Схема обогревателя: Электрическая принципиальная схема масляного обогревателя

Содержание

Электрическая принципиальная схема масляного обогревателя

Электрические масляные обогреватели пользуются у населения заслуженной популярностью благодаря ряду положительных качеств, которые характеризуют этот тип электроприборов.

Устройство масляного радиатора.

К таким достоинствам можно отнести следующие:

  1. Простота обслуживания и подключения. Главное требование — вертикальная установка. Обогреватель можно подключить в любом помещении, где есть электрическая розетка (желательно «евро»).
  2. Низкая температура корпуса, особенно у обогревателей закрытого типа (60-70°C).
  3. Экологичность, воздух в помещении не высушивается, не происходит сгорания кислорода.
  4. Высокая надежность, экономичность и пожаробезопасность. Обогреватель автоматически регулирует температуру в помещении, при необходимости его нагревательный элемент отключается от электросети. Может работать в таком режиме несколько дней.
  5. Сравнительно невысокая цена классических моделей. Всегда можно подобрать модель, функциональность которой будет соответствовать ее стоимости.

В случае возникновения неполадок прибор всегда можно сдать в ремонт в ближайший сервисный центр. Если гарантия на ваш масляный обогреватель закончилась, устранить неполадки можно самостоятельно, тем более что его электрическая схема не так уж сложна.

Принцип работы и комплектация прибора

В основе прибора лежит емкость, заполненная строго до определенного уровня минеральным маслом.

Внутри этой емкости располагаются трубчатые электрические нагреватели (ТЭНы). ТЭНы должны быть постоянно погружены в масло, поэтому установка масляного обогревателя допускается только в вертикальном положении. В случае падения обогревателя и оголения ТЭНов последние могут выйти из строя.

Схема электрическая подключения масляных радиаторов.

Работы, связанные с заменой ТЭНов, а значит, с необходимостью слива и замены масла, обычно проводятся в специализированных мастерских (при наличии опыта и чистого трансформаторного масла можно рискнуть проделать это самостоятельно). Если же произошла разгерметизация масляного бака, лучше довериться профессионалам, так как в домашних условиях это не устраняется. Иногда дешевле будет приобрести новый обогреватель.

Упрощенная схема масляного обогревателя изображена на рисунке 1. Нагревательный элемент, состоящий из 2 масляных ТЭНов, EK1 и EK2, подключен через переключатель мощности V1, расположенный на корпусе масляного обогревателя. В зависимости от количества включенных нагревательных элементов изменяется его потребляемая мощность (схема включения ТЭНов показана условно и может отличаться).

Нагретое масло передает тепло корпусу, который работает как обычный радиатор. Чем больше секций он имеет, тем быстрее происходит передача тепла. Уровень температуры воздуха в комнате можно плавно изменять, устанавливается он при помощи биметаллического термостата, обозначенного на схеме как SK1. Обогреватель нельзя накрывать сверху, иначе термостат просто отключит прибор, среагировав на скопление горячего воздуха. Некоторые модели имеют специальные подставки для сушки белья, но в целом использовать масляный радиатор для сушки малоэффективно.

Схема подключения ТЭНов содержит также термовыключатель (SK2), предохраняющий от перегрева сам корпус прибора. Особенностью масляных обогревателей является постепенный нагрев воздуха. Для того чтобы несколько ускорить этот процесс, некоторые модели оснащают встроенными вентиляторами. Место подключения двигателя вентилятора M на схеме условно показано стрелками, так как он не является обязательным элементом прибора. Сетевой выключатель SA1 подает питание на сигнальную лампу HL1.

https://1popechi.ru/youtu.be/olLrgRIRSRs

Вернуться к оглавлению

Устройства защиты и электропроводка

Схема подключения элементов обогревателя внутри прибора производится по трехпроводной схеме. Это значит, что для его работы используется однофазная сеть с третьим проводом для заземления корпуса прибора. Вилка сетевого шнура и розетка, куда будет подключаться обогреватель, должны иметь заземляющие контакты. Это не значит, что прибор не будет работать в двухпроводной сети старого образца, просто таковы современные требования безопасности.

Кроме этого, желательно использовать как минимум противопожарное УЗО, включенное после входного автомата и счетчика. Для защиты от поражения электрическим током от корпуса прибора можно использовать двухполюсное УЗО на отдельной ветке, где будут подключены розетки для обогревателя.

Мощность масляных обогревателей составляет обычно от 1 до 2,5 кВт, то есть фактически эквивалентна мощности обычного электрического чайника (2,2 кВт). Поэтому никаких особых требований к электропроводке возникнуть не должно. Автоматы в распределительном щите тоже имеют достаточный запас для такой нагрузки.

https://1popechi.ru/youtu.be/AdK120U8vfc

Единственное, что можно пожелать при выборе обогревателя, — это наличие датчика, отключающего прибор при опрокидывании, и таймера, задающего режим его работы по заранее установленному графику. В этом случае всегда можно поддерживать наиболее комфортный климат в квартире и избежать случайного перегорания нагревательных элементов.

Обогреватель электрический – схема, ремонт своими руками

Любой обогреватель – масляный, инфракрасный или конвекционный, в независимости от его типа, вида и производителя, даже самый качественный и надежный, в любой момент может поломаться и потребуется его ремонт. Так и произошло с микатермическим обогревателем Bimatek Ph400, который принес мне знакомый. Обогреватель не грел, индикатор температуры не светился, хотя обогреватель проработал всего полгода и был еще на гарантии.

Кто сталкивался с ремонт бытовой техники, по гарантии знает, что это хлопотное дело. Нужно найти гарантийную мастерскую, отнести туда обогреватель, месяц ждать и потом потратить время, чтобы забрать отремонтированный. Не факт, что ремонт будет бесплатным. Если мастерская решит, что обогреватель вышел из строя по Вашей вине, то придется оплатить еще и услугу ремонта. Поэтому, если изделие, например обогреватель, простое, то есть смысл попробовать отремонтировать его своими руками. Как, оказалось, вышел из строя защитный термопредохранитель, но чтобы добраться до него, пришлось практически полностью разобрать обогреватель.

Внимание! Перед началом работы по осмотру и ремонту обогревателя необходимо его отключить от питающей сети, вынув сетевую вилку обогревателя из розетки.

Почему не греет обогреватель — поиск неисправности

Если вдруг обогреватель перестал работать и индикатор подключения к сети не светится, то в первую очередь необходимо проверить наличие питающего напряжения в электрической розетке. Мог сработать автомат защиты на входе электропроводки в квартиру, нарушится контакт в месте подключения проводов к розетке или выйти из строя сама электрическая розетка.

Проверить исправность розетки можно двумя способами, подключив к ней любой электроприбор, например настольную лампу или фен, что предпочтительней. Или подключить обогреватель к другой розетке. Если обогреватель начал греть значит, неисправна розетка.

Если дело в обогревателе, то вполне возможно он перегрелся, и сработала система его защиты от перегрева, или вилку в розетку вставили, но забыли включить выключатель на корпусе обогревателя или установить в нужное положение ручку регулятора температуры (при их наличии). Поэтому прежде чем делать выводы, необходимо проверить в каком положении находятся переключатели на и подождать, пока обогреватель остынет.

В случае если все проверки, не привели к успеху, значит, обогреватель вышел из строя, и требует ремонта.

Инструкция по ремонту электрического обогревателя

Ремонт любого электроприбора начинается с внешнего осмотра. Первым делом проверяется сетевая вилка. Она не должна иметь видимых механических повреждений, потемневшей пластмассы и трещин в корпусе. Штыри вилки должны быть прочно зафиксированы в корпусе и не иметь почернений. Токоподводящий шнур не должен иметь механических повреждений. Особенно внимательно нужно осмотреть место шнура, где он выходит из корпуса вилки. В этом месте шнуры часто перетираются.

Необходимо также заглянуть через сетку или перфорацию вовнутрь корпуса обогревателя и убедиться, что в обозримом пространстве нет оборванных или подгоревших проводов, провода не подгорели в местах присоединения к разъемам и фиксации гайками, тепло нагревательные элементы (ТЭН или нихромовая спираль) не имеют механических повреждений.

Если внешний осмотр не позволил выявить очевидных дефектов, то для дальнейшего поиска причин отказа обогревателя понадобится измерительный прибор. Лучше всего для этих целей подойдет стрелочный тестер или мультиметр, включенный в режим измерения малого сопротивления.

Не разбирая обогреватель, с помощью тестера можно проверить исправность сетевого шнура в месте выхода из корпуса вилки. Для этого нужно переключатели обогревателя (при их наличии) установить в рабочее положение, щупы омметра подсоединить к штырям вилки (удобно с помощью зажима типа крокодил), и прижать шнур к корпусу вилки по линии его выхода из вилки, покачать из стороны в сторону. Если стрелка тестера или показания мультиметра, хоть на миг изменятся, значит, ремонт почти окончен. Останется только заменить вилку. Величина сопротивления нагревательного элемента составляет, в зависимости от мощности обогревателя, 10–150 Ом и при желании Вы можете ее точно рассчитать с помощью приведенного ниже онлайн калькулятора.

  Онлайн калькулятор для расчета величины сопротивления по потребляемой мощности  
  Напряжение питания, В:  
  Мощность, Вт:  
  

Электрические схемы обогревателей

На фотографии ниже, представлены пять стандартных, широко распространенных электрических схем обогревателей.

Схема №1 самая простая, представляет собой сетевую вилку со шнуром, который подсоединен к нагревательному элементу напрямую или через клеммную колодку с помощью резьбового соединения или накидных клемм. По такой схеме собран обогреватель типа Трамвайная печка. Для включения обогревателя, изготовленного по этой схеме достаточно вставить вилку в розетку.

Схема №2 отличается от предыдущей схемы установкой для удобства на корпусе электрического обогревателя выключателя. В результате при эксплуатации уже не требуется для включения или выключения обогревателя каждый раз вставлять и вынимать вилку из розетки.

Обогреватели, собранные по схеме №3, дополнены термопредохранителем, который разомкнет цепь питания обогревателя в случае его перегрева при падении на боковую сторону или если в нарушение правил эксплуатации на обогреватель положили для сушки вещи. В некоторых моделях дополнительно, последовательно с термопредохранителем устанавливают еще и датчик положения, отключающий обогреватель, в случае отклонения его положения от рабочего. Как правило, рабочее положение обогревателя является вертикальным.

В схеме №4 установлено два нагревательных элемента и дополнительный выключатель. Нагревательные элементы могут быть одинаковой мощности или разной. Такое схемное решение позволяет регулировать простым включением или выключением выключателей мощность обогревателя, тем самым регулировать выделяемое им тепло. Например, если в обогревателе установлены два нагревателя мощностью 1000 и 2000 ватт. Тогда при включении Вкл1 мощность составит 1 кВт, при выключении Вкл2, но включении Вкл1, мощность будет 2 кВт, а при включенных Вкл1 и Вкл2 уже 3 кВт.

Для удобства в некоторых видах обогревателей устанавливается галетный переключатель. При повороте ручки переключателя по часовой стрелке, с каждым щелчком мощность увеличивается на 1 кВт.

По схеме №5 изготавливают электрические обогреватели вида тепловентиляторы. В них дополнительно устанавливается электродвигатель с крыльчаткой. Для исключения перегрева нагревательных элементов, включить их, не включив вентилятор невозможно. Это обеспечивает установленный дополнительно включатель Вкл1. В тепловентиляторах в обязательном порядке устанавливается самовосстанавливающийся термопредохранитель для отключения нагревательных элементов в случае отказа вентилятора. Тепловентилятор можно использовать, если не включать нагревательные элементы, как обычный вентилятор для охлаждения в жаркую погоду.

В дорогих моделях электрообогревателей можно встретить регулятор температуры. При установке регулятором заданной температуры воздуха, при ее достижении, обогреватель выключится и включится только после снижения температуры воздуха ниже заданной величины.

В схеме электрообогревателя могут быть установлены индикаторы режимов работы на неоновых лампочках или светодиодах. В некоторых моделях устанавливают выключатели с подсветкой, в которых уже вмонтированы неоновые лампочки. Индикаторы непосредственного участия в работе обогревателя не принимают, а только сигнализируют о режиме его работы.

Как разобрать электрообогреватель

В случае если обогреватель перестал греть и внешний осмотр не позволил установить причину неисправности, то придется его для ремонта разобрать.

Рассмотрим последовательность ремонта на примере современного микатермического обогревателя Bimatek Ph400 (фотография в начале статьи), собранного по самой сложной из представленных выше электрических схем. Зная, как ремонтировать такой обогреватель, более простые можно будет отремонтировать без затруднений.

Начинать разбирать необходимо со стороны входа сетевого шнура. Обычно шнур входит в крышку с боковой стороны. Для снятия боковой крышки с обогревателя Bimatek Ph400 необходимо открутить все видимые винты, удерживающие крышку, и еще два потайных винта. Один из них закрыт декоративной заглушкой, которая находится ниже ручек управления.

Для извлечения заглушки необходимо лезвием отвертки или ножа поддеть заглушку со стороны фиксатора, и отвести фиксатор внутрь. Заглушка легко выйдет.

Откроется отверстие, в котором и находится винт бокового крепления крышки к основанию. Второй потайной вин был спрятан под липкой наклейкой, рядом с которой была еще одна наклейка желтого цвета с предупреждающей надписью «При повреждении пломбы гарантия недействительна!».

Так что если обогреватель еще на гарантийном обслуживании и Вы не уверены в своих силах при наличии возможности лучше все же обратиться с ремонтом по гарантии в сервисный центр.

Боковая крышка снята и теперь открылся доступ ко всем контактам органов управления и нагревательных элементов. Осталось только, с помощью тестера найти и заменить отказавшую деталь.

Поиск неисправности микатермического обогревателя

Первым делом нужно внимательно осмотреть все провода, места присоединения их к клеммам и разъемам. Если внешний осмотр не дал результата, то нужно переходить к проверке цепей с помощью тестера или мультиметра. Последовательность проверки элементов не имеет значения, но я всегда начинаю проверку деталей с токоподводящего провода.

Сетевой трехжильный шнур, заходит в боковую крышку, где зафиксирован прижимной пластиной двумя саморезами. Два конца проводов в изоляции синего и красного цвета оканчиваются двухконтактным разъемом, а желто-зеленый, заземляющий проводник заканчивается лепестком, прикрученным винтом к металлическому основанию обогревателя. Желто-зеленый провод при поиске неисправности нас не интересует, так как он не принимает непосредственного участия в работе обогревателя, а служит только для защиты человека от поражения электрическим током.

Проверка сетевого шнура

Для проверки сетевого шнура необходимо сначала подготовить прибор, установив его переключатели в режим измерения сопротивления. Далее одним концом щупа прикоснуться к любому штырю вилки, а вторым по очереди коснуться концов зеленого и красного проводов. При прикосновении к одному из проводов прибор должен показать нулевое сопротивление. Далее прикасаются ко второму штырю вилки и проверяют второй провод. При этом желательно удерживая щупы шнур подергать и погнуть, сопротивление не должно изменяться и рано быть нулю.

Если сопротивление существенно больше нуля в результате неисправности вилки или перетершегося у ее основания шнура, то вилку следует заменить. Проверке и замене электрической вилки посвящена статья «Электрическая вилка».

Проверка переключателя режимов работы

Если сетевой шнур в порядке, то приступают к проверке переключателя режимов работы обогревателя.

Вывод переключателя, к которому подходит коричневый провод, является общим и на него подается питающее напряжение. Для проверки переключателя нужно установить его в положение III, при котором общий вывод должен быть соединен с остальными двумя выводами. Теперь достаточно измерять сопротивление между общим выводом и остальными двумя, оно должно быть равно нулю. Если переключатель установить в положение II, то средний контакт останется соединенным только с одним из двух остальных. В положении I, только с еще не проверенным контактом. В нулевом положении ни один контакт не должен соединяться с другим. Если переключатель в порядке, то нужно искать причину поломки обогревателя в другом месте.

Проверка работы биметаллического терморегулятора

Рядом с переключателем режимов установлен биметаллический терморегулятор. Принцип работы его основан на свойствах разных металлов, увеличиваться или уменьшаться в размерах при изменении температуры по-разному. Если соединить две пластинки из разных металлов в одно целое, то при изменении температуры пластина начнет изгибаться. А если на такой пластинке установить электрический контакт, то благодаря изгибанию пластинки можно будет управлять температурой включения или выключения электроприборов в зависимости от температуры окружающей среды. С полезным свойством биметаллических пластинок ежедневно сталкивается каждый из нас. Например, электрочайник выключает биметаллическая пластинка, нагретая паром закипевшей воды.

Для проверки исправности терморегулятора, достаточно прикоснуться щупами мультиметра к его выводам и повернуть ручку от упора до упора в любую сторону. Практически во всем диапазоне вращения сопротивление терморегулятора должно быть равно нулю. Если это не так, то обычно достаточно почистить мелкой наждачной бумагой контакты, которые хорошо видны сбоку.

Если понадобится снять терморегулятор, например, для замены или ремонта то необходимо сначала снять регулировочную ручку. Она на оси держится за счет плотной посадки. Для снятия ручки необходимо аккуратно поддеть ее с двух сторон плоскими лезвиями отверток. Ручка с небольшим усилием снимется с оси.

Под ручкой находятся два винта. Достаточно их открутить и механизм терморегулятора освободится.

Проверка исправности нагревательных элементов

Настала очередь проверки нагревательных элементов, подключенных к переключателю и терморегулятору с помощью навесного шести контактного разъема.

Как выяснилось, микатермический нагревательный элемент составной и состоит из двух. Один имеет сопротивление 60 Ом, второй 100 Ом. Для проверки нагревательного элемента достаточно измерять сопротивление между красным, синим и коричневым проводами. Проверка показала исправность микатермического нагревателя.

Проверке нагревательных элементов электробытовых приборов посвящена статья сайта «Как проверить электронагреватель».

Проверка датчика вертикального положения

Датчик положения представляет собой грузик, закрепленный на рычаге с уравновешивающей пружиной, зацепленной за противоположный конец рычага. Когда обогреватель находится в вертикальном положении, грузик растягивает пружину и надавливает на встроенный микровыключатель. Питающее напряжение поступает на нагревательные элементы. Если обогреватель наклонить на бок, то сила земного притяжения уменьшит воздействие на пружину, она отведет рычаг от микровыключателя, цепь разорвется, и ток прекратит поступать на нагревательные элементы.

От датчика положения идут два провода, белый и коричневый. Для проверки достаточно измерять между ними мультиметром сопротивление. Когда обогреватель находится в вертикальном положении, сопротивление датчика положения должно быть равно нулю. При наклоне – бесконечности. Датчик положения оказался исправен.

Проверка исправности термопредохранителя

Осталось проверить включенные последовательно термопредохранители, которых было три и все они были установлены за пластиной микрометрического нагревателя. От термопредохранителей шла пара проводов белого цвета на шестиконтактный разъем, на тот же, что и провода от микатермического нагревателя. Прозвонка мультиметром показала обрыв в цепи термопредохранителей. Стало ясно, неисправен один из термопредохранителей.

Понадобилась дальнейшая разборка обогревателя. Для этого пришлось снять вторую боковую крышку и защитную сетку, которая снимается после освобождения от винтов сдвигом в сторону. Доступ для проверки двух самовосстанавливающихся термопредохранителей открылся.

Для проверки термопредохранителей одним концом щупа мультиметра нужно прикоснуться к белому проводу, подходящему к шестиконтактному разъему, а вторым щупом, проткнув изоляцию прижатой к нему иголкой прикоснуться к проводу, соединяющему термопредохранители. Проверка показала исправность доступных для проверки предохранителей. Все элементы проверены, кроме термопредохранителя за микатермическим нагревательным элементом. Значит он неисправен.

Пришлось снимать нагревательный элемент, для чего достаточно было открутить четыре винта по углам и отвести его в сторону. Открылся следующий вид.

Термопредохранитель находился в трубке из стекловолокна и крепился к корпусу обогревателя винтом с помощью металлического хомута.

Как оказалось, в трубке находился самовосстанавливающийся термопредохранитель SF192E, рассчитанный на температуру срабатывания 133˚С и ток нагрузки до 10 А при напряжении до 250 В. Дополнительная проверка мультиметром подтвердила неисправность термопредохранителя.

Термопредохранитель к проводам был подсоединен способом обжатия латунной полоской. Посредством шила, конец полоски со стороны термопредохранителя был отогнут, термопредохранитель вынут и на его место запрессован аналогичный, типа G4A00, рассчитанный на температуру срабатывания 128˚С и ток нагрузки до 10 А при напряжении до 250 В. Температура срабатывания установленного термопредохранителя на 5 градусов ниже, чем вышедшего из строя. Но с учетом максимального нагрева корпуса обогревателя всего 65˚С, такая замена не окажет влияния на защитные функции и работоспособность обогревателя.

Перед сборкой обогревателя, были соединены между собой все разъемы, щупы мультиметра подсоединены к штырям сетевой вилки и проверены все режимы работы обогревателя. Сопротивление в положении переключателя режимов 0 было бесконечным, в положении I составило 156 Ом, в положении II –100 Ом и в положении III – 56 Ом, что свидетельствовало о полной исправности обогревателя.

После сборки обогреватель был подключен к сети и подтвердил свою работоспособность. Ремонт обогревателя окончен и о его неисправности напоминают только следы от инструмента, оставленные на пластмассовых заглушках.

Особенности ремонта обогревателя


с керамическими нагревательными элементами

Принесли мне для ремонта, с виду обыкновенный тепловентилятор, типа Timberk TFH T15DDL по причине снижения эффективности нагрева.

При подключении обогревателя к сети, было обнаружено, что вентилятор слабо гнал воздух, который был чуть теплым. Переключатель режимов нагрева и регулятор температуры функционировали нормально. Для поиска неисправности пришлось обогреватель вскрывать. Первым делом была удалена пыль, набившаяся в радиатор нагревательных элементов. Вентилятор стал дуть сильнее, но нагрев воздуха оставался слабым.

Замер напряжения на выводах нагревательных элементов показал величину 220 В, что свидетельствовало об исправности электрической схемы. Величина измеренного тока потребления тепловентилятора в режиме максимального нагрева составила 1,1 А вместо положенных 8 А, что говорило о неисправности нагревательных элементов.

С подобным нагревательным элементом я столкнулся впервые. Оказалось, что в этом тепловентиляторе нагревательный элемент представляет собой 14 металлокерамических пластин, зажатых между восемью алюминиевых радиаторов. Весь этот пакет вставлен в прямоугольную рамку из термостойкой пластмассы и удерживается четырьмя защелками. Алюминиевые радиаторы выполняют сразу несколько задач – удерживают керамические нагреватели, отводят от них тепло и подают на металлокерамические пластины питающее напряжение.

Внимание, в связи с тем, что питающее напряжение подается через алюминиевый радиатор, прикосновение к нему при вставленной вилке обогревателя в розетку электросети опасно для жизни!

Для лучшего отвода тепла и электрического контакта стороны металлокерамических пластин, прижатые к радиатору, покрыты электро-термопроводящей пастой.

Нагревательные металлокерамические пластины представляют собой радиоэлементы, которые называются позисторы. Принцип работы позистора заключается в том, что его сопротивление зависит от температуры его нагрева. Чем больше нагревается позистор, тем выше его сопротивление, и согласно Закону Ома меньший будет протекать ток, и как следствие нагреватель будет меньше выделять тепла.

Благодаря такому свойству, по утверждению разработчиков металлокерамических нагревательных элементов, при достижении температуры 300 °С наступает баланс, сопротивление позистора увеличивается до такой величины, что температура больше не увеличивается. Это обеспечивает безопасное продолжение работы тепловентилятора, даже когда поломался и не вращается или забился пылью продувающий воздух вентилятор.

Измерение сопротивления секций нагревателей мультиметром показало сопротивление около 1000 Ом, вместо должных 112 Ом. На удивление оказалось, что сопротивление не соответствует у всех металлокерамических пластин. Такое могло произойти только в случае перегрева металлокерамических пластин, что исходя из принципа их работы, не должно произойти. Напрашивается вывод о том, что керамические нагреватели были установлены низкого качества и для восстановления полной работоспособности тепловентилятора потребуется их замена.

Для ремонта тепловентилятора можно купить готовый нагревательный блок, керамический нагреватель типа MZFR-J-1800W-220V, предназначенный для ремонта тепловентиляторов. Его внешний вид, габаритные размеры и схема подключения приведены выше на фотографии. Стоит MZFR-J-1800W-220V около $10.


Сергей Иванович 29.01.2018

Здравствуйте.
Сразу две дуйки разных фирм показали одинаковую неисправность. В достаточно прохладном помещении +2 °С отключаются через 1-2 минуты работы. Причём на обоих ТЭНы работают только в режиме максимального нагрева, когда ручка регулятора повернута по часовой стрелке до упора. На одном нагревательном элементе работают значительно дольше и при меньшем отпускании биметаллической пластины (меньший нагрев помещения), но всё равно отключаются.
Как вы думаете отключение происходит в результате нагревания биметаллической пластины большим током нагревания контактов или в результате «старения» и усталости металла БП? Одному прибору уже больше 5 сезонов, другой помоложе!

Статья Ваша понравилась! Заранее благодарен за ответ. С уважением Сергей Иванович.

Александр

Здравствуйте, Сергей Иванович. Спасибо за отзыв о статье.
Предполагаю, что в регуляторе температуры обогревателя окислились или подгорели контакты и для ремонта достаточно их просто прочистить наждачной бумагой. Из-за увеличения сопротивления в месте соприкосновения контактов выделяется тепло, которое и нагревает пластину.
Могло произойти и старение биметаллической пластины в результате чего она потеряла первичную геометрическую форму. Обычно в терморегуляторах такого типа есть возможность регулировки.

Сергей Иванович

Путём нехитрых размышлений над принципами работы регулятора вышел из положения!
Регулирующая ножка, вращаясь по часовой стрелке ослабляет давление на биметаллическую пластину и дуйка перестаёт так часто отключаться.

Я отогнул упор, ограничивающий поворот регулятора. Повернул винт по часовой стрелке, пока его флажок не минул упор. После чего вернул упор на место. Таким образом я расширил возможности ослабления давления на пластину и прибор заработал! То есть перестал отключаться преждевременно.

Диагностика неисправностей цепи нагревателя датчика кислорода

По мере старения автомобилей наступает момент, когда цепь нагревателя датчика кислорода или датчика соотношения воздух/топливо может выйти из строя. Когда это происходит, самое простое решение — установить новый датчик. Но когда автомобиль возвращается через два дня с тем же кодом отопителя, что тогда?

Как раз по такому делу меня вызвал местный магазин. Автомобиль прибыл из другого магазина, где уже заменили кислородный датчик. Магазин, который мне звонил, тоже заменил О 2 датчик. Очевидно, что замена датчика не была правильным решением. Автомобиль неоднократно возвращался с кодом P0031 — датчик O2 B1S1, низкоточный нагреватель потока (разомкнутая цепь).

С этого момента я буду называть оба кислородных датчика, датчики соотношения воздух/топливо, только датчиками O 2 . Я знаю, что это не одно и то же, но в данном случае нас интересуют только нагреватели внутри обоих типов датчиков. И в этом отношении они принципиально одинаковы.


Одним из популярных тестов является проверка силы тока в цепи нагревателя датчика O 2 . Этот тест подтверждает, что нагреватель самого датчика O 2 работает, и наводит вас на мысль, что автомобиль починили. Но что заставило автомобиль вернуться через два дня с тем же кодом? Одна из возможностей заключается в том, что цепь нагревателя датчика может включаться в неподходящее время.

Давайте подумаем об этом. Нужна ли цепь подогрева датчика O 2 , включающаяся при неработающем двигателе? Скорее всего, не. Мы должны иметь в виду, что ECM контролирует работу контура нагревателя. Кроме того, амперметр не может помочь найти источник проблемы; это может указывать только на то, что проблема присутствует в данный момент.

Всякий раз, когда я диагностирую проблемы с электричеством, мне нравится разрабатывать быстрый и простой способ проверки цепей, если это возможно. При тестировании цепи нагревателя датчика O 2 я обнаружил, что использование лампы накаливания #7440 и патрона очень полезно. Вы подключаете свет к жгуту проводов обогревателя датчика O 2 автомобиля вместо датчика. Лампочка потребляет около 1,75А при 12В. Обычно это находится в пределах рабочего диапазона нагревателя датчика. Это работает очень хорошо — примерно в 95% случаев.

При замене неисправного датчика O 2 отрежьте датчик от старого жгута проводов. Использование старого жгута поможет исключить возможность подключения к неправильной цепи, что может привести к дорогостоящей ошибке. Теперь подключите лепестковые разъемы к каждому проводу нагревателя жгута проводов. Обычно провода нагревателя на жгуте датчика либо черные, либо белые. Затем подключите лампочку #7440 и патрон к жгуту проводов.

На данный момент четырехпроводная конфигурация разъема кажется наиболее популярным типом разъема, который можно найти в магазинах запчастей. Однако датчики кислорода могут иметь пять и более проводов. Эти датчики по-прежнему будут иметь два выделенных провода нагревателя.

После того, как вы сопоставите конфигурацию вилки и проводки с разъемом датчика автомобиля O 2 , вы готовы начать тестирование. Сначала запишите компьютерные коды, включая информацию о стоп-кадре. Помните, что информация стоп-кадра показывает условия вождения в момент установки кода. Затем очистите коды. Некоторые компьютерные системы отключают цепь нагревателя O 2 до тех пор, пока коды не будут удалены.

Теперь, при выключенном зажигании, подключите тестовый жгут с фонарем к O 9 автомобиля.0005 2 соединение жгута датчиков. Индикатор должен оставаться выключенным до тех пор, пока двигатель не будет запущен. После запуска двигателя индикатор должен гореть постоянно или мигать. Это считается нормальной работой цепи. В качестве меры предосторожности выполняйте этот тест в течение 30 секунд или менее. Компьютер может сбросить код.

Если лампа загорается при выключенном зажигании или при включении только ключа (двигатель не работает), то проблема в цепи отопителя. Вы должны обратиться к электрической схеме автомобиля, чтобы узнать, как эта цепь подключена.

Цепь нагревателя датчика O 2 управляется одним из двух способов. Во-первых, это положительно контролируемый тип цепи. Если отрицательный провод цепи нагревателя датчика O 2 идет непосредственно на массу, проверьте наличие короткого замыкания на цепь питания. Обычно цепь нагревателя в этом случае управляется реле. Снимите реле и повторите проверку цепи. Если индикатор снова загорится, найдите короткое замыкание на напряжение в жгуте проводов при снятом реле. Проследите жгут от O 2 подключение датчика обратно к реле. Когда вы находитесь рядом с источником проблемы, свет может мигать или гаснуть.

Бывают случаи, когда свет гаснет сразу после снятия реле. Возможно само реле закорочено или неисправна цепь управления реле. В любом случае необходимо найти источник проблемы.

Теперь перейдем к отрицательно управляемой цепи нагревателя датчика O 2 . Если схема подключения показывает O 2 Цепь нагревателя датчика управляется через ЭБУ на массу, начните искать замыкание на массу на отрицательном управляющем проводе датчика. Одним из быстрых тестов является отключение компьютера от цепи. Сначала убедитесь, что зажигание выключено, а аккумулятор отсоединен. Затем снова подключите аккумулятор и снова включите зажигание. Если провод от разъема отопителя O 2 к ЭБУ замкнут на массу, то лампочка все равно будет гореть. Проследите жгут проводов обратно к компьютеру, наблюдая за светом. Когда вы обнаружите область короткого замыкания, свет может снова мигнуть или погаснуть.

В случае, когда меня вызывали, это был Jeep Grand Cherokee 2000 года выпуска с двигателем 4,0 л. Жгут проводов датчика автомобиля O 2 был зажат под клапанной крышкой в ​​задней части головки блока цилиндров. К счастью, отрицательный провод нагревателя датчика был единственным задействованным проводом в жгуте проводов. Недавно была заменена прокладка клапанной крышки.

Один из техников задал интересный вопрос: при замыкании управляющего провода на массу, почему компьютер установил код обрыва цепи нагревателя?

ЭБУ ищет 12 В на отрицательном управляющем проводе датчика, в то время как O 2 драйвер цепи нагревателя датчика ЭБУ (силовой транзистор в ЭБУ) открыт. При заземлении провода цепь нагревателя датчика O 2 включалась сразу после включения зажигания. В этот момент компьютерный контроль был обойден. Следовательно, отслеживаемое компьютером напряжение было равно нулю, пока драйвер схемы был разомкнут. В этот момент компьютер запрограммирован на установку кода обрыва цепи нагревателя. Опять же, именно здесь показания амперметра заставят вас думать, что схема работает нормально.

Также будут случаи, когда индикатор не будет гореть при работающем двигателе. В этом случае сначала проверьте, не перегорел ли предохранитель. Если произошло короткое замыкание нагревателя датчика O 2 , возможно, перегорел и предохранитель.

Убедившись, что предохранитель исправен, проверьте напряжение на O 2 жгуте проводов датчика. Модифицированный тестовый жгут со светом даст вам легкий доступ к цепи. Помните, что в этот момент двигатель должен работать. Если напряжение на положительном проводе нагревателя близко к нулю, найдите разрыв цепи в проводе питания обратно к предохранителю. Опять же, в цепи может быть реле. Однако, если О 2 Напряжение жгута датчика показывает напряжение аккумуляторной батареи на обоих проводах нагревателя (при включенной лампочке), найдите возможный обрыв в отрицательном проводе датчика. Также не забудьте проверить все основания компьютера. Есть вероятность, что компьютер может иметь выделенную землю для этой цепи. Наихудшим сценарием на этом этапе будет перегоревший драйвер компьютера.

Как я указывал ранее, эта процедура работает примерно в 95% случаев. Одна из машин это не 9Работа с 0095 была Toyota 4Runner 1997 года с двигателем V6. При этом на обоих проводах к цепи нагревателя датчика О 2 было напряжение. Большинство компьютерных систем также будут контролировать ток, подаваемый на датчик. Потребляемый светом ток не находился в пределах рабочего диапазона цепи нагревателя этой системы. Поэтому компьютер отключил цепь для защиты системы (особенно для защиты драйверов цепей компьютера).

В подобных случаях подключайте новый датчик только к жгуту проводов. Я рекомендую использовать новый датчик здесь. Бывают случаи, когда старый датчик сначала будет работать, а затем перестанет работать, когда датчик нагреется. Это действительно может быть проблемой. Этот тест можно выполнить без необходимости установки нового датчика в выхлопную трубу или коллектор.

Теперь проверьте напряжение на отрицательном проводе нагревателя датчика. Когда автомобиль запущен, 12 В должно присутствовать на мгновение. Затем напряжение будет падать до нуля или пульсировать. При использовании лабораторного эндоскопа импульс будет увеличиваться во времени, падая до нуля по мере того, как нагреватель остается включенным дольше. Для этого теста можно использовать DVOM, но имейте в виду, что вольтметр только усредняет показания. Это может сбивать с толку.

Всякий раз, когда вы заменяете кислородный датчик из-за кода нагревателя, всегда проверяйте работу цепи. Тестовый жгут с подсветкой позволяет быстро и легко проверить цепь. Это поможет исключить возвраты и сэкономить магазин и ваше драгоценное время.

Скачать PDF

P0036 Code — HO2S Home Curtry

OBD -II

P0036

Рекламный

Какие коды будут охватывать эту страницу?

  • P0036 Цепь управления нагревателем датчика HO2S — ряд 1, датчик 2
  • P0037 Низкий уровень сигнала в цепи управления нагревателем датчика кислорода
  • P0038 Цепь управления нагревателем датчика кислорода, высокий уровень

Что такое код P0036?

Симптомы
Причины
Серьезность
Могу ли я продолжать водить машину?
Диагностика
Сложность проверки
Получение дополнительной помощи

Код OBD P0036 относится к «Цепи управления нагревателем HO2S — ряд 1, датчик 2» и устанавливается, когда модуль управления двигателем (ECM) обнаруживает возможную проблему с вторичным датчиком ряда 1. или цепь управления нагревателем датчика 2. Датчик 2 также называют датчиком ниже по потоку, так как он расположен после каталитического нейтрализатора. Ряд 1 — это сторона двигателя, на которой находится цилиндр номер 1. В современных автомобилях используется датчик кислорода с подогревом (HO2S) с нагревательным элементом, который быстро нагревает датчик до рабочей температуры.

Датчик на выходе в основном используется для контроля после катализа и проверяет содержание кислорода в отработавших газах, выходящих из каталитического нейтрализатора. Каждый датчик HO2S сравнивает содержание кислорода в окружающем воздухе с содержанием кислорода в выхлопной системе. Цепь нагревателя получает питание или массу от ECM, быстро доводя датчик до рабочей температуры. ECM управляет цепью нагревателя HO2S на основе температуры охлаждающей жидкости двигателя и показаний нагрузки двигателя, пока не будет достигнута оптимальная рабочая температура 570 градусов по Фаренгейту. Чем быстрее нагретый кислородный датчик достигает этой температуры, тем быстрее датчик начинает посылать точные сигналы. Если модуль ECM обнаружит, что датчик HO2S не посылает надлежащий сигнал или вообще не посылает сигнал, он активирует код P0036.

Каковы симптомы кода P0036?

Одним из наиболее распространенных симптомов кода P0036 является то, что ECM загорается индикатором Check Engine вашего автомобиля. Вы также заметите снижение мощности двигателя в вашем автомобиле, а также повышенный расход топлива. Вы также можете обнаружить, что каталитический нейтрализатор не может работать так же эффективно, как обычно. ECM также может активировать отказоустойчивый режим для вашего автомобиля. Безопасный режим ограничивает ваш автомобиль определенным рабочим диапазоном и вызывает проблемы с управляемостью. Наконец, ваш автомобиль, скорее всего, не пройдет тест на выбросы из-за изменений в составе выхлопных газов.

Каковы некоторые причины кода P0036?

Неисправности вторичного датчика h3OS или обрыв цепи внутри кислородного датчика обычно вызывают код P0036. Иногда заземляющий провод выхлопной системы может подвергаться коррозии, что приводит к тому, что ECM устанавливает код. Если проводка, ведущая к вторичному датчику, повреждена, код также может быть установлен. Наконец, в случае неисправности проводки или высокого сопротивления подогреваемого кислородного датчика ECM установит код P0036.

Могу ли я продолжать движение с кодом P0036?

Как мы уже упоминали, ошибка P0036 может привести к тому, что ваш автомобиль перейдет в аварийный режим, что ухудшит управляемость. Кислородные датчики важны здесь, потому что они нагреваются при повышении температуры выхлопных газов и работают по назначению, пока на датчик не влияет какая-либо другая проблема. С учетом сказанного, обогреватель предназначен только для начальных запусков, когда автомобиль холодный. Вы не должны управлять своим автомобилем в течение длительного времени с этим набором кодов, потому что это может привести к полной остановке работы других компонентов двигателя. Вместо этого отнесите свой автомобиль в квалифицированный сервисный центр, как только увидите код P0036, чтобы предотвратить дальнейшее повреждение двигателя и более дорогостоящий ремонт автомобиля.

Насколько легко диагностировать код P0036?

Для диагностики кода P0036 потребуются сканеры кодов OBD и другие инструменты, которые должны быть в наличии у сертифицированных технических специалистов. Первое, что сделает технический специалист, — сбросит код и проверит автомобиль, чтобы увидеть, появляется ли код снова. Далее проверят напряжение от перегоревшего аккумулятора на ТЭН, если оно есть. Если напряжения нет, они исправят обрыв или короткое замыкание в этой цепи. Также будут искать перегоревшие предохранители и проверять работоспособность датчика кислорода с подогревом. Многие проблемы, связанные с этим кодом, связаны с проводкой из-за чрезмерного тепла выхлопных газов, поэтому технический специалист обязательно проверит проводку в контуре отопления.

Насколько сложно проверить код P0036?

Квалифицированные технические специалисты должны проводить осмотр вашего автомобиля, поскольку этот процесс включает несколько этапов и инструментов. Было бы лучше, если бы вы не пытались провести эту проверку самостоятельно дома, потому что вы можете нанести дополнительный ущерб вашему двигателю.

Сначала техник проверит сопротивление в цепи нагревателя, используя электрическую схему для справки. Цепь нагревателя должна иметь некоторое сопротивление. Если есть избыточное сопротивление, в нагревательном элементе имеется обрыв и требуется замена кислородного датчика.

Они также могут проверить провод заземления на разъеме и проверить сопротивление между землей и разъемом кислородного датчика. Проверка питания датчика кислорода является частью этого процесса, и любые проблемы здесь указывают на проблемы с датчиком или самим ECM. При этом вы должны быть осторожны всякий раз, когда есть обратное зондирование, так как неправильная идентификация проводов или некоторые тесты могут привести к повреждению драйвера нагревателя. В любом случае технический специалист заменит то, что требует замены, и повторно протестирует систему на наличие проблемы.

Нужна дополнительная помощь с кодом P0036?

Водителям не следует легкомысленно относиться к коду P0036, так как это может привести к серьезному повреждению автомобиля.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *