье мы с Вами узнали, что расчеты отопления можно делать как вручную, так и посредством использования различных онлайн-калькуляторов. Стратегия подсчётов зависит от Ваших личных предпочтений, целей, задач и удобства.

    Теперь, когда Вы знаете, как рассчитывается отопление и поняли, как работает формула расчета отопления, Вам все будет по плечу — даже ни на секунду не сомневайтесь!

    Энергия для отопления дома

    Передача тепла от вашего дома может происходить за счет теплопроводности, конвекции и излучения. Обычно это моделируется с точки зрения теплопроводности, хотя проникновение через стены и вокруг окон может привести к значительным дополнительным потерям, если они плохо герметизированы. Потери излучения можно минимизировать, используя изоляцию с фольгой в качестве радиационного барьера.

    В сфере отопления и кондиционирования воздуха в США почти полностью используются старые британские стандарты и стандарты U.С. общие единицы для своих расчетов. Для совместимости с обычно встречающимися величинами этот пример будет выражен в этих единицах.

    I. Рассчитайте скорость потери стенки в БТЕ в час.

    Для помещения размером 10 на 10 футов с потолком 8 футов, со всеми поверхностями, изолированными до R19, как рекомендовано Министерством энергетики США, с внутренней температурой 68 ° F и наружной температурой 28 ° F:

    II. Рассчитайте потери за день при этих температурах.

    Тепловые потери в день = (674 БТЕ / час) (24 часа) = 16168 БТЕ

    Обратите внимание, что это просто потеря через стены. Потери через пол и потолок рассчитываются отдельно и обычно включают разные значения R.

    III. Рассчитайте потерю за «градусный день».

    Это потеря за день с разницей в один градус между внутренней и внешней температурой.

    Если бы условия случая II преобладали в течение всего дня, вам потребовалось бы 40 градусо-дней отопления, и, следовательно, потребовалось бы 40 градусо-дней x 404 БТЕ / градус дня = 16168 БТЕ для поддержания постоянной внутренней температуры.

    IV. Рассчитайте теплопотери за весь отопительный сезон.

    Типичная потребность в отоплении для отопительного сезона в Атланте, с сентября по май, составляет 2980 градусо-дней (долгосрочное среднее).

    Типичное количество градусо-дней нагрева или охлаждения для данного географического местоположения обычно можно получить в метеорологической службе.

    V. Рассчитайте потери тепла за отопительный сезон для типичного неизолированного южного дома в Атланте.

    Диапазон уровней потерь, указанный Министерством энергетики для неизолированных типовых жилищ, составляет от 15 000 до 30 000 БТЕ / градус в день. Выбор 25000 БТЕ / градус в день:

    VI. Рассчитайте годовую стоимость отопления.

    Предположим, что стоимость природного газа составляет 12 долларов за миллион БТЕ в печи, работающей с КПД 70%.

    Предположим, что электрический резистивный нагрев с КПД 100% *, 9 / кВтч.

    Предположим, электрический тепловой насос с КПД = 3

    * 100% -ная эффективность использования электричества в вашем доме для производства тепла - распространенный маркетинговый ход электроэнергетических компаний.Это заблуждение, потому что вам нужно сжечь около 3 единиц первичного топлива, чтобы доставить 1 единицу электроэнергии в дом из-за теплового узкого места в производстве электроэнергии. Таким образом, 100% эффективное использование в вашем доме составляет около 33% эффективности использования основного топлива.

    Когда вы отапливаете природным газом, вы используете основное топливо в своем доме, и это явно предпочтительнее, чем использование электрического резистивного отопления, которое является расточительным по сравнению с высококачественной поставляемой электрической энергией.Используя электрический тепловой насос, по крайней мере, на юге США, вы можете получить коэффициент полезного действия около 3. То есть вы закачиваете в дом три единицы тепла, расходуя всего одну единицу высококачественного электрического энергия. Это почти компенсирует потери 3: 1 в процессе выработки электроэнергии, о которых говорилось выше. В приведенном выше примере расчетная стоимость электрического теплового насоса значительно дешевле, чем стоимость нагрева природного газа, но это может быть связано с тем, что текущая стоимость природного газа в то время была необычно высокой.За последние 25 лет или около того отопление с использованием природного газа и электрических тепловых насосов осталось сопоставимым по стоимости.

    Калькулятор нагрузки

    HVAC - Оцените размер вашей системы отопления / охлаждения (в БТЕ)

    Калькулятор HVAC

    Этот калькулятор нагрузки HVAC (также известный как калькулятор BTU) обеспечивает точную оценку реальной тепловой нагрузки для как для отопления, так и для охлаждения . Кроме того, он дает рекомендации по оборудованию (тип системы отопления / охлаждения, подходящий для вашего дома) и рассчитывает стоимость установки оборудования, включая труд и материалы!

    Мы используем запатентованный алгоритм расчета BTU, который НЕ ЗАВЕРШАЕТ переоценку удельной мощности.Большинство онлайн-инструментов дают более высокую оценку тепловой нагрузки, чем это действительно необходимо для вашего дома, чтобы продать вам более дорогое оборудование.

    Оценить нагрузку системы HVAC сейчас:

    Расчетная нагрузка Охлаждение / нагрев: 0 БТЕ

    Рекомендуемое оборудование Рассчитайте, чтобы увидеть результаты

    Посмотреть цены в вашем районе Начните здесь - введите свой почтовый индекс

    Как пользоваться калькулятором тепловой нагрузки

    МАССИВНОЕ ОБНОВЛЕНИЕ (24 июня 2020 г. ): Мы выпустили обширное обновление калькулятора, на разработку которого ушло более 150 часов, и теперь оно содержит более 900 строк кода! В этом новом выпуске представлены расчеты цен . и HVAC Equipment. Алгоритм рекомендаций , который предлагает рекомендации, основанные на вашем климатическом регионе, размере вашего дома, наличии (или отсутствии) воздуховодов и / или радиаторов плинтуса в вашем доме.

    Хотя расчет тепловой нагрузки в BTU производился до этого обновления, многие домовладельцы не были уверены, какая система отопления и охлаждения им лучше всего подходит. Именно здесь наш новый алгоритм может дать разумную рекомендацию, которая включает как мощность системы (для отопления и охлаждения), соответствующий тип системы, так и затраты на энергию / топливо.

    Мы также рекомендуем, ЕСЛИ вы планируете использовать результаты этого расчета тепловой нагрузки для принятия решения о покупке, вам СЛЕДУЕТ проверить результаты с помощью этого подробного онлайн-оценщика Manual J.

    Несколько систем отопления / охлаждения: Еще одна важная новая функция - это расчет стоимости нескольких систем отопления / охлаждения, устанавливаемых в больших домах (более 3000 кв. Футов), и определение максимально возможной ведущей системы ОВКВ в BTU, а затем система наименьшего размера для оставшейся части общей нагрузки БТЕ.

    Например, если ваша тепловая нагрузка составляет 150 000 БТЕ, а максимальный размер центрального кондиционера в жилых помещениях составляет 60 000 БТЕ (5 тонн), тогда вам понадобятся два компрессора на 60 000 БТЕ и один компрессор на 30 000 (2.5 тонн). Алгоритм калькулятора выберет полноразмерную систему (ы) и систему наименьшего размера, чтобы покрыть остальную требуемую нагрузку в БТЕ, чтобы дать вам наиболее экономичную оценку.

    Оценка стоимости установки: инструмент оценит общую стоимость установки вашей новой системы отопления, вентиляции и кондиционирования воздуха, которая основывается на стоимости оборудования, а также в среднем по стране на оплату труда + накладные расходы + прибыль, которые сантехники / подрядчики ОВК взимают за каждый тип системы.

    Запланированные новые функции: Теперь, когда механизм рекомендаций по оборудованию и расчет стоимости полностью функционируют, мы планируем добавить две последние функции:

    1) Ориентировочная стоимость установки новых воздуховодов (при необходимости).
    2) Оценка стоимости установки нового плинтуса или настенных радиаторов ИЛИ теплых полов (при необходимости).

    Как рассчитать нагрузку HVAC


    Важно, чтобы вы вводили точные / соответствующие данные в калькулятор БТЕ. Этот инструмент максимально приближает вас к сложной ручной оценке J. В противном случае вы можете получить слишком большую или слишком маленькую систему.

    Шаг 1 (климатический регион): Выберите свой климатический регион, используя карту региона в верхней части калькулятора.Например, если вы живете в Нью-Йорке или Нью-Джерси, выберите Регион 3 (желтый). Если вы живете в Техасе, выберите регион 5 (красный) и т. Д.

    Шаг 2 (Размер площади): Введите квадратные метры для вашего дома / здания или определенной площади, для которой вы делаете расчеты.

    Это шаг Critical для точной оценки годовых нагрузок на отопление / охлаждение ваших систем HVAC! Если вы оставите все настройки по умолчанию и измените только регион с 1 на 5 и обратно, вы увидите огромное изменение нагрузки охлаждения / нагрева в БТЕ.

    Шаг 3 (Помещения / Зоны): Введите количество Помещений / Зон, в которых вы хотите установить новую систему отопления / охлаждения.

    Если вы планируете использовать центральную систему кондиционирования + воздушную печь (канальную) или центральный котел для отопления, количество зон не очень важно с точки зрения оценки тепловой нагрузки.

    Это значение наиболее полезно для определения того, какой тип системы Ductless Mini-Split использовать.

    Кроме того, мы обсуждаем плюсы и минусы использования многозонного против установка нескольких однозонных систем с тепловым насосом Ductless в нашем руководстве по установке Mini Split DIY.

    Шаг 4 (Высота помещения): Выберите среднюю высоту потолка вашего дома. В большинстве случаев это значение должно быть равно 8 футам. Однако, если у вас высокие потолки или соборные / сводчатые потолки, ОБЪЕМ вашего пространства будет выше.

    Для соборных / сводчатых потолков сложите наименьшую высоту стены + высоту пика и разделите на 2, чтобы получить среднее значение. Например:

    Ваша внешняя стена 8 футов.высотой, а самая высокая точка на потолке - 12 футов в высоту. В этом случае средняя высота потолка составляет 10 футов:
    (12 + 8) / 2 = 10

    .

    Шаг 5 (класс изоляции): Большинство домов в США, построенных между 1978 и 2000 годами, будут иметь 4-дюймовые стойки с изоляцией стен R-13 и изоляцию крыши / чердака R-38. Если это соответствует вашему дому, оставьте это значение по умолчанию (Средняя изоляция стен R-13).

    Если у вас новый дом с 6-дюймовыми шпильками, у вас будет изоляция R-18.В этом случае выберите значение «Больше среднего».

    В большинстве случаев вам не следует использовать значение «Очень хорошо изолировано», если только у вас нет дома с «супер изоляцией».

    Если у вас дом частично изолирован, выберите «Менее среднего» или «Плохо изолирован».

    Эти два значения являются наиболее важными с точки зрения отопления, где потери тепла будут самыми высокими. Если ваша основная причина для установки новой системы HVAC - охлаждение, мы рекомендуем использовать значение «Меньше среднего», чтобы не перегружать ваше охлаждающее оборудование.

    Шаг 6 (Windows): Выберите среднее количество окон в вашем доме. Если у вас ~ 1 окно или меньше, на каждые 8 ​​футов длины внешней стены выберите «Среднее количество».

    Если у вас более 1 окна, на каждые 8 ​​футов длины внешней стены выберите «Больше среднего»

    Шаг 6 (Герметичность окон / дверей): Выберите соответствующий уровень изоляции окон / дверей. В большинстве случаев оставьте это значение по умолчанию «Среднее».

    Понимание результатов расчета нагрузки HVAC

    В отличие от других онлайн-калькуляторов HVAC, мы предоставляем расчетную тепловую нагрузку (размер системы в БТЕ / ч) для как для отопления, так и для охлаждения , а также рекомендуемый тип и размер оборудования HVAC!

    Вы получите ДВА результата:

    1) Нагрузка на охлаждение и обогрев в БТЕ - это фактическое рассчитанное количество БТЕ в час и Тонны, необходимые для обогрева / охлаждения вашего помещения.
    2) Тип оборудования для обогрева / охлаждения, наиболее подходящего для ваших нужд.

    1) Расчетная тепловая нагрузка

    Вы получите приблизительную нагрузку в БТЕ / ТОНН для вашего дома, основанную на информации, введенной вами в калькулятор, и вашем регионе. Результаты как для отопления, так и для охлаждения рассчитываются с использованием нашего оптимизированного алгоритма расчета в BTU, который является более «консервативным», чем вам могут дать большинство подрядчиков по ОВКВ и продавцов оборудования.

    В среднем эти значения будут на 20-30% ниже, чем «оценка подрядчика».Однако мы рекомендуем использовать меньшие числа по причинам, описанным выше.

    2) Рекомендация по оборудованию HVAC

    Наш калькулятор пытается предоставить наилучшее соответствие / рекомендации для оборудования, подходящего для вашей конкретной ситуации, на основе вашего климатического региона и других исходных данных.

    Рекомендации по оборудованию нуждаются в дополнительных разъяснениях, поскольку ситуация каждого человека индивидуальна. В идеале этот калькулятор идеально подходит для нового строящегося дома, где у вас есть полный контроль над дизайном и спецификациями типа оборудования HVAC, которое будет использоваться.Однако большинство домовладельцев в США имеют дело с уже существующими домами, что накладывает определенные ограничения.

    Во-первых, если у вас дома есть система воздуховодов , центральная печь горячего воздуха AC + будет для вас наиболее экономичной системой. В очень жарком климате печь можно заменить электронагревательной спиралью, которая будет обеспечивать теплый воздух в редкие холодные дни / ночи.

    Если у вас нет воздуховодов и вы живете в климатических зонах 1, 2 или 3 - лучшая система для отопления - это бойлер с принудительной горячей водой (с плинтусами, настенными радиаторами или лучистым напольным отоплением), а лучшая система охлаждения - это многоступенчатая -зонный бесканальный (мини-сплит) кондиционер, которые экономичны и чрезвычайно эффективны.

    В регионах 3, 4 и 5 очень редко бывает очень холодно. В этих областях зимы очень мягкие, а средняя низкая температура выше 0 градусов по Фаренгейту. Следовательно, высокоэффективная система с тепловым насосом без воздуховодов (мини-сплит) может (и должна) использоваться как для отопления, так и для охлаждения. Это наиболее экономичный * тип обогрева / охлаждения, который вы можете получить.

    Тепловые насосы

    Ductless могут как обогревать, так и охлаждать ваш дом при температуре окружающей среды до -15 градусов по Фаренгейту, и они довольно хорошо справляются с обоими задачами. Поскольку они могут обеспечивать отопление и делают это с использованием довольно небольшого количества электроэнергии (в 3-4 раза меньше, чем у электрических обогревателей), вам может не потребоваться установка дополнительной системы отопления, будь то печь или бойлер, что сэкономит вам около 7000-12000 долларов + на установку.

    Однако они не должны быть вашим ЕДИНСТВЕННЫМ источником тепла в климатических зонах 1 и 2, где зимой очень низкие температуры и часты отключения электроэнергии, поскольку бесканальные тепловые насосы работают на электричестве. Если у вас есть резервная система отопления (например, старый котел или газовая печь / печь на гранулах, и которая может проработать несколько дней без электричества в случае отключения электроэнергии, то вы можете использовать тепловые насосы в качестве основного источника тепла даже в более холодных регионах.

    Большим преимуществом является то, что бесканальные системы являются «модульными» и работают на уровне зоны.Так что, если вы проводите большую часть дня в гостиной, нет необходимости охлаждать или обогревать весь дом! Вам нужно всего лишь запустить 1 зону. Ночью вы можете выключить зону гостиной и включить зоны в спальне (ах).

    Более того, бесканальные системы также примерно в 2 раза более эффективны, чем даже современные высокоэффективные системы центрального кондиционирования, что означает, что ваши счета за электричество будут в 2 раза меньше! Фактически даже больше, чем в 2 раза, из-за зонирования, которое практически невозможно сделать с центральными системами кондиционирования воздуха.

    * В то время как в большинстве южных штатов затраты на электроэнергию очень низкие (около 0,10–0,13 доллара США за кВтч), в таких местах, как Калифорния, затраты на электроэнергию часто превышают 0,30 доллара США за кВтч, а цены на PEAK могут достигать 0,50 доллара США за кВтч, a Бесканальная система кондиционирования / отопления идеальна, поскольку они часто в 2 раза более эффективны, чем центральная система кондиционирования, и вы можете кондиционировать только те части вашего дома, где вам действительно нужен прохладный или теплый воздух, вместо охлаждения / обогрева всего дома, при этом вы сидите в гостиной!

    Совет для профессионалов: Если в вашем доме в настоящее время нет воздуховодов, а ваш дом одноуровневый (ранчо / мыс), то на чердаке можно установить воздуховоды и печь AC +, используя гибкие изолированные воздуховоды.Это намного дешевле, чем традиционные воздуховоды из листового металла, которые необходимо устанавливать из подвала и распространять на все ваши комнаты, особенно если ваш дом состоит из нескольких уровней.

    В этом случае установка Central AIR значительно дешевле, чем бесканальные тепловые насосы. Однако из-за огромной разницы в эффективности бесканальная система быстро покроет начальную разницу в расходах, сэкономив в среднем 40% эксплуатационных расходов!

    Таблица размеров HVAC

    Выбор системы HVAC подходящего размера для вашего дома / здания необходим для обеспечения достаточной мощности для обогрева или охлаждения вашего жилого помещения.Если ваша система отопления или охлаждения слишком мала, вы не получите достаточного количества БТЕ, и пространство не будет комфортным.

    Если вы приобретете слишком большую систему, вы будете переплачивать за дополнительную емкость: Большая система = более высокая стоимость установки. Вы также будете слишком много платить за эксплуатационные расходы (будь то газ, электричество или нефть) в будущем.

    Большинство подрядчиков по отоплению, вентиляции и кондиционированию воздуха / сантехнике не хотят тратить время на правильный расчет (используя ручной метод J) тепловую нагрузку и теплопотери вашего дома (или отдельных комнат). Таким образом, вместо того, чтобы покрыть свои «основы», 99% профессионалов указывают на негабаритные системы (которые, как объяснялось выше, стоят дороже в установке и эксплуатации).

    ПРИМЕЧАНИЕ: Большинство подрядчиков и дистрибьюторов оборудования используют НАДУТАННЫЕ значения БТЕ / ч при расчете тепловой нагрузки и размера блока (в тоннах / БТЕ), в первую очередь, чтобы прикрыть свою спину.

    В нашем калькуляторе используются более низкие значения БТЕ / ч как для обогрева, так и для охлаждения, чтобы получить более «реальную» оценку тепловой нагрузки. Тем не менее, мы, , настоятельно рекомендуем , чтобы вы (или ваш подрядчик) выполнили ручной расчет тепловой нагрузки J вашего дома или определенного района, прежде чем принимать какие-либо решения о покупке!

    Этот калькулятор предназначен для использования только в информационных целях!

    Стоимость установки ОВК

    Стоимость установки

    HVAC варьируется в зависимости от региона и зависит от прожиточного минимума. Однако цены на оборудование в большинстве штатов примерно одинаковы. Вот типичные цены на центральный воздух (центральный кондиционер + печь горячего воздуха), водогрейные котлы или бесканальные мини-сплит-системы.

    Обратите внимание на , что центральная печь переменного тока и печь горячего воздуха могут быть установлены вместе или по отдельности. Однако, если у вас есть только центральный кондиционер, вам также понадобится система отопления. Поскольку система центрального кондиционирования и печь штабелируются, они прекрасно работают вместе друг с другом.

    Мы используем дом размером 2300 кв. Футов (в среднем по США для существующих односемейных домов) для оценки стоимости.

    • ЦЕНТРАЛЬНАЯ СТОИМОСТЬ AC: 4-тонная, 14 SEER Central Air стоит от $ 5 595 до $ 7 837 . Система оснащена электронагревателем. Включает удаление старого центрального конденсатора переменного тока и змеевика, а также повторное использование существующих медных линий и электрических соединений. Обновление до 16 SEER обойдется примерно в 800-1200 долларов.
    • ЦЕНТРАЛЬНЫЙ ВОЗДУХ (кондиционер + ПЕЧЬ): Комбинированная система центрального воздуха стоит от 7 976 долларов до 11 171 долларов за 4-тонный центральный кондиционер на 14 SEER с газовой печью 80 000 БТЕ, КПД 96%.Включает удаление старого центрального конденсатора переменного тока и змеевика, а также повторное использование существующих медных линий и электрических соединений.
    • КОТЛ (лучистое тепло): Запуск котлов с принудительной подачей горячей воды 4683–6 130 долларов за обычный газовый / масляный котел ИЛИ 6934–10623 долларов за конденсационный котел со встроенным безбаквальным водонагревателем, такие как Navien, Bosch, Viessmann. Включает удаление старого котла и повторное использование существующих радиаторов / водопроводов.
    • БЕСПРОВОДНЫЕ ТЕПЛОВЫЕ НАСОСЫ: Мини-сплит-система для всего дома на 4-5 зон будет стоить 13 876–18 058 долларов. Эти системы могут очень эффективно обогревать и охлаждать ваш дом. Включает установку новых медных линий хладагента и электрическое соединение 240 В с 1 внешним компрессором и 4-5 внутренних «настенных агрегатов». Напольные, тонкие воздуховоды, потолочные кассетные внутренние блоки будут стоить 300-400 долларов за каждую зону. Оцените мини-сплит-стоимость в вашем районе.

    Если вы хотите получить расценки на HVAC в вашем районе, позвоните некоторым местным установщикам HVAC, которых вы знаете, или ваша семья / друзья могут порекомендовать или запросить бесплатные оценки через нашу реферальную программу.

    Выбор лучшей системы HVAC для вашего дома

    Используйте следующие рекомендации, чтобы выбрать лучшую систему отопления / охлаждения для вашего дома.

    Как упоминалось выше, если вы живете в северных климатических регионах, мы рекомендуем газовый котел для отопления и бесканальный (мини-сплит) кондиционер для охлаждения. Если у вас уже есть воздуховоды, в краткосрочной перспективе будет дешевле использовать центральную печь переменного тока + горячего воздуха.

    Однако в некоторых случаях вы получите рекомендацию Mini Split как для охлаждения, так и для нагрева, но размер BTU будет другим.

    Мы знаем, что эта часть сбивает с толку. Итак, давайте посмотрим на это подробнее:

    Большинство мини-сплит-секций рассчитаны на основе их ХОЛОДИЛЬНОЙ способности. Мини-сплит 12000 БТЕ (1 тонна) будет иметь номинальную мощность около 12000 БТЕ / ч. Однако эти же устройства могут также НАГРЕВАТЬСЯ! И большинство более дорогих устройств Mini Split будут иметь гораздо более высокую теплопроизводительность!

    Пример: 9000 БТЕ Fujitsu RLS3H (одна зона) имеет максимальную тепловую мощность 21000 БТЕ ! Поэтому, если вы живете в зонах 3,4 и 5 и планируете установить бесканальную систему для всего дома, используйте размер ОХЛАЖДЕНИЯ при выборе оборудования.В большинстве случаев доступных тепловых единиц будет более чем достаточно!

    В регионах 1 и 2 вам необходимо внимательнее изучить технические характеристики вашего устройства. Однако в большинстве случаев в более крупных системах (2-8 многозонных установок) разница в BTU для нагрева и охлаждения не такая большая, как в приведенном выше примере. Следовательно, вам придется либо немного увеличить размер, либо установить несколько однозонных блоков по всему дому, чтобы получить максимальную эффективность и доступную мощность.

    Если вы не уверены, какой тип системы отопления или охлаждения установить в вашем доме, получите 3–4 бесплатных оценки от местных профессионалов в области HVAC.

    Мини-колена для холодного климата: хорошо ли греют?

    Многие домовладельцы, желающие добавить эффективную систему отопления, которую можно было бы использовать в холодные месяцы года, очень скептически относятся к установке мини-сплит-теплового насоса. В конце концов, они в первую очередь используются для охлаждения. Однако реальность такова, что если вы приобретете мини-сплит-тепловой насос, РАЗРАБОТАННЫЙ для холодной погоды, он будет обогревать ваше пространство так, что вас удивит - вам будет очень тепло и приятно!

    Вместо того, чтобы перечислять все «за» и «против», а также возможные сценарии, я приведу пример. Пять лет назад начальная школа Нью-Брук в Ньюфане, штат Вермонт, установила бесконтактные тепловые насосы + солнечные панели для ОТОПЛЕНИЯ и охлаждения здания с резервным пропановым котлом (только в дни с температурами ниже -4F). Это был беспрецедентный выбор отопления для школьного здания в этом районе, и многие люди были против. Однако обновление было окончательно одобрено и работает очень эффективно по сей день.

    Это означает, что тепловые насосы могут производить достаточно тепла в холодном климате и быть экономичными! Соедините это с солнечной батареей на крыше, и вы получите бесплатное отопление через 5-8 лет.

    Однако, если у вас пропадет электричество, вы можете остаться без тепла! Поэтому важно иметь запасной план, если вы живете в северном климате и хотите использовать для отопления мини-сплит-тепловые насосы!



    Калькулятор БТЕ (отопление) - Сколько БТЕ мне нужно для комнаты?

    СКОЛЬКО BTUS МНЕ НУЖНО ДЛЯ КОМНАТЫ ИЛИ ДОМА?

    A B ritish T hermal U nit или BTU - это международное измерение энергии. По определению британская тепловая единица - это количество тепла, необходимое для подъема одного фунта воды на 1 ° по Фаренгейту.

    Почему это важно? Знание количества энергии, измеряемого в БТЕ, необходимо для поддержания вашего дома в комфортных условиях как в отопительный период , так и в период охлаждения .

    Большинство людей думают, что термин «кондиционирование воздуха» подразумевает охлаждение воздуха внутри здания. Для многих профессионалов отрасли «кондиционирование воздуха» означает изменение среды в здании, чтобы сделать его более комфортным.Это может означать охлаждение воздуха в жаркую погоду или нагревание воздуха при более низких температурах. Это может означать снижение уровня влажности. Или в более приятных погодных условиях, просто заменив внутренний воздух свежим наружным воздухом.

    Все дело в количестве энергии, необходимой для «кондиционирования» воздуха. И все дело в BTU, необходимых для выполнения работы. При кондиционировании воздуха в жаркую погоду BTU измеряет количество тепла, которое система может отводить из вашего дома за час. Обычно британская тепловая единица или BTU понимается в термическом смысле этого определения. То есть сколько энергии сделать температуру воздуха в помещении более комфортной.

    Существует несколько онлайн-ресурсов с калькуляторами приблизительных значений BTU. Для вашего удобства эксперт WE LOVE FIRE включил три на ваше рассмотрение. Первые два - это просто «практические правила», которые часто могут быть полезны при разговоре с клиентами.

    Первый способ - это просто определить квадратные метры помещения, которое вы хотите обогреть.В более теплом климате умножьте это число на 10-15. В более умеренном климате умножьте на 20-30. А в холодном климате умножьте число в квадратных футах на 30-40. Например, если вы пытаетесь обогреть 1000 квадратных футов в холодном климате 30 000 - 40 000 БТЕ значительно увеличивают теплоту воздуха в вашем доме.

    Еще один быстрый и простой способ оценить необходимое количество БТЕ - это полезная таблица:

    ПРИБЛИЗИТЕЛЬНЫЙ ВЫХОД В БТЕ, НЕОБХОДИМЫЙ ДЛЯ КВАДРАТНОЙ ФУТБОЛКИ

    ПРИБЛИЗИТЕЛЬНАЯ КВАДРАТНАЯ ЛАМПА До 200 До 400 До 600 До 800 До 1000 ВЫЧИТАЙТЕ НУЖНУЮ БТЕ ЗДЕСЬ!
    РЕКОМЕНДУЕТСЯ ИЗОЛЯЦИЯ 4000 БТЕ 8000 БТЕ 12 000 БТЕ 16 000 БТЕ 20 000 БТЕ
    УМЕРЕННАЯ ИЗОЛЯЦИЯ 6000 БТЕ 12 000 БТЕ 18000 БТЕ 24 000 БТЕ 30 000 БТЕ
    НИЗКАЯ ИЗОЛЯЦИЯ 9000 БТЕ 18000 БТЕ 27000 БТЕ 36000 БТЕ 45000 БТЕ

    Эта диаграмма основана на высоте потолка 9 футов или меньше. Очевидно, что есть несколько других переменных, которые сложно определить количественно при оценке энергии, необходимой для обогрева вашего помещения. Поймите, что - это приблизительные оценки всего лишь , и что фактические BTU будут зависеть от нескольких факторов: количества окон, климата, возраста здания, ориентации на юг, типа и количества изоляции, методов строительства и т. Д.

    Конструкция третьего калькулятора БТЕ намного более детализирована и учитывает многие из этих переменных.Большинство других онлайн-калькуляторов относятся к системам центрального отопления и / или кондиционирования воздуха. Наш калькулятор BTU - лучший из всех существующих для каминов, печей и топок. Он был разработан экспертами каминной индустрии.

    Еще один момент, о котором стоит упомянуть. При расчете необходимого количества БТЕ для всего дома из необходимо учитывать «наихудший сценарий». Например, самые низкие температуры в году могут быть -30 ° F. Может быть, так холодно только один или два раза в год. Пожалуй, раз в пять лет. Но основная система отопления должна иметь возможность обогревать дом от -30 ° F до 70 ° F, чтобы вашей семье было комфортно. Это перепад температуры 100 ° F!

    Если камин, печь или топка обычно используются в качестве дополнительного источника тепла или для зонального обогрева дома, разница температур может составлять только 15–25 ° F.

    Эти переменные являются основной причиной того, что производители делают оборудование универсальным и простым в использовании.Например, регулируемые газовые клапаны и пульты дистанционного управления для каминов, топок и печей. Эти элементы управления легко изменяют количество сжигаемого природного или сжиженного газа или количество энергии в БТЕ, подаваемой в комнату. Меньше газа - меньше тепла. А меньше газа означает меньше энергии в БТЕ.

    Аналогичным образом, технология вторичного сжигания и простые в использовании регуляторы подачи воздуха используются для регулирования количества энергии, доставляемой современным оборудованием для сжигания древесины.

    Итак, нажмите на наш калькулятор выше и посмотрите, что нужно для вашего дома.Ваш эксперт WE LOVE FIRE будет рад продолжить этот разговор с вами! Мы будем рады предоставить вам полезную информацию и отличное обслуживание. . . . выше и выше ваших ожиданий!

    ВЫЧИТАЙТЕ НУЖНУЮ БТЕ ЗДЕСЬ! НАЙТИ МЕСТНОГО ЭКСПЕРТА

    Рассчитайте необходимый вам диапазон BTU за несколько простых шагов.

    Как рассчитать потребность в отоплении вашего дома

    Для многих людей подсчет количества энергии, необходимой для обогрева дома, может оказаться трудным и трудоемким процессом.В наши дни все ощущают рост затрат на энергию. Многие люди ищут новые способы экономии энергии. Ваш первый шаг - понять, как рассчитать потребности в отоплении вашего дома. Размышляя об обогреве комнаты или всего дома, следует учитывать три основных момента. Это наружная температура (в худшем случае), желаемая комнатная температура для вашего дома и интенсивность вентиляции комнаты.

    Требования к обогреву вашего дома должны соответствовать теплопотерям помещения. После того, как вы вычислили теплопотери в комнате, вы можете использовать это, чтобы выяснить, какой тип котла вам нужен. Вы также можете определить размер радиаторов, которые понадобятся вам в доме.

    Важность потерь тепла тканью при расчете требований к отоплению вашего дома

    Тепло естественным образом переместится из более жаркой комнаты в более прохладную в вашем доме. Такие потери теплового потока являются естественными и будут происходить через окна, стены, пол, крышу и даже между двумя комнатами с разными температурами.Многие калькуляторы отопления помещений попросят вас выполнить эту квалификацию, чтобы определить теплопотери вашей ткани:

    теплопотери ткани = площадь поверхности (м2) x разница температур x коэффициент теплопередачи.

    В этом уравнении значение U действует как коэффициент теплопередачи и в основном измеряет, насколько быстро тепло будет уходить через различные материалы. Расчет U-значения может быть довольно сложным, поэтому большинство производителей укажут это значение на своих веб-сайтах. Коэффициент теплопроводности различных радиаторов зависит от типа материала, из которого они сделаны.

    Важность потерь тепла на вентиляцию при расчете потребности в отоплении вашего дома

    Потеря тепла вентиляцией - это естественная потеря тепла, возникающая при прохождении воздуха через ваш дом. Это показано в «воздухообменах в час». Теплопотери вентиляции рассчитываются по следующей расценке:

    Потери тепла при вентиляции = Объем помещения (м3) x Скорость воздухообмена x Разница температур x Коэффициент вентиляции.

    Как видите, расчет потребности в отоплении дома самостоятельно может оказаться особенно сложным.Вот почему многие компании предлагают калькуляторы теплопотерь, которые сделают всю работу за вас. Калькулятор тепловых потерь STARS (Техническая усовершенствованная радиаторная система Stelrad) предлагает вам быстрый и простой способ правильно подобрать размер ваших радиаторов с первого раза. В этом калькуляторе тепловых потерь учитываются тепловые потери ткани и вентиляции, и с помощью этих уравнений можно правильно определить мощность и размер радиатора, необходимые для адекватного обогрева вашего дома.

    ЗВЕЗД измеряют мощность в британских тепловых единицах в час, что является стандартным измерением, используемым для определения мощности любого устройства, производящего тепло.

    Мы уверены, что эта статья поможет многим людям, желающим рассчитать потребность в отоплении своего дома. Этот расчет поможет вам не только определить размер радиаторов, но и сэкономить электроэнергию. Если этот расчет помог вам сократить расходы на электроэнергию, сообщите нам об этом в комментариях ниже.

    Как рассчитать тепловую нагрузку

    Важным аспектом правильного планирования системы центрального кондиционирования является включение расчета BTU, чтобы гарантировать, что ваша система HVAC может адекватно обогревать и охлаждать ваш дом или офис.Прежде чем объяснять , как рассчитать тепловую нагрузку , мы должны ответить на важный вопрос:

    Что такое тепловая нагрузка?

    Очевидно, что климат снаружи влияет на температуру в помещении. В экстремальных климатических условиях системы HVAC должны усердно работать, чтобы поддерживать комфортную среду. «Тепловая нагрузка» описывает количество охлаждения или нагрева, необходимое для желаемой температуры в доме.

    Оценка вашего расчета тепловой нагрузки

    Для точного измерения, мы рекомендуем обратиться к специалисту по HVAC , потому что существует множество факторов, которые могут иметь значение.Эти факторы включают изоляцию, строительные материалы, количество окон, размер и расположение окон, бытовую технику, электронику (компьютеры, принтеры и т. Д. - все откладываемое тепло), количество людей, которые обычно занимают дом, и многое другое. Тепловая нагрузка измеряется в БТЕ, (британские тепловые единицы). Одна БТЕ составляет приблизительно 1055 джоулей и определяется количеством энергии, необходимой для нагрева или охлаждения одного фунта воды на один градус. Вот простая в использовании формула . Он не предназначен для того, чтобы быть эталоном истины, но он определенно даст вам представление о том, в каком направлении следует двигаться при планировании вашей системы HVAC:

    Формула для расчета тепловой нагрузки

    1. Возьмите квадратный метр вашего дома
    2. Умножьте это на среднюю высоту потолка в вашем доме
    3. Умножается на разницу желаемой температуры и наружной температуры
    4. Умножьте множитель, который представляет, что целевое здание представляет собой герметичное сооружение (.135)

    Чтобы проиллюстрировать эту мысль дальше, вот пример расчета : если вы сталкиваетесь с 30-градусной температурой в вашем регионе и хотите, чтобы она составляла 70 градусов в доме площадью 3000 квадратных футов с 8-футовыми потолками, ваш расчет будет выглядеть так: 3000 x 8 x 40 x 0,135 = 129 600 БТЕ. Имейте в виду, что это очень консервативная оценка , а это означает, что вам, вероятно, не понадобится система отопления, вентиляции и кондиционирования, выдающая 129 000 БТЕ. Когда вы рассчитываете тепловую нагрузку, вместо того, чтобы обращаться к профессионалу, вы получите менее точное число.Для справки: профессиональные расчеты, как правило, находятся в диапазоне 65-80% от того, что рассчитывается по приведенной выше формуле. Пример: профессионал, скорее всего, сочтет, что для этого дома требуется от 80 000 до 100 000 БТЕ. Как говорится, лучше проявить осторожность. Как уже упоминалось, для правильного планирования мы настоятельно рекомендуем вам профессионально измерить тепловую нагрузку.

    Купить запчасти и аксессуары для систем отопления, вентиляции и кондиционирования воздуха в Интернете

    Помните, что если вам нужно заменить какой-либо компонент вашей системы, PlumbersStock предлагает отличные цены на огромный выбор деталей HVAC .Если вы не можете найти то, что вам нужно, свяжитесь с нами. Не забудьте обновить HVAC tools . Если вы все еще не совсем понимаете, как рассчитать тепловую нагрузку, свяжитесь с нами. Если вы отапливаете свой дом с помощью котла , печи или просто обогревателя , у нас есть все необходимое.

    Ресурсы по теме:
    Какой размер системы HVAC требуется?
    Какой размер котла купить?

    Пример расчета теплопотерь из помещения

    Простой пример, примененный к двухквартирному дому

    Предпосылки для расчета теплопотерь от собственности описаны на отдельной странице этого сайта, прежде чем рассматривать этот пример, Взгляните на страницу о размерах, чтобы понять основные принципы.

    Для этого примера, помимо размеров, указанных на вышеприведенных чертежах, также необходимо знать:

    1. Все комнаты имеют высоту 8 футов.
    2. Все внешние стены представляют собой полости размером 11 дюймов без изоляции.
    3. Партийная стена из полнотелого кирпича 9 дюймов.
    4. Внутренние стены все оштукатурены, кирпич 4,5 дюйма, штукатурка.
    5. Пол подвесной брус.
    6. Все остекление UVPC с двойным остеклением.
    7. Наружная расчетная температура до 30 ° F.
    8. Температура в соседнем участке неизвестна, поэтому предположим, что разница температур составляет 5 ° F.
    9. Расчетные температуры для комнаты - смотрите на этой странице.
    10. Большие окна имеют размер 10 футов x 4 фута, меньшие окна - 4 фута x 4 фута.
    11. Крыша облицована войлоком с утеплителем 100 мм.
    12. План не в масштабе !!

    В этом примере мы подробно рассмотрим одноместный номер (холл).

    1. Рассмотрим по очереди 4 стены и вычислим площадь каждого типа ткани:
      • Передняя стенка:
        1. Общая стена 14 футов x 8 футов = 112 квадратных футов
        2. Окно 10 футов x 4 фута = 40 квадратных футов
        3. Стена пустотелая So - 112-40 = 72 кв. Фута
      • Стена для вечеринок:
        1. Общая площадь стен 15 футов x 8 футов = 120 квадратных футов
      • Стена в столовую:
        1. На этой стене нет разницы температур, поэтому нет потока тепловой энергии, поэтому нет необходимости рассчитывать площадь.
      • Стена в зал:
        1. Общая стена 15 футов x 8 футов = 120 квадратных футов
        2. Дверь обрабатывается как стенная
      • Зоны потолка и пола:
        1. 15 футов x 14 футов = 210 квадратных футов:
    2. Используя приведенные выше цифры, значения U (см. Эту страницу) и температура разность по каждой стене / потолку / полу можно рассчитать теплопотери (площадь x значение U x разница температур).

      площадь
      (футы)

      Значение U

      темп.
      разница

      всего

      Передняя стенка: полая стенка

      72

      0.18

      40

      518,4

      Окно

      40

      0,51

      40

      816

      Party Wall

      120

      0,38

      5

      228

      Стенка столовой

      0. 39

      0

      0

      Стенка зала

      120

      0,39

      10

      468

      Потолок

      210

      0,29

      5

      304,5

      Этаж

      210

      0.12

      40

      1008

      Полная потеря ткани =

      3342,9

      Таким образом, общие потери тепла через ткань здания составляют 3345 БТЕ

    3. Теперь рассчитаем потери тепла из-за воздухообмена.
      • объем помещения = 14 x 15 x 8 = 1,680 кубических футов
        воздухообмен = 1 в час (в зависимости от комнаты - см. Эту страницу)
        , поэтому потеря тепла из-за воздухообмена составляет
        1,680 х 1 х 0.02 x 40 = 1344 БТЕ
    4. Складываем результаты 2 и 3 вместе, получаем общую потерю тепла за час:
      • 3345 + 1344 = 4689 БТЕ / час

    Это расчеты для салона, теперь необходимо провести расчеты для всех остальных комнат в доме. Обратите внимание, что если тепловые «потери» происходят через внутренние стены или пол / потолок, одна комната будет теряет тепло, а другая комната получает его. В расчетах теплопотери помещения будут отрицательными. именно для этой части строительной ткани.

    Потеря ткани

    потери воздуха

    Всего

    (БТЕ / час)

    Столовая

    3391

    3046

    6437

    Гостиная

    3343

    1344

    4687

    Кухня

    1714

    941

    2655

    Прихожая

    1501

    1250

    2751

    Спальня 1

    1162

    666

    1828

    Спальня 2

    1678

    588

    2266

    Спальня 3

    1009

    134

    1143

    Ванная

    2192

    1129

    3321

    Итого за дом = 25,088

    Результаты расчетов для всех комнат в примере дома показаны на верно. Это указывает количество тепла, которое необходимо произвести в каждой комнате для поддержания расчетной температуры. Нет только это необходимо для определения подходящего размера радиаторов, это также необходимо для определения размеров труб для водоснабжения. центральное отопление.

    Когда все значения сложены, окончательная цифра указывает на размер котла, необходимый для обогрева дома (примечание: он не учитывает дополнительное отопление, необходимое для водная система).

    Подробные расчеты для полного дома показаны на другом страница на этом сайте.


    В этих упрощенных расчетах не учитывается тепло, производимое жителями или их жителями. деятельность (например, приготовление пищи, стирка и т. д.). Его можно изменить, улучшив (т.е. уменьшив) количество воздухообмена за счет увеличения исключение сквозняков, улучшенная изоляция ткани или принятие более низкой расчетной температуры в любой из комнат.

    Вообще нет смысла пытаться слишком точно рассчитать показатели теплопотерь, его основная цель указывает размер необходимых радиаторов и бойлера. Знание этих значений теплопотерь должно гарантировать, что выбранный радиаторы и бойлер не могут быть ни занижены, ни завышены; некоторое завышение рейтинга будет неизбежным, поскольку окончательный расчет цифра не будет полностью соответствовать номинальной мощности любого радиатора или бойлера.

    Этот термальный дом | Сделай математику

    Если вы хотите, чтобы ваш дом более эффективно отражал неприятности на открытом воздухе (как в жару, так и в холод), что вам следует сделать в первую очередь? Утеплить стены? Утеплить потолок? Крыша? Лучше окна? Устранение тяги? Что имеет наибольший эффект? Хотя у меня, к сожалению, мало практического опыта по ремонту дома (он в моем списке), я, по крайней мере, до понимаю теплопередачу с точки зрения физики / инженерии и могу выполнить некоторые проницательные вычисления.Итак, давайте построим фантастический дом и оценим температурные компромиссы на Теоретическом переулке, 1234.

    Тепловой транспорт

    Тепло может перемещаться только тремя способами: проводимость, , конвекция, и излучение, . Других вариантов нет.

    Проводимость

    Мощность (энергия в единицу времени), протекающая через материал посредством проводимости, существенно зависит от свойств материала (теплопроводность, κ ), толщины материала, t , площади, A , участвующей в проводимости (между холодной и горячей средами), а разница температур - ΔT .Не задумываясь, вы можете построить правильное соотношение для мощности, переносимой проводимостью, выяснив, как она должна масштабироваться при изменении той или иной переменной: P cond = κAΔT / t , где κ - теплопроводность материала, в метрической системе единиц измерения Вт / м / ° C. Для многих строительных материалов κ находится в диапазоне 0,1–1 Вт / м / ° C. Лист фанеры в нижней части диапазона ( κ ≈ 0.12, размером 4 × 8 футов или 3 м²; t = 0,019 м (толщина 0,75 дюйма) будет проводить около 19 Вт на градус Цельсия, проходящий через него.

    R-ценность

    Строительная промышленность характеризует материалы по их R-значению, которое в США выражается в неудачных единицах фут² · ° F · ч / британских тепловых единиц. Эквивалент СИ - чуть более аккуратный м² · ° C / Вт. Значение R включает толщину t в меру, поэтому тот же материал с удвоенной толщиной получит удвоенное значение R.

    Что касается внутренних свойств материала, κ и t , R US = 5,7 × т / κ в США или, проще говоря, R SI = т / κ за рубежом. Наша прежняя фанера будет характеризоваться как R = 0,9 в США или 0,16 в международном масштабе. Обратите внимание, что значение R не зависит от площади. Чтобы получить поток мощности через поверхность в ваттах, мы заменяем отношение на два абзаца назад на P cond = 5,7 × AΔT / R US или P cond = AΔT / Р СИ .

    Конвекция

    Конвекция - это по своей сути просто перенос в движущуюся жидкость, которая затем уносит тепло, просто перемещая его. К любой поверхности в потоке текучей среды примыкает пограничный слой текучей среды, который прилипает к поверхности, так что тепловой поток контролируется проводимостью через пограничный слой. Для воздуха κ ≈ 0,02 Вт / м / ° C, а толщина пограничного слоя часто составляет порядка нескольких миллиметров, поэтому эффективное R-значение (US) находится в районе 1.

    Если не считать пограничных слоев, мощность конвекции должна быть пропорциональна открытой площади и разнице температур между кожей и окружающим воздухом. Константа пропорциональности, h , определяет, насколько сильна связь, и эффективно отражает физику пограничного слоя (которая зависит от скорости потока, деталей поверхности и т. Д.). В любом случае получаем соотношение P conv = hAΔT . В типичных ситуациях может быть ч, ≈ 2 Вт / м² / ° C для поверхностей внутри помещения («неподвижный» воздух), ч ≈ 5 Вт / м² / ° C для легкого воздуха на улице и, возможно, 10 или 20 в ветреную погоду. Если наша фанера площадью 3 м² имеет комнатную температуру (20 ° C) и помещена на морозный ветер со значением 5 h , каждая поверхность будет терять энергию со скоростью 300 Вт.

    Обратите внимание, что мы можем связать h со значением R в общем уравнении, которое выглядит точно так же, как соотношение проводимости: P = hAΔT = 5,7 × AΔT / R US , в этом случае мы можем идентифицировать h = 5,7 / R US = 1 / R SI . В этом случае легкий воздух на открытом воздухе ( h = 5) может быть связан с R US ≈ 1.

    Радиация

    Каждый объект излучает электромагнитное излучение. При знакомых температурах все это проявляется в средней инфракрасной области, достигая максимума на длине волны 10 микрон и полностью исчезая на 2 микрона (в то время как человеческое зрение составляет 0,4–0,7 микрон). Чистый поток, естественно, от горячего к холодному и подчиняется соотношению: P рад = ( ε h T 4 h - ε c T 4 c ), где σ = 5. 67 × 10 −8 Вт / м² / К 4 . Коэффициенты ε представляют собой значения коэффициента излучения в диапазоне от 0,0 (блестящий) до 1,0 (тусклый). Температуры должны быть выражены в в Кельвинах, поскольку количество излучения зависит от абсолютной температуры объекта . Индексы обозначают горячие и холодные предметы. Мы не будем обращать внимания на осложнения из-за неоднородных условий.

    Итак, наш кусок фанеры при комнатной температуре (293 K) в радиационном контакте с окружающим миром при 0 ° C (273 K) будет видеть около 300 Вт, выходящих с каждой поверхности, если коэффициент излучения предполагается равным почти 1.0. Очень похоже на конвекцию (хорошее практическое правило).

    Несколько слов об излучательной способности. У большинства вещей очень высокий коэффициент излучения. Все органическое (дерево, кожа, пластмассы, краска любого цвета), вероятно, будет иметь коэффициент излучения около 0,95. Ровное стекло с полублестящей (частично отражающей) поверхностью - 0,87. Низко опускаются только блестящие металлы, поэтому в воздуховодах, некоторых изоляционных материалах и термосах используются блестящие поверхности: чтобы выбить канал радиационных потерь тепла.

    К сожалению, излучение не просто пропорционально ΔT , а пропорционально разнице между четвертыми степенями температур.Однако для небольших температурных перепадов в абсолютном масштабе (к счастью, обычное дело) мы можем линеаризовать соотношение (здесь предполагая единичную излучательную способность) до P рад 4AσT ³ ΔT , где T в кубической термин - типичная температура, возможно, между горячим и холодным. Обратите внимание, что форма теперь выглядит так же, как конвекция, с 4 σT ³ вместо h . Для предыдущих примеров, если мы выберем T = 283 K, мы найдем эквивалентное значение h , равное 4 σT ³ ≈ 5.1. Опять же, это иллюстрирует одинаковую величину излучения и конвекции в обычных обстоятельствах. В этом примере линеаризованная аппроксимация находится в пределах процента от правильного ответа, когда средняя точка выбрана в качестве «эталонной» температуры, с отклонением на ~ 10%, если вместо нее используется одна из конечных точек. Поскольку излучение может быть линеаризовано таким образом и выражено как значение h , оно также может быть выражено в терминах эквивалентного значения R.

    Вся Энчилада

    В реальной ситуации обычно приходится иметь дело со всеми тремя тепловыми путями одновременно.Итак, давайте рассмотрим стену, расположенную между жарким интерьером и холодным свежим фасадом. Судя по опыту, стена будет немного прохладной на ощупь, поэтому у нас есть тепловой поток из комнаты к стене посредством конвекции и излучения. Сама стена проводит тепло к внешней поверхности. Тогда конвекция и излучение уносят тепло оттуда. В равновесии (и поскольку тепловая энергия не создается и не разрушается в стене), мы имеем такой баланс уравнений, что P усл, в + P рад, в = P усл = P усл, выход + P рад, выход .

    Если мы не будем анализировать температуру поверхности стены изнутри и снаружи, мы можем объединить все трубопроводы в одно целое. Это может помочь думать о каждом пути с точки зрения сопротивления тепловому потоку (что само по себе сродни току в цепи). Это, в первую очередь, происхождение термина «R-ценность». Конвекция и излучение действуют как два резистора, включенных параллельно, последовательно с проводящим элементом.

    R-значения для конвекции, излучения и проводимости объединяются как резисторы в цепи, показанной здесь для проводящей стенки, соединяющейся с внутренней и внешней частью посредством конвекции и излучения.Сумма двух входных мощностей равна проводимой мощности, которая равна сумме выходных мощностей.

    Обратите внимание, что когда два процесса работают параллельно, разделяя одну и ту же площадь и ΔT , эффективное значение R определяется как P tot = AΔT / R eff = P 1 + P 2 = AΔT (1 / R 1 + 1 / R 2 ), так что 1 / R eff = (1 / R 1 + 1 / R 2 ) . И наоборот, когда два процесса идут последовательно, разделяя один и тот же поток мощности и одну и ту же площадь, но кусочно разные значения ΔT , мы имеем, что P = AΔT 1 / R 1 = AΔT 2 / R 2 , так что общее ΔT = ΔT 1 + ΔT 2 работает до P ( 1 + R 2 ) / A , или P = AΔT / (R 1 + R 2 ), так что eff = ( 1 + R 2 ).Другими словами, значения R просто складываются последовательно, а их обратные значения складываются при параллельном подключении - точно так же, как резисторы в электрической цепи. Обратите внимание, что для наглядности я отказался от раздражающего коэффициента преобразования 5,7 в приведенных выше отношениях, который при желании можно добавить обратно.

    Для наглядного примера того, как все это работает, давайте построим стену из цельного листа фанеры ( κ = 0,12 Вт / м / ° C; t = 0,019 м; поэтому US = 0,9. У нас будет внутренняя среда с ч = 2 Вт / м² / ° C, T = 20 ° C, и предположим, что температура внутренней стены близка к той же, так что я могу использовать T = 293 K в термине радиационного приближения. В этом случае я вычисляю значения R (US), равные 2,85 и 1 для конвекции и излучения соответственно (для неподвижного воздуха внутри радиация является здесь более важным каналом). Параллельно они добавляют к эффективному R-значению 0,74. Если внешняя поверхность нашей «стены» близка к температуре окружающей среды, скажем, 273 K, и небольшой ветер дает нам ч = 10 Вт / м² / ° C, мы имеем R-значения 0.57 и 1.2 для конвекции и излучения (обратите внимание на обратную роль в более активном воздухе, так что конвекция преобладает). Внешнее сочетание R = 0,39.

    Таким образом, наша общая передача тепла через стену имеет три последовательных значения R: 0,74 для передачи тепла в стену, 0,9 для передачи тепла через стену и 0,39 для отвода тепла от внешней поверхности. Суммируя это, мы получаем R US ≈ 2,03. Для внутреннего-внешнего ΔT = 20 ° C каждый квадратный метр этой стены будет проводить 5.7 × 20 / 2,03 ≈ 56 Вт.

    Реальный

    Теперь, когда у нас есть некоторое представление о том, как обращаться с проводимостью, конвекцией и излучением в контексте R-значения, мы можем найти и использовать соответствующие R-значения для обычных строительных материалов. Большую часть информации я получаю с этого очень полезного сайта, многие значения также доступны на сайте Википедии.

    Чтобы вычислить эффективное значение R для композитной поверхности, такой как стена со стойками внутри, нужно просто объединить параллельные пути, взвешенные по дробной площади каждой.Например, стена со стойками имеет 15% площади, покрытой стойками, с общим сквозным значением R (включая конвекцию / излучение, называемое «воздушной пленкой») 7,1. Остальные 85% - это изолированный отсек со значением R 15,7. Эффективное значение R равно 1 / R = (0,15 / R , шпилька + 0,85 / R , отсек ), при вычислении R = 13,3. Если бы я не использовал изоляцию, я бы заменил ватин из стекловолокна R = 13 двумя слоями «воздушной пленки», имеющими значение 0,68 (очень похоже на наше значение 0,74, указанное выше).В этом случае мы имеем 1 / R = (0,15 / 7,1 + 0,85 / 4,1), или R = 4,3. Обратите внимание, что для неизолированных стен стойки имеют большую изоляцию, чем воздушное пространство между ними.

    Давайте теперь составим таблицу значений для соответствующих строительных блоков. Разделите US на 5,7, чтобы получить SI .

    Структура % Обрамление Элементы R США
    Неизолированная стена 15% воздух; гипсокартон; шпилька / гнезда; фанера; сайдинг; воздух 4.1
    Изолированная стена 15% заменить отсек изоляцией 13,3
    Неизолированный потолок 8% воздух; гипсокартон; стропильный / открытый; воздух 1,65
    Утепленный потолок 8% заменить открытый на изоляцию 13,0
    Неизолированный пол 15% воздух; плитка; фанера; балки / открытые; воздух 2. 5
    Утепленный пол 15% заменить открытый на изоляцию 12,7
    Неизолированная крыша 8% воздух; обрамление / открытое; фанера; опоясывающий лишай; воздух 1,85
    Изолированная крыша 8% заменить открытый на изоляцию 13,2
    Однослойное окно без покрытий 0,9
    Двухкамерное окно полудюймового воздушного пространства 2.0
    Лучшее окно пленка подвесная, низкая E 4,0
    Дверь дерево, твердая сердцевина 3,0

    Наш скучный дом

    Для простоты построим одноэтажный дом квадратной формы. У нас будет скатная крыша с чердаком, и мы рассмотрим фальш-фундамент с ползунком под ним, а также фундамент из плит. Мы украсим дом с каждой стороны двумя окнами среднего размера, а также входной и задней дверью. Что касается размера, мы возьмем что-то близкое к среднему по США 2700 футов² и воспользуемся возможностью перейти на метрические системы, сделав наш дом 15 м со стороной, в результате чего площадь составит 225 м² или 2422 футов². Стены будут иметь высоту 2,5 м (8 футов). Для окон мы сделаем каждое по 1,5 м² (что эквивалентно 16 фут², или 4 × 4 фута). Наши двери будут занимать 2 м² каждая.

    Красивый дом для теоретика.

    Таким образом, общая площадь стен составляет 134 м², пола и потолка по 225 м², окон 12 м² и дверей 4 м².

    Мы вычислим тепловую устойчивость дома в Вт / ° C и назовем это теплопроводностью. Каждый компонент добавляет некоторый бит теплопроводности в соответствии с Q = P / ΔT = 5,7 × A / R US . Затем их можно добавить для каждого компонента дома.

    Используя неизолированные значения для всего и одинарных окон, я получил значения Q в Вт / ° C для стен из 186; потолок (при достаточной вентиляции чердака ставится на температуру окружающей среды): 777; фальшпол: 513; однослойные окна: 75; двери: 8. Итого 1560 Вт / ° C.

    Давайте сделаем паузу, чтобы оценить это число в перспективе. Для поддержания температуры в помещении, когда на улице холодно, потребуется 31 кВт мощности или 20 обогревателей. Печь мощностью 75 000 британских тепловых единиц в час эквивалентна 22 кВт и не сможет поддерживать ее. А мы еще даже не рассматривали проекты.

    Теперь посмотрим на другую крайность и поместим изоляцию R-13 в стены, потолок, под пол и будем использовать лучшие окна, которые только можно купить. Мы снова дадим чердак полностью проветривать и поддерживать температуру наружного воздуха.Теперь получаем стены: 57; потолок: 99; этаж: 103; окна: 17, двери по-прежнему на 4. Суммарная мощность составляет 280 Вт / ° C, что составляет примерно пятую часть от того, что было раньше. Стоимость отопления / охлаждения также увеличится как минимум в пять раз (в более мягких условиях это будет не так часто). В нашем случае 53% улучшений произошло за счет изоляции потолка, 32% - пола, 10% - стен и 5% - окон. Это предполагает порядок приоритета. Конечно, можно получить еще больший выигрыш при большем количестве изоляции - до тех пор, пока не будут преобладать другие факторы.

    Потери пола здесь немного преувеличены, так как простые числа предполагают, что в подлете так же холодно, как и снаружи. В той степени, в которой это не так, цифры немного смягчаются пропорционально относительному повышению температуры. Также бывает, что воздух у пола, вероятно, будет холоднее, чем воздух у потолка, если только внутренний воздух не перемешан хорошо. Это также снижает потери тепла через пол в том случае, если на улице холоднее, чем внутри. Тем не менее, вполне вероятно, что изоляция пола принесет заметное улучшение.

    Характеристики крыши

    Возможно, предположение о полностью вентилируемом чердаке вызвало ужас. Если бы я предположил герметичный чердак (другая крайность), потолок и крыша действовали бы последовательно, чтобы получить R-значение 3,5 в неизолированном корпусе или 26,2 в изолированном корпусе. Значения теплопроводности тогда составят 366 Вт / ° C и 49 Вт / ° C соответственно. Наши итоговые значения увеличились бы с 1150 Вт / ° C до 232 Вт / ° C. Самый большой выигрыш в этом случае будет связан с изоляцией пола. Но на самом деле чердак ближе к окружающему, чем к внутреннему, поэтому изоляция потолка, вероятно, останется самым важным шагом.

    Предполагая, что чердак вентилируется, большая часть разницы температур внутри и снаружи будет приходиться на потолок, делая изоляционные свойства крыши второстепенными. Но при этом не учитывается солнечная нагрузка на крышу. Любой, кто испытал жаркий чердак, знает, что вентиляция чердака недостаточна, чтобы крыша не обогревала пространство. Поэтому изоляция крыши может стать важным шагом в средах, где охлаждение является большим потребителем энергии. Для мест, где отопление важнее охлаждения, может быть лучше оставить изоляцию крыши отключенной, чтобы зимнее солнце немного обогревало чердак.

    Перекрытие перекрытия

    Для плитных полов оценка несколько сложнее, чем для фальшполов. Шестидюймовая бетонная плита сама по себе имеет коэффициент сопротивления R около 0,5. Но под плитой грязь. Собирая информацию из нескольких источников (здесь и здесь), я пришел к выводу, что сухая почва имеет теплопроводность около 0,8 Вт / м / ° C и эффективную тепловую толщину (шкала длины, по которой существует температурный градиент) около 0,2 м. Это даст ему R-значение около 1,4 для комбинированного R-значения 1.9, или 2,6 с учетом радиационной / проводящей связи. Но все это может не иметь значения, потому что температура грунта довольно стабильна в течение всего года и может достичь приблизительно равновесия с температурой вашего дома - по крайней мере, вдали от края плиты. Чтобы устранить утечку по сторонам плиты (воздух и земля), сайт в штате Вашингтон предполагает коэффициент потерь 1,2 Вт / ° C на метр периметра или 72 Вт / ° C для нашего прекрасного дома, что не слишком отличается из того, что мы рассчитали для изолированного фальшпола.

    Я чувствую сквозняк

    Некоторое время назад я оценил тепловые характеристики своего дома (который представляет собой плиточный дом размером примерно на две трети того размера, который мы рассматриваем в этом посте) в контексте отопления, и при этом вычислил, что моему дому требуется 610 Вт. / ° C для нагрева. Чуть позже я посмотрел на характеристики охлаждения и в процессе обнаружил недостаток в моем предыдущем методе анализа. Более полный метод предложил 1465 Вт / ° C. Большая разница! Но не только это, похоже, что мой дом на хуже , чем дом в нашем примере - несмотря на то, что он меньше, имеет изоляцию в стенах, разную степень изоляции на потолке (некоторые очень старые и тонкие) и двойные панели окна практически везде.В моем случае неутешительные тепловые характеристики не приводят к потере энергии, поскольку я обычно не обогреваю и не охлаждаю дом. Но более уютный дом будет удобнее. Так в чем же дело?

    Подозреваю сквозняки. У нас есть вентиляторы в нескольких комнатах с минимальной герметизацией, может освещаться весь потолок, возможно, прохудившиеся дверные рамы и заслонка в неиспользуемом камине, который я только что проверил и обнаружил открытым - вероятно, так было с тех пор, как мы купили дом несколько лет назад!

    Насколько важны черновики? Воздух имеет теплоемкость около 1000 Дж / кг / ° C. Каждый кубический метр воздуха (1000 л) имеет массу около 1,25 кг и, следовательно, содержит 1250 Дж энергии на градус разницы температур. Таким образом, если воздух будет поступать с разницей температур 10 ° C со скоростью 0,1 м³ / с (210 кубических футов в минуту), соответствующая скорость переноса тепла будет 1250 Вт.

    Рекомендуемая скорость потока требует примерно 4 воздухообмена в час. В нашем воображаемом доме это означает 225 × 2,5 × 4 = 2250 м³ за 3600 секунд, или 0,625 м³ / с, что соответствует примерно 0.8 кг / с или 780 Вт / ° C. Это много! Другой источник рекомендует минимальный поток 1 куб. Фут / мин в минуту на 100 кв. Футов площади, плюс еще 7,5 куб. Футов в минуту, умноженное на количество спален плюс одна. Для нашего модельного дома, предполагающего три спальни, мы получаем минимальную потребность в 54 кубических футов в минуту, что составляет всего 0,026 м³ / с или одну полную замену каждые шесть часов. Теперь у нас 32 Вт / ° C, и мы можем конкурировать с нашими изолированными стенами и т. Д. Я считаю, что последний источник более вероятен.

    Мне очень пригодилась следующая информация с этого сайта:

    Средняя скорость воздухообмена по стране в существующих домах составляет от одного до двух в час, и она снижается в связи с ужесточением строительных норм и более строгими строительными нормами.Стандартные дома, построенные сегодня, обычно имеют коэффициент воздухообмена от 0,5 до 1,0. Чрезвычайно плотная новая конструкция может обеспечить коэффициент воздухообмена 0,35 или меньше. В большинстве домов с такой низкой интенсивностью воздухообмена имеется какая-либо форма механической вентиляции для подачи свежего наружного воздуха и обмена теплом между двумя воздушными потоками.

    Чтобы получить представление о том, какой может быть уровень воздухообмена в вашем доме, примите во внимание, что плотный, хорошо герметизированный недавно построенный дом обычно обеспечивает не более 0,6 воздухообмена в час.Достаточно плотный, хорошо построенный старый дом обычно имеет скорость воздухообмена около 1 в час. Немного рыхлый старый дом без штормовых окон и местами с отсутствующим герметиком имеет коэффициент воздухообмена около 2. В довольно свободном, продуваемом сквозняком доме без герметика или уплотнителей и используемых входов коэффициент воздухообмена может достигать 4, а в ветхом доме со сквозняком может быть воздухообмен до 8.

    Проект уклонения

    У меня есть желание сделать тест на вентиляционную дверцу, чтобы проверить сквозняк в моем доме.Идея состоит в том, чтобы герметизировать дом, установить на входной двери большой вентилятор, который вытягивает воздух из дома, и измерить разницу в давлении в зависимости от скорости выпуска воздуха. Кроме того, когда дом находится под отрицательным давлением, утечки можно найти, прислушиваясь к свисту или шипению, используя источник дыма, и разделить их путем попеременного закрытия / герметизации частей дома, чтобы изолировать самые большие проблемы. Как это , а не может быть забавным ?!

    Еще один прием, о котором стоит упомянуть, заключается в том, что после ремонта дома все еще можно обеспечить адекватную вентиляцию без полного теплового удара с помощью вентилятора с рекуперацией тепла. Идея состоит в том, чтобы пропустить входящий воздух мимо выходящего воздуха в теплообменнике (например, воздух разделяется тонкой металлической мембраной). К тому времени, когда воздух выходит с обеих сторон, входящий воздух приобретает температуру окружающего воздуха в доме, в то время как отработанный воздух становится во многом похожим на внешний воздух перед выходом. При таком подходе тепловые потери, связанные с воздухообменом, можно сократить в четыре или более раз. Это снизило бы ранее рассчитанные 32 Вт / ° C до менее 10 и сравнялось бы с показателями высокопроизводительных окон.

    Извлеченные уроки

    Тепловые характеристики дома не , которые трудно понять , учитывая небольшую предысторию и некоторые соответствующие цифры. Инструменты, разработанные здесь, позволяют исследовать относительные достоинства новых окон, проектов изоляции, управления вентиляцией и т. Д. Первостепенное значение имеет возможность объединить все три тепловых пути в структуру R-значения, чтобы можно было оценивать и сравнивать композитные конструкции.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *